Economics 200B Prof. R. Starr UCSD Winter 2009
Lecture Notes, January 29, 2009
Bargaining and equilibrium: The core of a market economy
Set $X^{i}=\mathbf{R}_{+}^{N}$, all i.
Each $i \in H$ has an endowment $r^{i} \in \mathbf{R}_{+}^{N}$ and a preference quasi-ordering \succeq_{h} defined on \mathbf{R}_{+}^{N}.

An allocation is an assignment of $x^{i} \in \mathbf{R}_{+}^{N}$ for each $i \in H$. A typical allocation, $x^{i} \in \mathbf{R}_{+}^{N}$ for each $i \in H$, will be denoted $\left\{x^{i}, i \in H\right\}$. An allocation, $\left\{x^{i}, i \in H\right\}$, is feasible if $\sum_{i \in H} x^{i} \leq \sum_{i \in H} r^{i}$, where the inequality holds coordinatewise.

We assume preferences fulfill weak monotonicity (C.IV**), continuity (C.V), and strict convexity (C.VI(SC)).

The core of a pure exchange economy
Definition A coalition is any subset $S \subseteq H$. Note that every individual comprises a (singleton) coalition.

Definition An allocation $\left\{x^{i}, h \in H\right\}$ is blocked by $S \subseteq H$ if there is a coalition $S \subseteq H$ and an assignment $\left\{y^{i}, i \in S\right\}$ so that:
(i) $\sum_{i \in S} y^{i} \leq \sum_{i \in S} r^{i}$ (where the inequality holds coordinatewise),
(ii) $y^{i} \succeq_{i} x^{i}$, for all $i \in S$, and
(iii) $y^{h} \succ_{h} x^{h}, \quad$ for some $h \in S$

Definition The core of the economy is the set of feasible allocations that are not blocked by any coalition $S \subseteq H$.

- Any allocation in the core must be individually rational. That is, if $\left\{x^{i}, i \in\right.$ $H\}$ is a core allocation then we must have $x^{i} \succeq_{h} r^{i}$, for all $i \in H$.
- Any allocation in the core must be Pareto efficient.
(i) The competitive equilibrium is always in the core (Theorem 13.1).

Theorems 14.2 and 14.3 say that
(ii) For a large economy, the set of competitive equilibria and the core are virtually identical. All core allocations are (nearly) competitive equilibria.

The competitive equilibrium allocation is in the core
Definition $p \in \mathbf{R}_{+}^{N}, p \neq 0, x^{i} \in \mathbf{R}_{+}^{N}$, for each $i \in H$, constitutes a competitive equilibrium if
(i) $p \cdot x^{i} \leq p \cdot r^{i}$, for each $i \in H$,
(ii) $x^{i} \succeq_{i} y$, for all $y \in R_{+}^{N}$, such that $p \cdot y \leq p \cdot r^{i}$, and
(iii) $\sum_{i \in H} x^{i} \leq \sum_{i \in H} r^{i}$ (the inequality holds coordinatewise) with $p_{k}=0$ for any $k=1,2, \ldots, N$ so that the strict inequality holds.

Theorem 13.1 Let the economy fulfill C.II, C.IV**, C.VI(SC) and let $X^{i}=$ \mathbf{R}_{+}^{N}. Let $p, x^{i}, i \in H$, be a competitive equilibrium. Then $\left\{x^{i}, i \in H\right\}$ is in the core of the economy.

Proof We will present a proof by contradiction. Suppose the theorem were false. Then there would be a blocking coalition $S \subseteq H$ and a blocking assignment $y^{i}, i \in S$. We have

$$
\begin{array}{ll}
\sum_{i \in S} y^{i} \leq \sum_{i \in S} r^{i} \text { (attainability, the inequality holds coordinatewise) } \\
y_{i}^{i} \succeq_{i} x^{i}, & \text { for all } i \in S, \text { and } \\
y^{h} \succ_{h} x^{h}, & \text { some } h \in S .
\end{array}
$$

But x^{i} is a competitive equilibrium allocation. That is, for all $i \in H$, $p \cdot x^{i}=p \cdot r^{i}$ (recalling Lemma 10.1), and $x^{i} \succeq_{i} y$, for all $y \in R_{+}^{N}$ such that $p \cdot y \leq p \cdot r^{i}$.

