Lecture Notes for January 15, 2014

A market economy
Firms, profits, and household income
$H, F, \alpha^{i j} \in \mathbf{R}_{+}, \Sigma_{i \in H} \alpha^{i j}=1$,

$$
r \equiv \sum_{i \in H} r^{i} .
$$

Theorem 13.1 Assume P.II, P.III, and P.VI. $\tilde{\pi}^{j}(p)$ is a well-defined continuous function of p for all $p \in \mathbf{R}_{+}^{N}, p \neq 0 . \tilde{\pi}^{j}(p)$ is homogeneous of degree 1 .

$$
\begin{aligned}
& \tilde{M}^{i}(p)=p \cdot r^{i}+\sum_{j \in F} \alpha^{i j} \tilde{\pi}^{j}(p) . \\
& \quad P=\left\{p \mid p \in \mathbf{R}^{N}, p_{k} \geq 0, k=1 \ldots, N, \sum_{k=1}^{N} p_{k}=1\right\} .
\end{aligned}
$$

Excess demand and Walras' Law
Definition The excess demand function at prices $p \in P$ is

$$
\tilde{Z}(p)=\tilde{D}(p)-\tilde{S}(p)-r=\sum_{i \in H} \tilde{D}^{i}(p)-\sum_{j \in F} \tilde{S}^{j}(p)-\sum_{i \in H} r^{i} .
$$

Lemma 13.1 Assume C.I-C.V, C.VI(SC), C.VII, P.II, P.III, P.V, and P.VI. The range of $\tilde{Z}(p)$ is bounded. $\tilde{Z}(p)$ is continuous and well defined for all $p \in P$.

Proof Apply Theorems 11.1, 12.2, 13.1. The finite sum of bounded sets is bounded. The finite sum of continuous functions is continuous. QED

Theorem 13.2 (Weak Walras' Law) Assume C.I-C.V, C.VI(SC),C.VII, P.II, P.III, P.V, and P.VI. For all $p \in P, p \cdot \tilde{Z}(p) \leq 0$. For p such that $p \cdot \tilde{Z}(p)<0$, there is $k=1,2, \ldots, N$ so that $\tilde{Z}_{k}(p)>0$.

Proof of Theorem $13.2 p \cdot \tilde{D}^{i}(p) \leq \tilde{M}^{i}(p)=p \cdot r^{i}+\sum_{j \in F} \alpha^{i j} \tilde{\pi}^{j}(p)$. $\sum_{i \in H} \alpha^{i j}=1$ for each $j \in F$.

$$
\begin{aligned}
p \cdot \tilde{Z}(p) & =p \cdot\left[\sum_{i \in H} \tilde{D}^{i}(p)-\sum_{j \in F} \tilde{S}^{j}(p)-\sum_{i \in H} r^{i}\right] \\
& =p \cdot \sum_{i \in H} \tilde{D}^{i}(p)-p \cdot \sum_{j \in F} \tilde{S}^{j}(p)-p \cdot \sum_{i \in H} r^{i} \\
& =\sum_{i \in H} p \cdot \tilde{D}^{i}(p)-\sum_{j \in F} p \cdot \tilde{S}^{j}(p)-\sum_{i \in H} p \cdot r^{i} \\
& =\sum_{i \in H} p \cdot \tilde{D}^{i}(p)-\sum_{j \in F} \tilde{\pi}^{j}(p)-\sum_{i \in H} p \cdot r^{i} \\
& =\sum_{i \in H} p \cdot \tilde{D}^{i}(p)-\sum_{j \in F}\left[\sum_{i \in H} \alpha^{i j} \tilde{\pi}^{j}(p)\right]-\sum_{i \in H} p \cdot r^{i} \\
& =\sum_{i \in H} p \cdot \tilde{D}^{i}(p)-\sum_{i \in H}\left[\sum_{j \in F} \alpha^{i j} \tilde{\pi}^{j}(p)\right]-\sum_{i \in H} p \cdot r^{i}
\end{aligned}
$$

