Lecture Notes, January 13, 2008

Partial equilibrium comparative statics

Partial equilibrium: Market for one good only with supply and demand as a function of price. Price is defined as the solution to the equation.

$$
\mathrm{z}(\mathrm{p})=\mathrm{D}(\mathrm{p})-\mathrm{S}(\mathrm{p})=0
$$

The implicit assumption is ceteris paribus, other things being equal (all other prices held fixed). Suppose there is a shift parameter, α, that describes changes in the demand and supply functions. Then the definition of equilibrium now looks like:

$$
z(p, \alpha)=D(p, \alpha)-S(p, \alpha)=0 .
$$

Consider changes in α. What happens to p ?
Totally differentiate z with respect to α. We have

$$
\frac{\mathrm{dz}}{\mathrm{~d} \alpha}=\frac{\partial \mathrm{z}}{\partial \mathrm{p}} \frac{\mathrm{dp}}{\mathrm{~d} \alpha}+\frac{\partial \mathrm{z}}{\partial \alpha}=0
$$

Assuming $\frac{\partial \mathrm{z}}{\partial \mathrm{p}} \neq 0$ we have
$\frac{\mathrm{dp}}{\mathrm{d} \alpha}=-\left(\frac{1}{\frac{\partial \mathrm{z}}{\partial \mathrm{p}}}\right) \frac{\partial \mathrm{z}}{\partial \alpha}=-\frac{\frac{\partial \mathrm{z}}{\partial \alpha}}{\frac{\partial \mathrm{z}}{\partial \mathrm{p}}}=-\frac{\mathrm{D}_{\alpha}-\mathrm{S}_{\alpha}}{\mathrm{D}_{\mathrm{p}}-\mathrm{S}_{\mathrm{p}}}$
(the denominator $\frac{\partial \mathrm{z}}{\partial \mathrm{p}}=\mathrm{D}_{\mathrm{p}}-\mathrm{S}_{\mathrm{p}}$ of this expression is the Jacobian of the system).

Then suppose that α represents an upward shift in demand and that the usual slopes apply to D and S . $\mathrm{D}_{\mathrm{p}}<0, \mathrm{~S}_{\mathrm{p}}>0$. We have

$$
\frac{\mathrm{dp}}{\mathrm{~d} \alpha}=-\frac{(+)-(0)}{(-)-(+)}=-\left(\frac{+}{-}\right)=+
$$

Just what you'd expect. An upward shift in demand increases price.

Example: The tax incidence problem

Who really pays a tax levied on sellers?
Let $\alpha=$ excise tax, $\mathrm{p}^{0}-\alpha=$ price received by seller, $\mathrm{p}^{0}=$ price paid by buyer
$D(p, \alpha)=D(p, 0), S(p, \alpha)=S(p-\alpha, 0)$
$D_{\alpha}(\mathrm{p}, \alpha)=0, S_{\alpha}(\mathrm{p}, \alpha)=-S_{p}$.
$\frac{\mathrm{dp}^{0}}{\mathrm{~d} \alpha}=-\frac{\mathrm{D}_{\alpha}-\mathrm{S}_{\alpha}}{\mathrm{D}_{\mathrm{p}}-\mathrm{S}_{\mathrm{p}}}=-\frac{-\left(-\mathrm{S}_{\mathrm{p}}\right)}{\mathrm{D}_{\mathrm{p}}-\mathrm{S}_{\mathrm{p}}}=\frac{-\mathrm{S}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{p}}-\mathrm{S}_{\mathrm{p}}}$
Consider the case $\mathrm{S}_{\mathrm{p}} \gg 0, \mathrm{D}_{\mathrm{p}} \approx 0$; elastic supply, inelastic demand.
Then $\frac{\mathrm{dp}^{0}}{\mathrm{~d} \alpha} \approx 1$. Interpretation: Price to seller is unaffected by imposition of the $\operatorname{tax} \alpha$. The tax is shifted to buyers.

Comparative Statics, Implicit Function Theorem

Characterize market equilibrium, subject to a parameter α, by market clearing in z (p, α).