Note that $\sum_{i \in S} p \cdot x^{i}=\sum_{i \in S} p \cdot r^{i}$. Then for all $i \in S, p \cdot y^{i} \geq p \cdot r^{i}$. That is, x^{i} represents i 's most desirable consumption subject to budget constraint. y^{i} is at least as good under preferences \succeq_{i} fulfilling C.II, C.IV, C.VI(SC), (local non-satiation). Therefore, y^{i} must be at least as expensive. Furthermore, for h, we must have $p \cdot y^{h}>p \cdot r^{h}$. Therefore, we have

$$
\sum_{i \in S} p \cdot y^{i}>\sum_{i \in S} p \cdot r^{i}
$$

Note that this is a strict inequality. However, for coalitional feasibility we must have

$$
\sum_{i \in S} y^{i} \leq \sum_{i \in S} r^{i} .
$$

But since $p \geq 0, p \neq 0$, we have $\sum_{i \in S} p \cdot y^{i} \leq \sum_{i \in S} p \cdot r^{i}$. This is a contradiction. The allocation $\left\{y^{i}, i \in S\right\}$ cannot simultaneously be smaller or equal to the sum of endowments r^{i} coordinatewise and be more expensive at prices $p, p \geq 0$. The contradiction proves the theorem.

QED

Convergence of the core of a large economy

Replication; a large economy
In replication, the economy keeps cloning itself.
duplicate to triplicate, \ldots, to Q-tuplicate, and so on, the set of core allocations keeps getting smaller, although it always includes the set of competitive equilibria (per Theorem 13.1).
Q-fold replica economy, denoted $Q-H . Q=1,2, \ldots$.
$\# H \times Q$ agents.
Q agents with preferences \succeq_{1} and endowment r^{1},
Q agents with preferences \succeq_{2} and endowment r^{2}, \ldots, and Q agents with preferences $\succeq_{\# H}$ and endowment $r^{\# H}$. Each household $i \in H$ now corresponds to a household type. There are Q individual households of type i in the replica economy $Q-H$.

Competitive equilibrium prices in the original H economy will be equilibrium prices of the Q - H economy. Household i 's competitive equilibrium allocation x^{i} in the original H economy will be a competitive equilibrium allocation to all type i households in the $Q-H$ replica economy. Agents in the Q - H replica economy will be denoted by their type and a serial number. Thus, the agent denoted i, q will be the q th agent of type i, for each $i \in H, q=1,2, \ldots, Q$.

Equal treatment

Theorem 14.1 (Equal treatment in the core) Assume C.IV, C.V, and C.VI(SC). Let $\left\{x^{i, q}, i \in H, q=1, \ldots, Q\right\}$ be in the core of $Q-H$, the Q-fold replica of economy H. Then for each $i, x^{i, q}$ is the same for all q. That is, $x^{i, q}=x^{i, q^{\prime}}$ for each $i \in H, q \neq q^{\prime}$.

Proof of Theorem 14.1 Recall that the core allocation must be feasible. That is,

$$
\sum_{i \in H} \sum_{q=1}^{Q} x^{i, q} \leq \sum_{i \in H} \sum_{q=1}^{Q} r^{i} .
$$

Equivalently,

$$
\frac{1}{Q} \sum_{i \in H} \sum_{q=1}^{Q} x^{i, q} \leq \sum_{i \in H} r^{i}
$$

Suppose the theorem to be false. Consider a type i so that $x^{i, q} \neq x^{i, q^{\prime}}$. For each type i, we can rank the consumptions attributed to type i according to \succeq_{i}.

For each i, let $x^{i^{*}}$ denote the least preferred of the core allocations to type $i, x^{i, q}, q=1, \ldots, Q$. For some types i, all individuals of the type will have the same consumption and $x^{i^{*}}$ will be this expression. For those in which the consumption differs, $x^{i^{*}}$ will be the least desirable of the consumptions of the type. We now form a coalition consisting of one member of each type: the individual from each type carrying the worst core allocation, $x^{i^{*}}$.

