
CB046/Starr LN012909 January 28, 2009 9:26

1

Economics 200B Prof. R. Starr UCSD Winter 2009

Lecture Notes, January 29, 2009

Bargaining and equilibrium: The core of a market economy

Set X i = RN
+ , all i.

Each i∈H has an endowment ri∈RN
+ and a preference quasi-ordering �h

defined on RN
+ .

An allocation is an assignment of xi ∈ RN
+ for each i ∈ H . A typical

allocation, xi ∈ RN
+ for each i ∈ H , will be denoted {xi, i ∈ H}. An

allocation, {xi, i ∈ H}, is feasible if
∑

i∈H xi ≤
∑

i∈H ri, where the inequality
holds coordinatewise.

We assume preferences fulfill weak monotonicity (C.IV**), continuity
(C.V), and strict convexity (C.VI(SC)).

The core of a pure exchange economy

Definition A coalition is any subset S ⊆ H . Note that every individual
comprises a (singleton) coalition.

Definition An allocation {xi, h∈H} is blocked by S⊆H if there is a coali-
tion S⊆H and an assignment {yi, i ∈ S} so that:

(i)
∑

i∈S yi ≤
∑

i∈S ri (where the inequality holds coordinatewise),
(ii) yi�ix

i, for all i ∈ S, and
(iii) yh�hxh, for some h ∈ S

Definition The core of the economy is the set of feasible allocations that
are not blocked by any coalition S⊆H .

• Any allocation in the core must be individually rational. That is, if {xi, i ∈
H} is a core allocation then we must have xi �h ri, for all i ∈ H .

• Any allocation in the core must be Pareto efficient.

(i) The competitive equilibrium is always in the core (Theorem 13.1).

Theorems 14.2 and 14.3 say that

(ii) For a large economy, the set of competitive equilibria and the core are
virtually identical. All core allocations are (nearly) competitive equilib-
ria.
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The competitive equilibrium allocation is in the core

Definition p ∈ RN
+ , p 6= 0, xi ∈ RN

+ , for each i ∈ H , constitutes a competi-
tive equilibrium if

(i) p · xi ≤ p · ri, for each i ∈ H ,
(ii) xi �i y, for all y ∈ RN

+ , such that p · y ≤ p · ri, and
(iii)

∑
i∈H xi ≤

∑
i∈H ri (the inequality holds coordinatewise) with pk = 0

for any k = 1, 2, . . . , N so that the strict inequality holds.

Theorem 13.1 Let the economy fulfill C.II, C.IV**, C.VI(SC) and let X i =
RN

+ . Let p, xi, i∈H , be a competitive equilibrium. Then {xi, i ∈ H} is in
the core of the economy.

Proof We will present a proof by contradiction. Suppose the theorem were
false. Then there would be a blocking coalition S⊆H and a blocking assign-
ment yi, i ∈ S. We have

∑
i∈S yi ≤

∑
i∈S ri(attainability, the inequality holds coordinatewise)

yi�ix
i, for all i ∈ S, and

yh�hxh, some h ∈ S.

But xi is a competitive equilibrium allocation. That is, for all i ∈ H ,
p·xi = p·ri (recalling Lemma 10.1), and xi �i y, for all y ∈ RN

+ such that
p · y ≤ p · ri.

Note that
∑

i∈S p·xi =
∑

i∈S p·ri. Then for all i ∈ S, p·yi ≥ p·ri. That is,
xi represents i’s most desirable consumption subject to budget constraint. yi

is at least as good under preferences �i fulfilling C.II, C.IV, C.VI(SC), (local
non-satiation). Therefore, yi must be at least as expensive. Furthermore,
for h, we must have p · yh > p · rh. Therefore, we have

∑

i∈S

p · yi >
∑

i∈S

p · ri.

Note that this is a strict inequality. However, for coalitional feasibility we
must have

∑

i∈S

yi ≤
∑

i∈S

ri.

But since p ≥ 0, p 6= 0, we have
∑

i∈S p · yi ≤
∑

i∈S p · ri. This is a
contradiction. The allocation {yi, i ∈ S} cannot simultaneously be smaller
or equal to the sum of endowments ri coordinatewise and be more expensive
at prices p, p ≥ 0. The contradiction proves the theorem. QED
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Convergence of the core of a large economy

Replication; a large economy
In replication, the economy keeps cloning itself.
duplicate to triplicate, . . . , to Q-tuplicate, and so on, the set of core alloca-

tions keeps getting smaller, although it always includes the set of competitive
equilibria (per Theorem 13.1).

