Assumptions

- (P.I) \mathcal{Y}^j is convex for each $j \in F$.
- (P.II) $0 \in \mathcal{Y}^j$ for each $j \in F$.
- (P.III) \mathcal{Y}^j is closed for each $j \in F$.

The aggregate technology set is $Y = \sum_{j \in F} Y^j$.

- (P.IV)(a) if $y \in Y$ and $y \neq 0$, then $y_k < 0$ for some k. (b) if $y \in Y$ and $y \neq 0$, then $-y \notin Y$.
- (P.V) For each $j \in F$, \mathcal{Y}^j is strictly convex.
- (P.VI) \mathcal{Y}^{j} is a bounded set for each $j \in F$.
- (C.I) X^i is closed and nonempty.
- (C.II) $X^i \subseteq \mathbf{R}^N_+$. X^i is unbounded above, that is, for any $x \in X^i$ there is $y \in X^i$ so that y > x, that is, for $n = 1, 2, ..., N, y_n \ge x_n$ and $y \ne x$.
- (C.III) X^i is convex.

(C.IV) (Non-Satiation) Let $x \in X^i$. Then there is $y \in X^i$ so that $y \succ_i x$.

- (C.IV^{**}) (Weak Desirability) X^i contains a translation of R^N_+ . $x, y \in X^i$, x >> y (i.e. $x_n > y_n$, for all n) implies $x \succ_i y$.
 - (C.V) (Continuity) For every $x^{\circ} \in X^{i}$, the sets $A^{i}(x^{\circ}) = \{x \mid x \in X^{i}, x \succeq_{i} x^{\circ}\}$ and $G^{i}(x^{\circ}) = \{x \mid x \in X^{i}, x^{\circ} \succeq_{i} x\}$ are closed.
- (C.VI)(WC) (Weak Convexity of Preferences) $x \succeq_i y$ implies $((1-\alpha)x + \alpha y) \succeq_i y$, for $0 \le \alpha \le 1$.
- (C.VI)(SSC) (Semi-strict convexity of Preferences) $x \succ_i y$ implies ($(1 - \alpha)x + \alpha y$) $\succ_i y$, for $0 \le \alpha < 1$.
- (C.VI)(SC) (Strict Convexity of Preferences): Let $x \succeq_i y$, (note that this includes $x \sim_i y$), $x \neq y$, and let $0 < \alpha < 1$. Then $\alpha x + (1 \alpha)y \succ_i y$.

(C.VII) For all $i \in H$, $\tilde{M}^i(p) > \inf_{x \in X^i \cap \{x \mid |x| \le c\}} p \cdot x$ for all $p \in P$.

1