$$
\left(\begin{array}{c}
\mathrm{z}_{1}(\mathrm{p}, \alpha) \\
\vdots \\
\mathrm{z}_{\mathrm{i}}(\mathrm{p}, \alpha) \\
\vdots \\
\mathrm{z}_{\mathrm{N}}(\mathrm{p}, \alpha)
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Prices p are endogenously determined by the market clearing condition. Then as α shifts, market-clearing values of p will change as well. Assuming everything in sight is differentiable and well defined, we have,
$\left(\begin{array}{c}\frac{\mathrm{d} \mathrm{z}_{1}}{\mathrm{~d} \alpha} \\ \vdots \\ \vdots \\ \vdots \\ \frac{\mathrm{dz}}{\mathrm{d} \alpha}\end{array}\right)=\left(\begin{array}{ccccc}\frac{\partial \mathrm{z}_{1}}{\partial \mathrm{p}_{1}} & & & & \frac{\partial \mathrm{z}_{1}}{\partial \mathrm{p}_{\mathrm{N}}} \\ & \ddots & & & \\ \vdots & & \frac{\partial \mathrm{z}_{\mathrm{i}}}{\partial \mathrm{p}_{\mathrm{j}}} & & \vdots \\ & & & \ddots & \\ \frac{\partial \mathrm{z}_{\mathrm{N}}}{\partial \mathrm{p}_{1}} & & & & \frac{\partial \mathrm{z}_{\mathrm{N}}}{\partial \mathrm{p}_{\mathrm{N}}}\end{array}\right)\left(\begin{array}{c}\frac{\mathrm{dp}}{1} \\ \mathrm{~d} \alpha \\ \vdots \\ \frac{\mathrm{dp}}{\mathrm{i}} \\ \mathrm{d} \mathrm{\alpha} \\ \vdots \\ \frac{d p_{\mathrm{N}}}{\mathrm{d} \alpha}\end{array}\right)+\left(\begin{array}{c}\frac{\partial \mathrm{z}_{1}}{\partial \alpha} \\ \vdots \\ \frac{\partial \mathrm{z}_{\mathrm{i}}}{\partial \alpha} \\ \vdots \\ \frac{\partial \mathrm{z}_{\mathrm{N}}}{\partial \alpha}\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ \vdots \\ 0\end{array}\right)$
The expression $\left(\begin{array}{ccccc}\frac{\partial \mathbf{z}_{1}}{\partial \mathrm{p}_{1}} & & & & \frac{\partial \mathbf{z}_{1}}{\partial \mathrm{p}_{\mathrm{N}}} \\ & \ddots & & & \\ \vdots & & \frac{\partial \mathbf{z}_{\mathrm{i}}}{\partial \mathrm{p}_{\mathrm{j}}} & & \vdots \\ & & & \ddots & \\ \frac{\partial \mathbf{z}_{\mathrm{N}}}{\partial \mathrm{p}_{1}} & & & & \frac{\partial \mathbf{z}_{\mathrm{N}}}{\partial \mathrm{p}_{\mathrm{N}}}\end{array}\right)$ is the Jacobian of the market clearing
equation system. Solving for $\left(\begin{array}{c}\frac{\mathrm{dp}_{1}}{\mathrm{~d} \alpha} \\ \vdots \\ \frac{d p_{i}}{\mathrm{~d} \mathrm{\alpha}} \\ \vdots \\ \frac{\mathrm{dp}_{\mathrm{N}}}{\mathrm{d} \alpha}\end{array}\right)$ we have

$$
\left(\begin{array}{c}
\frac{\mathrm{d} p_{1}}{\mathrm{~d} \mathrm{\alpha}} \\
\vdots \\
\frac{\mathrm{dp}}{\mathrm{~d}} \\
\vdots \\
\vdots \\
\frac{\mathrm{dp}_{\mathrm{N}}}{\mathrm{~d} \alpha}
\end{array}\right)=-\left(\begin{array}{ccccc}
\frac{\partial \mathbf{z}_{1}}{\partial \mathrm{p}_{1}} & & & & \frac{\partial \mathbf{z}_{1}}{\partial \mathrm{p}_{\mathrm{N}}} \\
& \ddots & & & \\
\vdots & & \frac{\partial \mathbf{z}_{\mathrm{i}}}{\partial \mathrm{p}_{\mathrm{j}}} & & \vdots \\
& & & \ddots & \\
\frac{\partial \mathbf{z}_{\mathrm{N}}}{\partial \mathrm{p}_{1}} & & & & \frac{\partial \mathbf{z}_{\mathrm{N}}}{\partial \mathrm{p}_{\mathrm{N}}}
\end{array}\right)^{-1}\left(\begin{array}{c}
\frac{\partial \mathbf{z}_{1}}{\partial \alpha} \\
\vdots \\
\frac{\partial \mathbf{z}_{\mathrm{i}}}{\partial \alpha} \\
\vdots \\
\frac{\partial \mathbf{z}_{\mathrm{N}}}{\partial \alpha}
\end{array}\right)
$$

This expression is well defined when the Jacobian is non-singular. This is an application of the Implicit Function Theorem.

See also Regular Economies.
HELP: There is a shortage of good, intelligent, relatively simple transparent, comparative statics problems suitable for a problem set or exam. Please suggest your favorite to Ross. Reward: 3 brownie points plus your question may show up where it will do you the most good.