Q-fold replica economy, denoted Q-H . Q = 1, 2, . . . .

#H × Q agents.
Q agents with preferences �1 and endowment r1,
Q agents with preferences �2 and endowment r2, . . . , and Q agents with

preferences �#H and endowment r#H . Each household i∈H now corre-
sponds to a household type. There are Q individual households of type i in
the replica economy Q-H .

Competitive equilibrium prices in the original H economy will be equi-
librium prices of the Q-H economy. Household i’s competitive equilibrium
allocation xi in the original H economy will be a competitive equilibrium
allocation to all type i households in the Q-H replica economy. Agents in
the Q-H replica economy will be denoted by their type and a serial num-
ber. Thus, the agent denoted i, q will be the qth agent of type i, for each
i ∈ H, q = 1, 2, . . . , Q.

Equal treatment

Theorem 14.1 (Equal treatment in the core) Assume C.IV, C.V, and C.VI(SC).
Let {xi,q, i ∈ H, q = 1, . . . , Q} be in the core of Q-H , the Q-fold replica of
economy H . Then for each i, xi,q is the same for all q. That is, xi,q = xi,q′

for each i ∈ H, q 6= q′.

Proof of Theorem 14.1 Recall that the core allocation must be feasible.
That is,

∑

i∈H

Q∑

q=1

xi,q ≤
∑

i∈H

Q∑

q=1

ri.

Equivalently,

1
Q

∑

i∈H

Q∑

q=1

xi,q ≤
∑

i∈H

ri.
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Suppose the theorem to be false. Consider a type i so that xi,q 6= xi,q′ . For
each type i, we can rank the consumptions attributed to type i according
to �i.

For each i, let xi∗ denote the least preferred of the core allocations to type
i, xi,q, q = 1, . . . , Q. For some types i, all individuals of the type will have
the same consumption and xi∗ will be this expression. For those in which
the consumption differs, xi∗ will be the least desirable of the consumptions
of the type. We now form a coalition consisting of one member of each type:
the individual from each type carrying the worst core allocation, xi∗ .

Consider the average core allocation to type i, to be denoted x̄i.
x̄i= 1

Q

∑Q
q=1 xi,q.

We have, by strict convexity of preferences (C.VI(SC)),

x̄i =
1
Q

Q∑

q=1

xi,q �i xi∗ for those types i so that xi,q are not identical,

and

xi,q = x̄i =
1
Q

Q∑

q=1

xi,q ∼i xi∗ for those types i so that xi,q are identical.

From feasibility, above, we have that

∑

i∈H

x̄i =
∑

i∈H

1
Q

Q∑

q=1

xi,q =
1
Q

∑

i∈H

Q∑

q=1

xi,q ≤
∑

i∈H

ri.

In other words, a coalition composed of one of each type (the worst off of
each) can achieve the allocation x̄i. However, for each agent in the coalition,
x̄i �i xi∗ for all i and x̄i �i xi∗ for some i. Therefore, the coalition of the
worst off individual of each type blocks the allocation xi,q. The contradiction
proves the theorem. QED

Core(Q) = {xi, i ∈ H} where xi,q = xi, q = 1, 2, . . . , Q, and the allocation
xi,q is unblocked.

Core convergence in a large economy

As Q grows there are more blocking coalitions, and they are more varied.
Any coalition that blocks an allocation in Q-H still blocks the allocation
in (Q + 1)-H , but there are new blocking coalitions and allocations newly
blocked in (Q + 1)-H .

Recall the Bounding Hyperplane Theorem:
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Theorem 2.11, Bounding Hyperplane Theorem (Minkowski) Let K be con-
vex, K ⊆ RN . There is a hyperplane H through z and bounding for K if
z is not interior to K. That is, there is p ∈ RN , p 6= 0, so that for each
x ∈ K, p · x ≥ p · z.

Theorem 14.2 (Debreu-Scarf) Assume C.IV**, C.V, C.VI(SC), and let X i =
RN

+ . Let {x◦i, i ∈ H} ∈ core(Q) for all Q = 1, 2, 3, 4, . . . . Then {x◦i, i ∈ H}
is a competitive equilibrium allocation for Q-H , for all Q.

Proof We must show that there is a price vector p so that for each household
type i, p · x◦i ≤ p · ri and that x◦i optimizes preferences �i subject to this
budget.

