Economics 200B Prof. R. Starr UCSD Winter 2009

Lecture Notes, February 12, 2009

General equilibrium of the market economy with an excess demand correspondence; set-valued supply and demand
Supply correspondence with a weakly convex production technology: We now omit P.V and use P.I-P.IV only.

Let $S^{j}(p)=\left\{y^{*} \mid y^{*} \in Y^{j}, p \cdot y^{*} \geq p \cdot y\right.$ for all $\left.y \in Y^{j}\right\}$ be the supply correspondence of the firm.

Omit C.VI(SC), use C.VI(WC) only

$$
\begin{aligned}
D^{i} & : \mathbf{P} \rightarrow \mathbf{R}^{N}, \\
D^{i}(p) & \equiv\left\{y \mid y \in B^{i}(p) \cap X^{i}, y \succeq_{i} x \text { for all } x \in B^{i}(p) \cap X^{i}\right\} \\
& \equiv\left\{y \mid y \in B^{i}(p) \cap X^{i}, u^{i}(y) \geq u^{i}(x) \text { for all } x \in B^{i}(p) \cap X^{i}\right\} .
\end{aligned}
$$

The market economy

$$
D(p)=\sum_{i \in H} D^{i}(p) .
$$

The economy's resource endowment is

$$
r=\sum_{i \in H} r^{i} .
$$

The supply side of the economy is characterized as

$$
S(p)=\sum_{j \in F} S^{j}(p),
$$

We can now summarize supply, demand, and endowment as an excess demand correspondence.

Definition The excess demand correspondence at prices $p \in P$ is $Z(p) \equiv D(p)-S(p)-\{r\}$.

Existence of competitive equilibrium

Definition $p^{0} \in P$ is said to be a competitive equilibrium price vector if there is $z^{0} \in Z\left(p^{0}\right)$ so that $z^{0} \leq 0$ (coordinatewise) and $p_{k}^{0}=0$ for k so that $z_{k}^{0}<0$.

Theorem 17.7 Let the economy fulfill C.I - C.V, C.VI(WC), C.VII, and P.IP.IV. Then there is a competitive equilibrium p^{0} for the economy.

U-Shaped Cost Curves and Concentrated Preferences
The Non-Convex Economy

Omit P.I, C.VI(WC).

Artificial Convex Counterpart to the Non-Convex Economy

 Convexified Technology and SupplyStarting from the non-convex technology set Y^{j}, we merely substitute its convex hull, con $\left(Y^{j}\right)$, for each $j \in F$, which trivially fulfills P.I. Then substitute the convex hull of the aggregate technology set for the aggregate set $\mathrm{Y}, \operatorname{con}(Y)=\operatorname{con}\left(\sum_{j \in F} Y^{j}\right)=\sum_{j \in F} \operatorname{con}\left(Y^{j}\right)$. Then we assume the convexified counterpart to P.III (the notation K is intended as a nmemonic for "convex")

PK.III $\operatorname{con}\left(Y^{j}\right)$ is closed for all $j \in F$.
The economic implication of PK.III is that scale economies are bounded - as in the U-shaped cost curve case; average costs are not indefinitely diminishing.

PK.IV (a) if $y \in \operatorname{con}(Y)$ and $y \neq 0$, then $y_{k}<0$ for some k.
(b) if $y \in \operatorname{con}(Y)$ and $y \neq 0$, then $-y \notin \operatorname{con}(Y)$.
$S^{k j}(p) \equiv\left\{y^{o} \in \operatorname{con}\left(Y^{j}\right) \mid p \cdot y^{o} \geq p \cdot y\right.$ for all $\left.y \in \operatorname{con}\left(Y^{j}\right)\right\}$.
The artificially convex profit function of firm j is
$\pi^{k j}(p) \equiv p \cdot y^{o}$, where $y^{o} \in S^{k j}(p)$.
Under PK.III, a typical point of $S^{k j}(p)$ will be a point of $S^{j}(p)$ or a convex combination of points of $S^{j}(p)$.

Lemma: Assume P.II, PK.III, PK.IV and suppose $S^{k j}(p)$ is nonempty (exists and is well defined). Then $y^{j} \in S^{k j}(p)$ implies $y^{j} \in \operatorname{con}\left(S^{j}(p)\right)$ and $\pi^{k j}(p)=\pi^{j}(p)$.

Artificial Convex Preferences and Demand

Definition: Let $x, y \in X^{i}$. We say $x \succeq_{k i} y$ if for every $w \in X^{i}, y \in$ $\operatorname{con}\left(A^{i}(w)\right)$ implies $x \in \operatorname{con}\left(A^{i}(w)\right)$.
(CK.IV) For each $i \in H, \succeq_{k i}$ fulfills C.IV.
(CK.V) For each $i \in H, \succeq_{k i}$ fulfills C.V.
(CK.VI) For each $i \in H, \succeq_{k i}$ fulfills C.VI(WC).
$D^{k h}(p) \equiv\left\{x^{o} \mid x^{o} \in B^{h}(p), x^{o} \succeq_{k h} x\right.$ for all $\left.x \in B^{h}(p)\right\}$.

Lemma: Assume C.I, C.II, C.III,CK.IV, CK.V, CK.VI, C.VII. Let $p \in P$, and suppose $M^{i}(p)$ exists. Then $x^{i} \in D^{k i}(p)$ implies $x^{i} \in \operatorname{con}\left(D^{i}(p)\right)$.