Consider the average core allocation to type i, to be denoted \bar{x}^{i}.
$\bar{x}^{i}=\frac{1}{Q} \sum_{q=1}^{Q} x^{i, q}$.
We have, by strict convexity of preferences (C.VI(SC)),

$$
\bar{x}^{i}=\frac{1}{Q} \sum_{q=1}^{Q} x^{i, q} \succ_{i} x^{i^{*}} \text { for those types } i \text { so that } x^{i, q} \text { are not identical }
$$

and

$$
x^{i, q}=\bar{x}^{i}=\frac{1}{Q} \sum_{q=1}^{Q} x^{i, q} \sim_{i} x^{i^{*}} \text { for those types } i \text { so that } x^{i, q} \text { are identical. }
$$

From feasibility, above, we have that

$$
\sum_{i \in H} \bar{x}^{i}=\sum_{i \in H} \frac{1}{Q} \sum_{q=1}^{Q} x^{i, q}=\frac{1}{Q} \sum_{i \in H} \sum_{q=1}^{Q} x^{i, q} \leq \sum_{i \in H} r^{i}
$$

In other words, a coalition composed of one of each type (the worst off of each) can achieve the allocation \bar{x}^{i}. However, for each agent in the coalition, $\bar{x}^{i} \succeq_{i} x^{i^{*}}$ for all i and $\bar{x}^{i} \succ_{i} x^{i^{*}}$ for some i. Therefore, the coalition of the worst off individual of each type blocks the allocation $x^{i, q}$. The contradiction proves the theorem.
$\operatorname{Core}(Q)=\left\{x^{i}, i \in H\right\}$ where $x^{i, q}=x^{i}, q=1,2, \ldots, Q$, and the allocation $x^{i, q}$ is unblocked.

Core convergence in a large economy

As Q grows there are more blocking coalitions, and they are more varied. Any coalition that blocks an allocation in $Q-H$ still blocks the allocation in $(Q+1)-H$, but there are new blocking coalitions and allocations newly blocked in $(Q+1)-H$.

Recall the Bounding Hyperplane Theorem:

Theorem 2.11, Bounding Hyperplane Theorem (Minkowski) Let K be convex, $K \subseteq \mathbf{R}^{N}$. There is a hyperplane H through z and bounding for K if z is not interior to K. That is, there is $p \in \mathbf{R}^{N}, p \neq 0$, so that for each $x \in K, p \cdot x \geq p \cdot z$.

Theorem 14.2 (Debreu-Scarf) Assume C.IV ${ }^{* *}$, C.V, C.VI(SC), and let $X^{i}=$ $\mathbf{R}_{+}^{N} . \operatorname{Let}\left\{x^{\circ i}, i \in H\right\} \in \operatorname{core}(Q)$ for all $Q=1,2,3,4, \ldots$. Then $\left\{x^{\circ i}, i \in H\right\}$ is a competitive equilibrium allocation for $Q-H$, for all Q.

Proof We must show that there is a price vector p so that for each household type $i, p \cdot x^{\circ i} \leq p \cdot r^{i}$ and that $x^{\circ i}$ optimizes preferences \succeq_{i} subject to this budget.

For each $i \in H$, let $\Gamma^{i}=\left\{z \mid z \in \mathbf{R}^{N}, z+r^{i} \succ_{i} x^{o i}\right\}$.
Let $\Gamma=\left\{\sum_{i \in H} a_{i} z^{i} \mid z^{i} \in \Gamma^{i}, a_{i} \geq 0, \sum a_{i}=1\right\}$, the set of convex combinations of preferred net trades.
Γ is the convex hull of the union of the sets Γ^{i}.
Note that $\left(x^{\circ i}-r^{i}\right) \in \operatorname{boundary}\left(\Gamma^{i}\right)$,
$\left(x^{\circ i}-r^{i}\right) \in \bar{\Gamma}^{i}$, and
$\left(x^{\circ i}-r^{i}\right) \in \operatorname{boundary}(\Gamma)$ for all i.
Claim: $0 \notin \operatorname{int}(\Gamma)$. We will show that the possibility that $0 \in \operatorname{int}(\Gamma)$ corresponds to the possibility of forming a blocking coalition against the core allocation $x^{o i}$, a contradiction. Suppose that $0 \in \operatorname{int}(\Gamma)$.

If $0 \in \operatorname{int}(\Gamma)$, then there is an ε-neighborhood about $0(\varepsilon>0)$ contained in $\operatorname{int}(\Gamma)$ (Recall that $X^{i} \equiv \mathbf{R}_{+}^{N}$). The typical element of $\operatorname{int}(\Gamma)$ can be represented as $\sum a_{i} z^{i}$, where $z^{i} \in \Gamma^{i}$.