For each i ∈ H , let Γi = {z | z ∈ RN , z + ri �i xoi}.
Let Γ = {

∑
i∈H aiz

i | zi ∈ Γi, ai ≥ 0,
∑

ai = 1}, the set of convex
combinations of preferred net trades.

Γ is the convex hull of the union of the sets Γi.
Note that (x◦i − ri) ∈ boundary(Γi),
(x◦i − ri) ∈ Γi, and
(x◦i − ri) ∈ boundary(Γ) for all i.
Claim: 0 6∈ int(Γ). We will show that the possibility that 0 ∈ int(Γ)

corresponds to the possibility of forming a blocking coalition against the
core allocation xoi, a contradiction. Suppose that 0 ∈ int(Γ).

If 0 ∈ int(Γ), then there is an ε-neighborhood about 0 (ε > 0) contained
in int(Γ) (Recall that X i ≡ RN

+ ) . The typical element of int(Γ) can be
represented as

∑
aiz

i, where zi ∈ Γi.
Let RN

− denote the nonpositive quadrant of RN . Take the intersection
int(Γ)∩RN

− , that is, the nonpositive quadrant of int(Γ). Choose z ∈ int(Γ)∩
RN

− so that z =
∑

aiz
i with ai rational for all i. This is possible since ε > 0

and any real ai can be approximated arbitrarily closely by a sequence of
rationals.

Find a common denominator for the ai. Consider Q equal to the common
denominator of the ai (this is how replication with large Q overcomes the
indivisibility of the individual agents). We have

∑
aiz

i ≤ 0 (coordinatewise).
We wish to show that this implies the presence of a blocking coalition against
the allocation xoi in H-Q, where Q is the common denominator of the ai.
Form the coalition S, consisting of Qai (an integer) of type i agents, i ∈ H .
Consider the allocation x′i = ri + zi to agents in S. Note that x′i �i xoi (by
definition of Γi). We have

∑
aiz

i ≤ 0. Thus
∑

(Qai)zi ≤ 0.
But then we have

∑
(Qai)(x′i − ri) ≤ 0 or, equivalently,

∑
(Qai)x′i ≤
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∑
(Qai)ri, which means x′i is attainable by S. But x′i improves upon xoi

according to the preferences of i ∈ S. Thus S blocks xoi, which is a contra-
diction. Hence, as claimed, 0 6∈ int(Γ).

0 ∈ boundary of Γ. This occurs inasmuch as 0 = (1/#H)
∑

i∈H(x◦i − ri),
and the right-hand side of this expression is an element of Γ, the closure
of Γ. Thus 0 represents just the sort of boundary point through which a
supporting hyperplane may go in the Bounding Hyperplane Theorem. The
set Γ is trivially convex.

Bounding Hyperplane Theorem. There is p∈RN , p6=0, so that for all v ∈
Γ, p · v ≥ p · 0 = 0. Noting X i = RN

+ , C.IV** (implying local non-satiation)
, we know that p ≥ 0. Now (x◦i − ri) ∈ Γ for each i, so p · (x◦i − ri)≥0. But∑

i∈H(x◦i − ri)=0, so p ·
∑

i∈H(x◦i − ri) = 0. Hence p · (x◦i − ri) = 0 each i.
Equivalently, p · x◦i = p · ri. This gives us

0 = p ·
∑

i∈H

1
#H

(x◦i − ri) = inf
x∈Γ

p · x =
∑

i∈H

1
#H

[
inf

zi∈Γi
p · zi

]
,

so

p · (x◦i − ri) = inf
zi∈Γi

p · zi.

We have then for each i, that p·(x◦i−ri) = inf p·y for y ∈ Γi. Equivalently,
x◦i minimizes p · (x − ri) subject to x �i x◦i. In addition, p · x◦i = p · ri.
Further,there is an ε-neighborhood of x◦i contained in X i. By C.IV**, C.V,
expenditure minimization subject to a utility constraint is equivalent to
utility maximization subject to budget constraint. Hence x◦i, i ∈ H , is a
competitive equilibrium allocation. QED

A Large Economy without Replication

The Shapley-Folkman Lemma
The convex hull of a set S will be the smallest convex set containing S.

The convex hull of S will be denoted con(S). We can define con(S) , for
S ⊂ RN as follows

con(S) ≡ {x | x =
N∑

i=0

αixi, where xi ∈ S, αi ≥ 0 all i, and
N∑

i=0

αi = 1}.

or equivalently as

con(S) ≡
⋂

S⊂ T ;T convex

T.

