(b) $C^{\prime}(q)=\sum_{j=1}^{J} c_{j}^{\prime}\left(q_{j}^{*}\right) d q_{j}^{*} / d q=\sum_{j=1}^{J} \lambda d q_{j}^{*} / d q=\lambda d\left(\sum_{j=1}^{J} q_{j}^{*}\right) / d q=\lambda d q / d q=\lambda$. Therefore, $C^{\prime}(q)=c_{j}^{\prime}\left(q_{j}^{*}\right)$ for all j.
(c) Each firm j solves $\operatorname{Max}_{q} p q_{j}-c_{j}\left(q_{j}\right)$.
q_{j}
The first-order condition (assuming interior solution) is $c_{j}^{\prime}\left(q_{j}\right)=p$.
If $p=C^{\prime}(q)$, then we have $c_{j}^{\prime}\left(q_{j}\right)=C^{\prime}(q)$ for every j. If $c_{j}^{\prime}(\cdot)$ is strictly increasing for all j, we must have $q_{j}=q_{j}^{*}(q)$ - the solution to the central authority's program in part (a) for total output q. Therefore, $\sum_{j=1}^{J} q_{j}=\sum_{j=1}^{J} q_{j}^{*}(q)=q$. In other words, if the market price is $C^{\prime}(q)$, then the industry produces q. Therefore, $C^{\prime}(\cdot)$ is the inverse of the industry supply function.
10.C.4. (a) The central authority's problem can be written as

$$
\left(x_{1}, \ldots, x_{i}\right) \geq 0 \quad \sum_{i=1}^{I} \phi_{i}\left(x_{i}\right) \quad \text { s.t. } \sum_{i=1}^{I} x_{i} \leq x .
$$

Assuming interior solution, the first-order condition is
$\phi_{i}^{\prime}\left(x_{i}^{*}\right)=\lambda>0$ for all i.
(b) $\gamma^{\prime}(x)=\sum_{i=1}^{1} \phi_{i}^{\prime}\left(x_{i}^{*}\right) d x_{i}^{*} / d x=\sum_{i=1}^{1} \lambda d x_{i}^{*} / d x=\lambda d\left(\sum_{i=1}^{I} x_{i}^{*}\right) / d x=\lambda d x / d x=\lambda$. Therefore, $\gamma^{\prime}(x)=\phi_{i}^{\prime}\left(x_{i}^{*}\right)$ for all i.
(c) Each consumer solves $\operatorname{Max} \phi_{i}\left(x_{i}\right)-P x_{i}$.

The first-order condition (assuming interior solution) is $\phi_{i}^{\prime}\left(x_{i}\right)=P$.
If $P=\gamma^{\prime}(x)$, then we have $\phi_{i}^{\prime}\left(x_{i}\right)=\gamma^{\prime}(x)$ for every i. If $\phi_{i}^{\prime}(\cdot)$ is strictly decreasing for all i, we must have $x_{i}=x_{i}^{*}(x)$ - the solution to the central authority's program in part (a) above for total consumption x. Therefore, $\sum_{i=1}^{I} x_{i}=\sum_{i=1}^{I} x_{i}^{*}(x)=x$. In other words, if the market price is $\gamma^{\prime}(x)$, then the
aggregate demand is x. Therefore, $\gamma^{\prime}(\cdot)$ is the inverse of the aggregate demand function.
10.C.5. The system of equations (10.C.4)-(10.C.6) here takes the following form:

$$
\begin{array}{ll}
\phi_{i}^{\prime}\left(x_{i}^{*}\right)=p^{*}+t, & i=1, \ldots, I \\
c^{\prime}\left(q_{j}^{*}\right)=p^{*}, & j=1, \ldots, J \\
\sum_{i=1}^{*} x_{i}^{*}=\sum_{j=1}^{J} q_{j}^{*}
\end{array}
$$

These equations describe the equilibrium (x^{*}, q^{*}, p^{*}) as an implicit function of t. Differentiating with respect to t, we get

$$
\begin{array}{ll}
\phi_{i}^{\prime \prime}\left(x_{i}^{*}\right) x_{i}^{* \prime}(t)=p^{* \prime}(t)+1, & i=1, \ldots, I, \\
c_{i}^{\prime \prime \prime}\left(q_{j}^{*}\right) q_{j}^{* \prime}(t)=p^{* \prime}(t), & j=1, \ldots, J, \\
\sum_{i=1} x_{i}^{* \prime}(t)=\sum_{j=1}^{J} q_{j}^{* \prime \prime}(t) . &
\end{array}
$$

This system of linear equations should be solved for $\left(x_{i}^{* \prime}(t), q_{j}^{* \prime}(t), p^{* \prime \prime}(t)\right.$.
This can be easily done, for e:ample, by expressing $d x_{i}^{*} / d t$ and $d q^{*} / d t$ from the first two sets of equations and substituting into the third equation. We obtain

$$
\left(p^{* \prime}(t)+1\right) \sum_{i=1}^{I}\left[\phi_{i}^{\prime \prime}\left(x_{i}^{* *}\right)\right]^{-1}=p^{* \prime}(t) \sum_{\mathrm{j}=1}^{\mathrm{J}}\left[c_{\mathrm{j}}^{\prime \prime}\left(q_{\mathrm{j}}^{*}\right)\right]^{-1}
$$

From here we can express $p^{* \prime}(t)$:
$p^{* \prime}(t)=\frac{\sum_{i=1}^{1}\left[\phi_{i}^{\prime \prime}\left(x_{i}^{*}\right)\right]^{-1}}{\sum_{i=1}^{1}\left[\phi_{i}^{\prime \prime}\left(x_{i}^{*}\right)\right]^{-1}-\sum_{j=1}^{J}\left[c_{j}^{\prime \prime}\left(q_{j}^{*}\right)\right]^{-1}}$.
Compare to the expression on page 324 of the textbook.
10.C.6. (a) If the specific $\operatorname{tax} t$ is levied on the consumer, then he pays $p+t$ for every unit of the good, and the demand at market price p becomes $x(p+t)$.

