Lecture Notes, January 13, 2008

Partial equilibrium comparative statics

Partial equilibrium: Market for one good only with supply and demand as a function of price. Price is defined as the solution to the equation.

z(p) = D(p) - S(p) = 0

The implicit assumption is *ceteris paribus*, other things being equal (all other prices held fixed). Suppose there is a shift parameter, α , that describes changes in the demand and supply functions. Then the definition of equilibrium now looks like:

 $z(p, \alpha) = D(p, \alpha) - S(p, \alpha) = 0.$

Consider changes in α . What happens to p?

Totally differentiate z with respect to α . We have

$$\frac{\mathrm{d}z}{\mathrm{d}\alpha} = \frac{\partial z}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}\alpha} + \frac{\partial z}{\partial \alpha} = 0$$

Assuming $\frac{\partial z}{\partial p} \neq 0$ we have
$$\frac{\mathrm{d}p}{\mathrm{d}\alpha} = -\left(\frac{1}{\frac{\partial z}{\partial p}}\right)\frac{\partial z}{\partial \alpha} = -\frac{\frac{\partial z}{\partial \alpha}}{\frac{\partial z}{\partial p}} = -\frac{D_{\alpha} - S_{\alpha}}{D_{p} - S_{p}}$$

(the denominator $\frac{\partial z}{\partial p} = D_p - S_p$ of this expression is the Jacobian of the system).

Economics 200B UCSD

Then suppose that α represents an upward shift in demand and that the usual slopes apply to D and S. $D_p < 0, S_p > 0$. We have

$$\frac{dp}{d\alpha} = -\frac{(+)-(0)}{(-)-(+)} = -\left(\frac{+}{-}\right) = +$$

Just what you'd expect. An upward shift in demand increases price.

Example: The tax incidence problem

Who really pays a tax levied on sellers?

Let α = excise tax, p^o - α = price received by seller, p^o = price paid by buyer

D (p,
$$\alpha$$
) = D (p, 0), S(p, α) = S(p - α , 0)

$$D_{\alpha}\left(p,\ \alpha\right)=\ 0$$
, $S_{\alpha}(p,\ \alpha)=-S_{p}$.

$$\frac{dp^{\circ}}{d\alpha} = -\frac{D_{\alpha} - S_{\alpha}}{D_{p} - S_{p}} = -\frac{-(-S_{p})}{D_{p} - S_{p}} = \frac{-S_{p}}{D_{p} - S_{p}}$$

Consider the case $S_p >> 0$, $D_p \approx 0$; elastic supply, inelastic demand.

Then $\frac{dp^{\circ}}{d\alpha} \approx 1$. Interpretation: Price to seller is unaffected by imposition of the tax α . The tax is shifted to buyers.

Comparative Statics, Implicit Function Theorem

Characterize market equilibrium, subject to a parameter α , by market clearing in z (p, α).

Economics 200B UCSD Prof. R. Starr Winter 2009

$$\begin{pmatrix} z_{1}(p,\alpha) \\ \vdots \\ z_{i}(p,\alpha) \\ \vdots \\ z_{N}(p,\alpha) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Prices p are endogenously determined by the market clearing condition. Then as α shifts, market-clearing values of p will change as well. Assuming everything in sight is differentiable and well defined, we have,

January 13, 2008

This expression is well defined when the Jacobian is non-singular. This is an application of the **Implicit Function Theorem.**

See also Regular Economies.

HELP: There is a shortage of good, intelligent, relatively simple transparent, comparative statics problems suitable for a problem set or exam. Please suggest your favorite to Ross. Reward: 3 brownie points plus your question may show up where it will do you the most good.