That is con(S) is the smallest convex set in RN containing S.



CB046/Starr LN012909 January 28, 2009 9:26

7

Lemma (Shapley-Folkman): Let S1, S2, S3, . . . ,Sm, be nonempty com-
pact subsets of RN . Let x ∈ con(S1 + S2 + S3+. . .+Sm). Then for each
i=1,2,. . . ,m, there is yi ∈ con(Si) so that

∑m
i=1 yi = x and with at most

N exceptions, yi ∈ Si. Equivalently: Let F be a finite family of nonempty
compact sets in RN and let y ∈ con(

∑
S∈F S). Then there is a partition of

F into two disjoint subfamilies F ′ and F ′′ with the number of elements in
F ′ ≤ N so that y ∈

∑
S∈F ′ con(S) +

∑
S∈F ′′ S.

We start by measuring the largest of the individual endowments. Define

M ≡ max{
∑

i∈S

ri
n|n = 1, ..., N,S ⊆ H, #S = N}

Theorem 14.3: Assume C.IV**, X i = RN
+ , for all i ∈ H , a pure exchange

economy. Let {x◦i|i ∈ H} be a core allocation for H. Then there is p ∈ P

so that
(i)

∑
i∈H |p · (x◦i − ri)| ≤ 2M

(ii)
∑

i∈H | inf{p · (x − ri)|x �i x◦i}| ≤ 2M

Proof: Define Γi as in the proof of Theorem 14.2. Γi = {z | z ∈ RN , z +
ri �i xoi}. Define Ω ≡

∑
i∈H{Γi ∪ {0}} .

The proof proceeds in several steps.
Step 1: Let RN

++ denote the strictly positive quadrant of RN , that is, the
interior of RN

+ . We claim (−RN
++)∩Ω = ∅ . The reason is straightforward. If

there is a nonempty intersection we can form a blocking coalition and block
the core allocation — but of course, the core is unblocked, so this leads to
a contradiction.

Suppose contrary to the claim there is z ∈ Ω so that z << 0. Then
there is zi ∈ {Γi ∪ {0}} for each i ∈ H so that

∑
i∈H zi << 0. Take the

subset S ⊂ H of i ∈ H corresponding to the nonzero elements zi in this
sum. Then for i ∈ S there is zi ∈ Γi so that

∑
i∈S zi < 0 (the inequality

holds co-ordinatewise). But then S is a blocking coalition. That is for all
i ∈ S, zi = x′i − ri so that x′i �i xoi and

∑
i∈S x′i ≤

∑
i∈S ri. This is a

contradiction. Hence we have (−RN
++) ∩ Ω = ∅ as claimed.

Step 2: Recall that the notation con(A) denotes the convex hull of the set
A. Define the set Z as the strictly negative quadrant of RN translated to
the southeast by M in each co-ordinate. That is, let

Z ≡ {z ∈ RN |zn < −M, for n = 1, 2, ...,N} . In this step, we establish
that Z ∩ con(Ω) = ∅.

Again, we use a proof by contradiction, establishing a blocking coalition in
the event that the step were not fulfilled. Suppose contrary to the step, we
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have Z∩con(Ω) 6= ∅ . Choose z ∈ Z∩con(Ω) . Then by the Shapley-Folkman
Lemma we can represent z in the following way. There is a partition of H

into disjoint subsets S and T with no more than N elements in T . There is
a choice of zi ∈ con({Γi ∪ {0}}) so that z =

∑
i∈S zi +

∑
i∈T zi, where for all

i ∈ S, zi ∈ {Γi ∪ {0}} and for all i ∈ T, zi ∈ [con({Γi ∪ {0}})\{Γi ∪ {0}}] .
That is, a point in the convex hull of Ω is the sum of points of con({Γi∪{0}})
no more than N of which are from [con({Γi ∪ {0}})\{Γi ∪ {0}}] . That is,
most of the summands making up the convex hull of the sum will be from
the original sets of the sum while a fixed finite number will be from the
corresponding convex hulls. The original sum was nearly convex on its own.