Competitive Equilibrium in the Artificial Convex Economy
Firms: $j \in F$, technologies are $\operatorname{con}\left(Y^{j}\right)$, fulfilling P.I (trivally), P.II, PK.III, PK.IV.

Households: $i \in H$, tastes $\succeq_{k i}$, fulfilling C.I, C.II, C.III,CK.IV, CK.V, CK.VI, C.VII; endowments r^{i}, firm shares $\alpha^{i j}$.

Then this economy fulfills all of the assumptions of Theorem 17.7. Applying that theorem, we know the convex economy has a general competitive equilibrium. That is,

Lemma: Assume P.II, PK.III, PK.IV, C.I, C.II, C.III,CK.IV, CK.V, CK.VI, C.VII. Then there are prices $p^{o} \in P$, production plans $y^{o j} \in S^{k j}\left(p^{o}\right)$, consumption plans $x^{o i} \in D^{k i}\left(p^{o}\right)$ so that markets clear

$$
\sum_{i \in H} r^{i}+\sum_{j \in F} y^{o j} \geq \sum_{i \in H} x^{o i}
$$

where the inequality applies co-ordinatewise, and $p_{n}^{o}=0$ for n so that the strict inequality holds.
Approximate Equilibrium
Definition: We define the inner radius of $S \subset R^{N}$ as

$$
r(S) \equiv \sup _{x \in \operatorname{con}(S)} \inf _{T \subset S ; x \in \operatorname{con}(T)} \operatorname{rad}(T)
$$

Corollary to the Shapley-Folkman Theorem: Let F be a finite family of compact subsets $S \subset R^{N}$ and $L>0$ so that $r(S) \leq L$ for all $S \in F$. Then for any $x \in \operatorname{con}\left(\sum_{S \in F} S\right)$ there is $y \in \sum_{S \in F} S$ so that $|x-y| \leq L \sqrt{N}$.

Theorem 18.1 Let the economy fulfill P.II, PK.III, PK.IV. and C.I, C.II, C.III, CK.IV, CK.V, CK.VI, C.VII. Let there be $L>0$ so that for all $h \in H, x \in X^{h}, f \in F$,

$$
r\left(A^{h}(x)\right) \leq L, \text { and } r\left(Y^{f}\right) \leq L
$$

Then there are prices $p^{*} \in P$, production plans $y^{\dagger j} \in Y^{j}, y^{* j} \in \operatorname{con}\left(Y^{j}\right)$, consumption plans $x^{* i} \in X^{i}$, and $x^{\dagger i} \in X^{i}$ so that

$$
\begin{gathered}
\sum_{i \in H} x^{* i} \leq \sum_{j \in F} y^{* j}+r \\
p_{k}^{*}=0 \text { for } k \text { so that } \sum_{i \in H} x_{k}^{* i}<\sum_{j \in F} y_{k}^{* j}+r_{k}
\end{gathered}
$$

$$
\begin{gathered}
p^{*} \cdot x^{\dagger i}=p^{*} \cdot r^{i}+\sum_{j \in F} \alpha^{i j} p^{*} \cdot y^{\dagger j}=p^{*} \cdot r^{i}+\sum_{j \in F} \alpha^{i j} p^{*} \cdot y^{* j} \\
x^{\dagger i} \text { maximizes } u^{i}(x) \text { subject to } p^{*} \cdot x \leq p^{*} \cdot r^{i}+\sum_{j \in F} \alpha^{i j} p^{*} \cdot y^{\dagger j} \\
\left|\left[\sum_{i \in H} x^{* i}-\sum_{j \in F} y^{* j}\right]-\left[\sum_{i \in H} x^{\dagger i}-\sum_{j \in F} y^{\dagger j}\right]\right| \leq L \sqrt{N}
\end{gathered}
$$

Proof By the lemma of section 18.3.3 there is $p^{*} \in P, y^{* j} \in S^{k j}\left(p^{*}\right), x^{* i} \in$ $D^{k i}\left(p^{*}\right)$ so that
$\sum_{i \in H} r^{i}+\sum_{j \in F} y^{* j} \geq \sum_{i \in H} x^{* i}$, with $p_{k}^{*}=0$ for k so that a strict inequality holds, and $p^{*} \cdot x^{* i}=p^{*} \cdot r^{i}+\sum_{j \in F} \alpha^{i j} p^{*} \cdot y^{* j}$.

Using the lemmata, $y^{* j} \in \operatorname{con}\left(S^{j}\left(p^{*}\right)\right)$ and $x^{* i} \in \operatorname{con}\left(D^{i}\left(p^{*}\right)\right)$. Applying the Corollary to the Shapley-Folkman Theorem, for each $j \in F$ there is $y^{\dagger j} \in S^{j}\left(p^{*}\right)$, and for each $i \in H$ there is $x^{\dagger i} \in D^{i}\left(p^{*}\right)$ so that

$$
\left|\left[\sum_{i \in H} x^{* i}-\sum_{j \in F} y^{* j}\right]-\left[\sum_{i \in H} x^{\dagger i}-\sum_{j \in F} y^{\dagger j}\right]\right| \leq L \sqrt{N}
$$

