(b) $C'(q) = \sum_{j=1}^{J} c'_j (q^*_j) dq^*_j / dq = \sum_{j=1}^{J} \lambda dq^*_j / dq = \lambda d(\sum_{j=1}^{J} q^*_j) / dq = \lambda dq / dq = \lambda.$ Therefore, $C'(q) = c'_j (q^*_j)$ for all j.

(c) Each firm j solves Max $pq_j - c_j(q_j)$. q_j

The first-order condition (assuming interior solution) is $c'_j(q_j) = p$. If p = C'(q), then we have $c'_j(q_j) = C'(q)$ for every *j*. If $c'_j(\cdot)$ is strictly increasing for all *j*, we must have $q_j = q_j^*(q)$ - the solution to the central

authority's program in part (a) for total output q. Therefore, $\sum_{j=1}^{J} q_j = \sum_{j=1}^{J} q_j^* (q) = q$. In other words, if the market price is C'(q), then the industry produces q. Therefore, $C'(\cdot)$ is the inverse of the industry supply function.

10.C.4. (a) The central authority's problem can be written as

 $\max_{\substack{\sum i = 1}^{I} \phi_i(x_i)} \quad \text{s.t.} \quad \sum_{i=1}^{I} x_i \leq x.$

Assuming interior solution, the first-order condition is

$$\phi_{i}'(x_{i}^{*}) = \lambda > 0 \text{ for all } i.$$
(b) $\gamma'(x) = \sum_{i=1}^{I} \phi_{i}'(x_{i}^{*}) dx_{i}^{*}/dx = \sum_{i=1}^{I} \lambda dx_{i}^{*}/dx = \lambda d(\sum_{i=1}^{I} x_{i}^{*}) /dx = \lambda dx/dx = \lambda.$
Therefore, $\gamma'(x) = \phi_{i}'(x_{i}^{*})$ for all $i.$

(c) Each consumer solves $\max \phi_i(x_i) - Px_i$.

The first-order condition (assuming interior solution) is $\phi'_i(x_i) = P$. If $P = \gamma'(x)$, then we have $\phi'_i(x_i) = \gamma'(x)$ for every *i*. If $\phi'_i(\cdot)$ is strictly decreasing for all *i*, we must have $x_i = x_i^*(x)$ - the solution to the central authority's program in part (a) above for total consumption *x*. Therefore, $\sum_{i=1}^{I} x_i = \sum_{i=1}^{I} x_i^*(x) = x$. In other words, if the market price is $\gamma'(x)$, then the aggregate demand is x. Therefore, $\gamma'(\cdot)$ is the inverse of the aggregate demand function.

10.C.5. The system of equations (10.C.4)-(10.C.6) here takes the following form:

$$\phi'_{i}(x_{i}^{*}) = p^{*} + t, \qquad i = 1, ..., I,$$

$$c'_{i}(q_{j}^{*}) = p^{*}, \qquad j = 1, ..., J,$$

$$\sum_{i=1}^{J} x_{i}^{*} = \sum_{j=1}^{J} q_{j}^{*}.$$

These equations describe the equilibrium (x^*, q^*, p^*) as an implicit function of t. Differentiating with respect to t, we get

$$\phi_{i}''(x_{i}^{*}) x_{i}^{*'}(t) = p^{*'}(t) + 1, \qquad i = 1, ..., I,$$

$$c_{j}''(q_{j}^{*}) q_{j}^{*'}(t) = p^{*'}(t), \qquad j = 1, ..., J,$$

$$\sum_{i=1}^{j} x_{i}^{*'}(t) = \sum_{j=1}^{j} q_{j}^{*'}(t).$$

This system of linear equations should be solved for $(x_i^{*'}(t), q_j^{*'}(t), p^{*'}(t))$. This can be easily done, for example, by expressing dx_i^{*}/dt and $dq_j^{*'}/dt$ from the first two sets of equations and substituting into the third equation. We obtain

$$(p^{*}(t) + 1) \sum_{i=1}^{I} [\phi_{i}''(x_{i}^{*})]^{-1} = p^{*}(t) \sum_{j=1}^{J} [c_{j}''(q_{j}^{*})]^{-1}.$$

From here we can express $p^{*'}(t)$:

$$p^{*}(t) = \frac{\sum_{i=1}^{1} [\phi_{i}''(x_{i}^{*})]^{-1}}{\sum_{i=1}^{1} [\phi_{i}''(x_{i}^{*})]^{-1} - \sum_{j=1}^{J} [c_{j}''(q_{j}^{*})]^{-1}}$$

Compare to the expression on page 324 of the textbook.

10.C.6. (a) If the specific tax t is levied on the consumer, then he pays p+t for every unit of the good, and the demand at market price p becomes x(p+t).