Let \mathbf{R}_{-}^{N} denote the nonpositive quadrant of \mathbf{R}^{N}. Take the intersection $\operatorname{int}(\Gamma) \cap \mathbf{R}_{-}^{N}$, that is, the nonpositive quadrant of $\operatorname{int}(\Gamma)$. Choose $z \in \operatorname{int}(\Gamma) \cap$ \mathbf{R}_{-}^{N} so that $z=\sum a_{i} z^{i}$ with a_{i} rational for all i. This is possible since $\varepsilon>0$ and any real a_{i} can be approximated arbitrarily closely by a sequence of rationals.

Find a common denominator for the a_{i}. Consider Q equal to the common denominator of the a_{i} (this is how replication with large Q overcomes the indivisibility of the individual agents). We have $\sum a_{i} z^{i} \leq 0$ (coordinatewise). We wish to show that this implies the presence of a blocking coalition against the allocation $x^{o i}$ in $H-Q$, where Q is the common denominator of the a_{i}. Form the coalition S, consisting of $Q a_{i}$ (an integer) of type i agents, $i \in H$. Consider the allocation $x^{i}=r^{i}+z^{i}$ to agents in S. Note that $x^{i} \succ_{i} x^{o i}$ (by definition of Γ^{i}. We have $\sum a_{i} z^{i} \leq 0$. Thus $\sum\left(Q a_{i}\right) z^{i} \leq 0$.

But then we have $\sum\left(Q a_{i}\right)\left(x^{i}-r^{i}\right) \leq 0$ or, equivalently, $\sum\left(Q a_{i}\right) x^{i} \leq$
$\sum\left(Q a_{i}\right) r^{i}$, which means $x^{i i}$ is attainable by S. But $x^{\prime i}$ improves upon $x^{o i}$ according to the preferences of $i \in S$. Thus S blocks $x^{o i}$, which is a contradiction. Hence, as claimed, $0 \notin \operatorname{int}(\Gamma)$.
$0 \in$ boundary of Γ. This occurs inasmuch as $0=(1 / \# H) \sum_{i \in H}\left(x^{\circ i}-r^{i}\right)$, and the right-hand side of this expression is an element of $\bar{\Gamma}$, the closure of Γ. Thus 0 represents just the sort of boundary point through which a supporting hyperplane may go in the Bounding Hyperplane Theorem. The set Γ is trivially convex.

Bounding Hyperplane Theorem. There is $p \in \mathbf{R}^{N}, p \neq 0$, so that for all $v \in$ $\Gamma, p \cdot v \geq p \cdot 0=0$. Noting $X^{i}=\mathbf{R}_{+}^{N}$, C.IV ${ }^{* *}$ (implying local non-satiation) , we know that $p \geq 0$. Now $\left(x^{\circ i}-r^{i}\right) \in \bar{\Gamma}$ for each i, so $p \cdot\left(x^{\circ i}-r^{i}\right) \geq 0$. But $\sum_{i \in H}\left(x^{\circ i}-r^{i}\right)=0$, so $p \cdot \sum_{i \in H}\left(x^{\circ i}-r^{i}\right)=0$. Hence $p \cdot\left(x^{\circ i}-r^{i}\right)=0$ each i. Equivalently, $p \cdot x^{\circ i}=p \cdot r^{i}$. This gives us

$$
0=p \cdot \sum_{i \in H} \frac{1}{\# H}\left(x^{\circ i}-r^{i}\right)=\inf _{x \in \Gamma} p \cdot x=\sum_{i \in H} \frac{1}{\# H}\left[\inf _{z^{i} \in \Gamma^{i}} p \cdot z^{i}\right],
$$

so

$$
p \cdot\left(x^{\circ i}-r^{i}\right)=\inf _{z^{i} \in \Gamma^{i}} p \cdot z^{i} .
$$

We have then for each i, that $p \cdot\left(x^{\circ i}-r^{i}\right)=\inf p \cdot y$ for $y \in \Gamma^{i}$. Equivalently, $x^{\circ i}$ minimizes $p \cdot\left(x-r^{i}\right)$ subject to $x \succeq_{i} x^{\circ i}$. In addition, $p \cdot x^{\circ i}=p \cdot r^{i}$. Further, there is an ε-neighborhood of $x^{\circ i}$ contained in X^{i}. By C.IV**, C.V, expenditure minimization subject to a utility constraint is equivalent to utility maximization subject to budget constraint. Hence $x^{\circ i}, i \in H$, is a competitive equilibrium allocation.