Note the change in the order of summation

$$
\begin{aligned}
& =\sum_{i \in H} p \cdot \tilde{D}^{i}(p)-\sum_{i \in H}\left\{\left[\sum_{j \in F} \alpha^{i j} \tilde{\pi}^{j}(p)\right]+p \cdot r^{i}\right\} \\
& =\sum_{i \in H} p \cdot \tilde{D}^{i}(p)-\sum_{i \in H} \tilde{M}^{i}(p) \\
& =\sum_{i \in H}\left[p \cdot \tilde{D}^{i}(p)-\tilde{M}^{i}(p)\right] \leq 0 .
\end{aligned}
$$

since $p \cdot \tilde{D}^{i}(p) \leq \tilde{M}^{i}(p)$ This proves the weak inequality as re-
quired.
We now must demonstrate the positivity of some coordinate of $\tilde{Z}(p)$ when the strict inequality holds. Let $p \cdot \tilde{Z}(p)<0$. Then $p \cdot \sum_{i \in H} \tilde{D}^{i}(p)<p \cdot r+p \cdot \sum_{j \in F} \tilde{S}^{j}(p)=\sum_{i \in H} \tilde{M}^{i}(p)$, so for some $i^{\prime} \in H, p \cdot \tilde{D}^{i^{\prime}}(p)<\tilde{M}^{i^{\prime}}(p)$. Now we apply Lemma 12.3. We must have $\left|\tilde{D}^{i^{\prime}}(p)\right|=c$. Recall that c is chosen so that $|x|<c$ (a strict inequality) for all attainable x. But then $\tilde{D}^{i^{\prime}}(p)$ is not attainable. For no $y \in \mathcal{Y}$ do we have $\tilde{D}^{i^{\prime}}(p) \leq y+r$. But for all $i \in H$, $\tilde{D}^{i}(p) \in \boldsymbol{R}_{+}^{N}$. So $\sum_{i \in H} \tilde{D}^{i}(p) \geq \tilde{D}^{i^{\prime}}(p)$. Therefore, $\tilde{Z}_{k}(p)>0$, for some $k=1,2, \ldots, N$.

General equilibrium of the market economy with an excess demand function
Existence of equilibrium

$$
\begin{gathered}
P=\left\{p \mid p \in \mathbf{R}^{N}, p_{k} \geq 0, k=1 \ldots, N, \sum_{k=1}^{N} p_{k}=1\right\} . \\
\tilde{Z}(p)=\sum_{i \in H} \tilde{D}^{i}(\cdot)-\sum_{j \in F} \tilde{S}^{j}(\cdot)-r .
\end{gathered}
$$

Definition $p^{\circ} \in P$ is said to be an equilibrium price vector if $\tilde{Z}\left(p^{\circ}\right) \leq 0$ (the inequality holds coordinatewise) with $p_{k}^{\circ}=0$ for k such that $\tilde{Z}_{k}\left(p^{\circ}\right)<0$.

Weak Walras' Law (Theorem 13.2): For all $p \in P, p \cdot \tilde{Z}(p) \leq 0$. For p such that $p \cdot \tilde{Z}(p)<0$, there is $k=1,2, \ldots, N$ so that $\tilde{Z}_{k}(p)>0$, under assumptions C.I-C.V, C.VI(SC), P.II, P.III, P.V, and P.VI.

Continuity: $\tilde{Z}(p)$ is a continuous function, assuming P.II, P.III, P.V, P.VI, C.I-C.V, C.VI(SC) and C.VII (Theorems 11.1, 12.2, and 13.1).

Theorem 9.3 Brouwer Fixed-Point Theorem: Let S be an N simplex and let $f: S \rightarrow S$, where f is continuous. Then there is $x^{*} \in S$ so that $f\left(x^{*}\right)=x^{*}$.

Theorem 14.1 Assume P.II, P.III, P.V, P.VI, C.I-C.V, C.VI (SC), and C.VII. There is $p^{*} \in P$ so that p^{*} is an equilibrium.