Recall that for each i, 0 ∈ {Γi ∪ {0}} and that z << −(M, M, ..., M).
Then the sum

[
∑

i∈S zi +
∑

i∈T 0] ∈ Ω. Note that each element of con(Γi ∪ {0}) ≥ −ri

(the inequality applies co-ordinatewise). Then we have [
∑

i∈S zi +
∑

i∈T 0] =
z −

∑
i∈T zi ≤ z +

∑
i∈T ri << −(M, M, ..., M) +

∑
i∈T ri ≤ 0. But then

(−RN
++)∩Ω 6= ∅ contradicting Step 1. The contradiction suffices to establish

Step 2.
Step 3: By the Separating Hyperplane Theorem, there is p∗ 6= 0, p∗ ≥ 0

(by C.IV**) and real k so that p∗ · x ≥ k ≥ p∗ · y for all x ∈ con(Ω), y ∈ Z.
Then without loss of generality we take p∗ ∈ P .

Step 4: (x◦i − ri) ∈ Γ̄i (the closure of Γi) so
p∗ · (x◦i − ri) ≥ inf i∈H{p∗ · y|y ∈ Γi ∪ {0}}. Let H+ denote the subset

of H so that p∗ · (x◦i − ri) ≥ 0. Let H− denote the subset of H so that
p∗ · (x◦i − ri) < 0.

It is useful here to establish an identity∑
i∈H+ inf{p∗ · y|y ∈ Γi ∪ {0}} +

∑
i∈H− inf{p∗ · y|y ∈ Γi ∪ {0}}

= inf{p∗ · y|y ∈ Ω}
∑

i∈H+ p∗ · (x◦i − ri) ≥
∑

i∈H+ inf{p∗ · y|y ∈ Γi ∪ {0}}
≥

∑
i∈H+ inf{p∗ · y|y ∈ Γi ∪ {0}}+

∑
i∈H− inf{p∗ · y|y ∈ Γi ∪ {0}}

=
∑

i∈H inf{p∗ · y|y ∈ Γi ∪ {0}} = inf{p∗ · y|y ∈ Ω}
= inf{p∗ · y|y ∈ con(Ω)} ≥ k ≥ sup{p∗ · y|y ∈ Z} = −M .

The core allocation x◦i is attainable, so
∑

i∈H(x◦i − ri) ≤ 0 and for any
goods n in surplus at the core allocation p∗n = 0. So

∑
i∈H p∗ ·(x◦i−ri) = 0 .

Then
∑

i∈H− p∗ ·(x◦i−ri) = −
∑

i∈H+ p∗ ·(x◦i−ri) ≥ inf{p∗ ·y|y ∈ Ω} ≥ −M

This implies that

M ≥ − inf{p∗ · y|y ∈ Ω} ≥
∑

i∈H+ p∗ · (x◦i − ri) (∗)

Note that for i ∈ H+, inf{p∗ · y|y ∈ Γi ∪ {0}} ≤ 0 (∗∗)
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Now the conclusions of the theorem follow directly.∑
i∈H− |p∗ · (x◦i − ri)| =

∑
i∈H+ |p∗ · (x◦i − ri)| ≤ M , so∑

i∈H |p∗ ·(x◦i−ri)| =
∑

i∈H− |p∗ ·(x◦i−ri)|+
∑

i∈H+ |p∗ ·(x◦i−ri)| ≤ 2M .
This establishes the assertion (i) in the Theorem.

To demonstrate assertion (ii) we form the following argument.∑
i∈H | inf{p∗ · (x − ri)|x �i x◦i}|

=
∑

i∈H+ | inf{p∗ · y|y ∈ Γi}|+
∑

i∈H− | inf{p∗ · y|y ∈ Γi}|
≤ [−

∑
i∈H+ inf{p∗ · y|y ∈ Γi ∪ {0}} +

∑
i∈H+ p∗ · (x◦i − ri)]

−
∑

i∈H− inf{p∗ · y|y ∈ Γi ∪ {0}} (Using the inequality (**), the term in
square brackets is larger than the first term of the previous expression and
— taking account of signs — the last term exceeds the last term of the
previous expression).

= −
∑

i∈H+ inf{p∗ · y|y ∈ Γi ∪ {0}} −
∑

i∈H− inf{p∗ · y|y ∈ Γi ∪ {0}} +∑
i∈H+ p∗ · (x◦i − ri) (Then using the identity at the start of this step, and

the expression (*) )
= − inf{p∗ · y|y ∈ Ω}+

∑
i∈H+ p∗ · (x◦i − ri)

≤ M + M = 2M .
Thus

∑
i∈H | inf{p∗ · (x − ri)|x �i x◦i}| ≤ 2M

QED