A Large Economy without Replication

The Shapley-Folkman Lemma
The convex hull of a set S will be the smallest convex set containing S . The convex hull of S will be denoted con(S). We can define con(S), for $S \subset R^{N}$ as follows

$$
\operatorname{con}(\mathrm{S}) \equiv\left\{x \mid x=\sum_{i=0}^{N} \alpha^{i} x^{i}, \text { where } x^{i} \in \mathrm{~S}, \alpha^{i} \geq 0 \text { all } \mathrm{i}, \text { and } \sum_{i=0}^{N} \alpha^{i}=1\right\}
$$

or equivalently as

$$
\operatorname{con}(\mathrm{S}) \equiv \bigcap_{S \subset T ; T \text { convex }} T .
$$

That is $\operatorname{con}(\mathrm{S})$ is the smallest convex set in R^{N} containing S .

Lemma (Shapley-Folkman): Let $S^{1}, S^{2}, S^{3}, \ldots, S^{m}$, be nonempty compact subsets of R^{N}. Let $x \in \operatorname{con}\left(S^{1}+S^{2}+S^{3}+\ldots+S^{m}\right)$. Then for each $\mathrm{i}=1,2, \ldots, \mathrm{~m}$, there is $y^{i} \in \operatorname{con}\left(S^{i}\right)$ so that $\sum_{i=1}^{m} y^{i}=x$ and with at most N exceptions, $y^{i} \in S^{i}$. Equivalently: Let F be a finite family of nonempty compact sets in R^{N} and let $y \in \operatorname{con}\left(\sum_{S \in F} S\right)$. Then there is a partition of F into two disjoint subfamilies F^{\prime} and $F^{\prime \prime}$ with the number of elements in $F^{\prime} \leq N$ so that $y \in \sum_{S \in F^{\prime}} \operatorname{con}(S)+\sum_{S \in F^{\prime \prime}} S$.

We start by measuring the largest of the individual endowments. Define

$$
M \equiv \max \left\{\sum_{i \in S} r_{n}^{i} \mid n=1, \ldots, N, S \subseteq H, \# S=N\right\}
$$

Theorem 14.3: Assume C.IV**, $X^{i}=\mathbf{R}_{+}^{N}$, for all $i \in H$, a pure exchange economy. Let $\left\{x^{\circ i} \mid i \in H\right\}$ be a core allocation for H . Then there is $p \in P$ so that
(i) $\sum_{i \in H}\left|p \cdot\left(x^{\circ i}-r^{i}\right)\right| \leq 2 M$
(ii) $\sum_{i \in H}\left|\inf \left\{p \cdot\left(x-r^{i}\right) \mid x \succ_{i} x^{\circ i}\right\}\right| \leq 2 M$

Proof: Define Γ^{i} as in the proof of Theorem 14.2. $\Gamma^{i}=\left\{z \mid z \in \mathbf{R}^{N}, z+\right.$ $\left.r^{i} \succ_{i} x^{o i}\right\}$. Define $\Omega \equiv \sum_{i \in H}\left\{\Gamma^{i} \cup\{0\}\right\}$.

The proof proceeds in several steps.
Step 1: Let R_{++}^{N} denote the strictly positive quadrant of R^{N}, that is, the interior of R_{+}^{N}. We claim $\left(-R_{++}^{N}\right) \cap \Omega=\emptyset$. The reason is straightforward. If there is a nonempty intersection we can form a blocking coalition and block the core allocation - but of course, the core is unblocked, so this leads to a contradiction.

Suppose contrary to the claim there is $z \in \Omega$ so that $z \ll 0$. Then there is $z^{i} \in\left\{\Gamma^{i} \cup\{0\}\right\}$ for each $i \in H$ so that $\sum_{i \in H} z^{i} \ll 0$. Take the subset $S \subset H$ of $i \in H$ corresponding to the nonzero elements z^{i} in this sum. Then for $i \in S$ there is $z^{i} \in \Gamma^{i}$ so that $\sum_{i \in S} z^{i}<0$ (the inequality holds co-ordinatewise). But then S is a blocking coalition. That is for all $i \in S, z^{i}=x^{\prime i}-r^{i}$ so that $x^{\prime i} \succ_{i} x^{o i}$ and $\sum_{i \in S} x^{\prime i} \leq \sum_{i \in S} r^{i}$. This is a contradiction. Hence we have $\left(-R_{++}^{N}\right) \cap \Omega=\emptyset$ as claimed.