Proof Let $T: P \rightarrow P$, where $T(p)=\left(T_{1}(p), T_{2}(p), \ldots, T_{i}(p), \ldots, T_{N}(p)\right)$. $T_{i}(p)$ is the adjusted price of good i, adjusted by the auctioneer trying to bring supply and demand into balance. Let $\gamma^{i}>0$. The adjustment process of the i th price can be represented as $T_{i}(p)$, defined as follows:

$$
\begin{equation*}
T_{i}(p) \equiv \frac{\max \left[0, p_{i}+\gamma^{i} \tilde{Z}_{i}(p)\right]}{\sum_{n=1}^{N} \max \left[0, p_{n}+\gamma^{n} \tilde{Z}_{n}(p)\right]} \tag{14.1}
\end{equation*}
$$

In order for T to be well defined, we must show that the denominator is nonzero, that is,

$$
\begin{equation*}
\sum_{n=1}^{N} \max \left[0, p_{n}+\gamma^{n} \tilde{Z}_{n}(p)\right] \neq 0 \tag{14.2}
\end{equation*}
$$

In fact, we claim that $\sum_{n=1}^{N} \max \left[0, p_{n}+\gamma^{n} \tilde{Z}_{n}(p)\right]>0$. Suppose not. Then for each $\mathrm{n}, \max \left[0, p_{n}+\gamma^{n} \tilde{Z}_{n}(p)\right]=0$. Then all goods k with $p_{k}>0$ must have $\tilde{Z}_{k}(p)<0$. So $p \cdot \tilde{Z}(p)<0$. Then by the Weak Walras' Law, there is n so that $\tilde{Z}_{n}(p)>0$. Thus $\sum_{n=1}^{N} \max \left[0, p_{n}+\gamma^{n} \tilde{Z}_{n}(p)\right]>0$.
By Lemma 13.1, $\tilde{Z}(p)$ is a continuous function. Then $T(p)$ is a continuous function from the simplex into itself since continuity is preserved under the operations of max, addition, and division by a positive-valued continuous function.
By the Brouwer Fixed-Point Theorem there is $p^{*} \in P$ so that
$T\left(p^{*}\right)=p^{*}$. But then for all $k=1, \ldots, N$,

$$
\begin{equation*}
T_{i}\left(p^{*}\right) \equiv \frac{\max \left[0, p_{i}^{*}+\gamma^{i} \tilde{Z}_{i}\left(p^{*}\right)\right]}{\sum_{n=1}^{N} \max \left[0, p_{n}^{*}+\gamma^{n} \tilde{Z}_{n}\left(p^{*}\right)\right]} \tag{14.3}
\end{equation*}
$$

We'll demonstrate that $\tilde{Z}_{n}\left(p^{*}\right) \leq 0$ all n.
Looking at the numerator in this expression, we can see that the equation will be fulfilled either by

$$
\begin{equation*}
p_{k}^{*}=0 \tag{Case1}
\end{equation*}
$$

or by

$$
\begin{equation*}
\left.p_{k}^{*}=\frac{p_{k}^{*}+\gamma^{k} \tilde{Z}_{k}\left(p^{*}\right)}{\sum_{n=1}^{N} \max \left[0, p_{n}^{*}+\gamma^{n} \tilde{Z}_{n}\left(p^{*}\right)\right]}>0 \quad \text { (Case } 2\right) \text {. } \tag{14.5}
\end{equation*}
$$

CASE $1 p_{k}^{*}=0=\max \left[0, p_{k}^{*}+\gamma^{k} \tilde{Z}_{k}\left(p^{*}\right)\right]$. Hence, $0 \geq p_{k}^{*}+\gamma^{k} \tilde{Z}_{k}\left(p^{*}\right)=\gamma^{k} \tilde{Z}_{k}\left(p^{*}\right)$ and $\tilde{Z}_{k}\left(p^{*}\right) \leq 0$. This is the case of free goods with market clearing or with excess supply in equilibrium.