Step 2: Recall that the notation $\operatorname{con}(A)$ denotes the convex hull of the set A. Define the set Z as the strictly negative quadrant of R^{N} translated to the southeast by M in each co-ordinate. That is, let
$Z \equiv\left\{z \in R^{N} \mid z_{n}<-M\right.$, for $\left.n=1,2, \ldots, N\right\}$. In this step, we establish that $Z \cap \operatorname{con}(\Omega)=\emptyset$.

Again, we use a proof by contradiction, establishing a blocking coalition in the event that the step were not fulfilled. Suppose contrary to the step, we
have $Z \cap \operatorname{con}(\Omega) \neq \emptyset$. Choose $z \in Z \cap \operatorname{con}(\Omega)$. Then by the Shapley-Folkman Lemma we can represent z in the following way. There is a partition of H into disjoint subsets S and T with no more than N elements in T. There is a choice of $z^{i} \in \operatorname{con}\left(\left\{\Gamma^{i} \cup\{0\}\right\}\right)$ so that $z=\sum_{i \in S} z^{i}+\sum_{i \in T} z^{i}$, where for all $i \in S, z^{i} \in\left\{\Gamma^{i} \cup\{0\}\right\}$ and for all $i \in T, z^{i} \in\left[\operatorname{con}\left(\left\{\Gamma^{i} \cup\{0\}\right\}\right) \backslash\left\{\Gamma^{i} \cup\{0\}\right\}\right]$. That is, a point in the convex hull of Ω is the sum of points of $\operatorname{con}\left(\left\{\Gamma^{i} \cup\{0\}\right\}\right)$ no more than N of which are from $\left[\operatorname{con}\left(\left\{\Gamma^{i} \cup\{0\}\right\}\right) \backslash\left\{\Gamma^{i} \cup\{0\}\right\}\right]$. That is, most of the summands making up the convex hull of the sum will be from the original sets of the sum while a fixed finite number will be from the corresponding convex hulls. The original sum was nearly convex on its own.

Recall that for each i, $0 \in\left\{\Gamma^{i} \cup\{0\}\right\}$ and that $z \ll-(M, M, \ldots, M)$. Then the sum
$\left[\sum_{i \in S} z^{i}+\sum_{i \in T} 0\right] \in \Omega$. Note that each element of $\operatorname{con}\left(\Gamma^{i} \cup\{0\}\right) \geq-r^{i}$ (the inequality applies co-ordinatewise). Then we have $\left[\sum_{i \in S} z^{i}+\sum_{i \in T} 0\right]=$ $z-\sum_{i \in T} z^{i} \leq z+\sum_{i \in T} r^{i} \ll-(M, M, \ldots, M)+\sum_{i \in T} r^{i} \leq 0$. But then $\left(-R_{++}^{N}\right) \cap \Omega \neq \emptyset$ contradicting Step 1. The contradiction suffices to establish Step 2.

Step 3: By the Separating Hyperplane Theorem, there is $p^{*} \neq 0, p^{*} \geq 0$ (by C.IV ${ }^{* *}$) and real k so that $p^{*} \cdot x \geq k \geq p^{*} \cdot y$ for all $x \in \operatorname{con}(\Omega), y \in Z$. Then without loss of generality we take $p^{*} \in P$.

Step 4: $\left(x^{\circ i}-r^{i}\right) \in \bar{\Gamma}^{i}$ (the closure of Γ^{i}) so
$p^{*} \cdot\left(x^{\circ i}-r^{i}\right) \geq \inf _{i \in H}\left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}$. Let H^{+}denote the subset of H so that $p^{*} \cdot\left(x^{\circ i}-r^{i}\right) \geq 0$. Let H^{-}denote the subset of H so that $p^{*} \cdot\left(x^{\circ i}-r^{i}\right)<0$.

It is useful here to establish an identity

$$
\begin{aligned}
& \sum_{i \in H^{+}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}+\sum_{i \in H^{-}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\} \\
= & \inf \left\{p^{*} \cdot y \mid y \in \Omega\right\} \\
& \sum_{i \in H^{+}} p^{*} \cdot\left(x^{\circ i}-r^{i}\right) \geq \sum_{i \in H^{+}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\} \\
& \geq \sum_{i \in H^{+}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}+\sum_{i \in H^{-}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\} \\
& =\sum_{i \in H^{*}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}=\inf \left\{p^{*} \cdot y \mid y \in \Omega\right\} \\
& =\inf \left\{p^{*} \cdot y \mid y \in \operatorname{con}(\Omega)\right\} \geq k \geq \sup \left\{p^{*} \cdot y \mid y \in Z\right\}=-M .
\end{aligned}
$$

The core allocation $x^{\circ i}$ is attainable, so $\sum_{i \in H}\left(x^{\circ i}-r^{i}\right) \leq 0$ and for any goods n in surplus at the core allocation $p_{n}^{*}=0$. So $\sum_{i \in H} p^{*} \cdot\left(x^{\circ i}-r^{i}\right)=0$. Then $\sum_{i \in H^{-}} p^{*} \cdot\left(x^{\circ i}-r^{i}\right)=-\sum_{i \in H^{+}} p^{*} \cdot\left(x^{\circ i}-r^{i}\right) \geq \inf \left\{p^{*} \cdot y \mid y \in \Omega\right\} \geq-M$

This implies that

$$
\begin{equation*}
M \geq-\inf \left\{p^{*} \cdot y \mid y \in \Omega\right\} \geq \sum_{i \in H^{+}} p^{*} \cdot\left(x^{\circ i}-r^{i}\right) \tag{*}
\end{equation*}
$$

Note that for $i \in H^{+}, \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\} \leq 0 \quad(* *)$

Now the conclusions of the theorem follow directly.

$$
\begin{aligned}
& \sum_{i \in H^{-}}\left|p^{*} \cdot\left(x^{\circ i}-r^{i}\right)\right|=\sum_{i \in H^{+}}\left|p^{*} \cdot\left(x^{\circ i}-r^{i}\right)\right| \leq M, \text { so } \\
& \sum_{i \in H}\left|p^{*} \cdot\left(x^{\circ i}-r^{i}\right)\right|=\sum_{i \in H^{-}}\left|p^{*} \cdot\left(x^{\circ i}-r^{i}\right)\right|+\sum_{i \in H^{+}}\left|p^{*} \cdot\left(x^{\circ i}-r^{i}\right)\right| \leq 2 M
\end{aligned}
$$

This establishes the assertion (i) in the Theorem.

To demonstrate assertion (ii) we form the following argument.
$\sum_{i \in H}\left|\inf \left\{p^{*} \cdot\left(x-r^{i}\right) \mid x \succ_{i} x^{\circ i}\right\}\right|$
$=\sum_{i \in H^{+}}\left|\inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i}\right\}\right|+\sum_{i \in H^{-}}\left|\inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i}\right\}\right|$
$\leq\left[-\sum_{i \in H^{+}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}+\sum_{i \in H^{+}} p^{*} \cdot\left(x^{\circ i}-r^{i}\right)\right]$
$-\sum_{i \in H^{-}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}$ (Using the inequality $\left(^{* *}\right)$, the term in square brackets is larger than the first term of the previous expression and - taking account of signs - the last term exceeds the last term of the previous expression).
$=-\sum_{i \in H^{+}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}-\sum_{i \in H^{-}} \inf \left\{p^{*} \cdot y \mid y \in \Gamma^{i} \cup\{0\}\right\}+$ $\sum_{i \in H^{+}} p^{*} \cdot\left(x^{\circ i}-r^{i}\right)$ (Then using the identity at the start of this step, and the expression $\left.\left({ }^{*}\right)\right)$
$=-\inf \left\{p^{*} \cdot y \mid y \in \Omega\right\}+\sum_{i \in H^{+}} p^{*} \cdot\left(x^{\circ i}-r^{i}\right)$
$\leq M+M=2 M$.
Thus $\sum_{i \in H}\left|\inf \left\{p^{*} \cdot\left(x-r^{i}\right) \mid x \succ_{i} x^{\circ i}\right\}\right| \leq 2 M$