CASE 2 To avoid repeated messy notation, let

$$
\begin{equation*}
\lambda=\frac{1}{\sum_{n=1}^{N} \max \left[0, p_{n}^{*}+\gamma^{n} \tilde{Z}_{n}\left(p^{*}\right)\right]}>0 \tag{14.6}
\end{equation*}
$$

so that $T_{k}\left(p^{*}\right)=\lambda\left(p_{k}^{*}+\gamma^{k} \tilde{Z}_{k}\left(p^{*}\right)\right)$. We'll demonstrate that
$\tilde{Z}_{n}\left(p^{*}\right) \leq 0$, all n. Since p^{*} is the fixed point of T we have $p_{k}^{*}=\lambda\left(p_{k}^{*}+\gamma^{k} \tilde{Z}_{k}\left(p^{*}\right)\right)>0$. This expression is true for all k with $p_{k}^{*}>0$, and λ is the same for all k. Let's perform some algebra on this expression. We first combine terms in p_{k}^{*} :

$$
\begin{equation*}
(1-\lambda) p_{k}^{*}=\lambda \gamma^{k} \tilde{Z}_{k}\left(p^{*}\right), \tag{14.7}
\end{equation*}
$$

then multiply through by $\tilde{Z}_{k}\left(p^{*}\right)$ to get

$$
\begin{equation*}
(1-\lambda) p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right)=\lambda \gamma^{k}\left(\tilde{Z}_{k}\left(p^{*}\right)\right)^{2}, \tag{14.8}
\end{equation*}
$$

and now sum over all k in Case 2, obtaining

$$
\begin{equation*}
(1-\lambda) \sum_{k \in \text { Case2 }} p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right)=\lambda \sum_{k \in \text { Case2 }} \gamma^{k}\left(\tilde{Z}_{k}\left(p^{*}\right)\right)^{2} . \tag{14.9}
\end{equation*}
$$

The Weak Walras' Law says

$$
\begin{equation*}
0 \geq \sum_{k=1}^{N} p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right)=\sum_{k \in \text { Case1 }} p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right)+\sum_{k \in \text { Case2 }} p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right) \tag{14.10}
\end{equation*}
$$

But for $k \in$ Case $1, p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right)=0$, and so

$$
\begin{equation*}
0=\sum_{k \in \text { Casel }} p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right) . \tag{14.11}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sum_{k \in \text { Case2 }} p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right) \leq 0 . \tag{14.12}
\end{equation*}
$$

There are two subcases, $\lambda \leq 1$, and $\lambda>1$. In the case $\lambda \leq 1$, from (14.9) we have

$$
\begin{equation*}
0 \geq(1-\lambda) \cdot \sum_{k \in \text { Case } 2} p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right)=\lambda \cdot \sum_{k \in \text { Case } 2} \gamma^{k}\left(\tilde{Z}_{k}\left(p^{*}\right)\right)^{2} \tag{14.13}
\end{equation*}
$$

The left-hand side ≤ 0. But the right-hand side is necessarily nonnegative. It can be zero only if $\tilde{Z}_{k}\left(p^{*}\right)=0$ for all k such that $p_{k}^{*}>0$ (k in Case 2). Thus, p^{*} is an equilibrium. This concludes the proof for the case $\lambda \leq 1$.
In the event $\lambda>1$ equation (14.8) implies

$$
(1-\lambda) p_{k}^{*} \tilde{Z}_{k}\left(p^{*}\right) \geq 0 \text { for all } k \in \text { Case } 2 .
$$

Since $\lambda>1$, this results in $\tilde{Z}_{k}\left(p^{*}\right) \leq 0$ for all $k \in$ Case 2. But there can be no $k \in$ Case 2 so that $\tilde{Z}_{k}\left(p^{*}\right)<0$. If that were to occur, then $p^{*} \cdot \tilde{Z}\left(p^{*}\right)<0$ and by the Weak Walras Law $\tilde{Z}_{k}\left(p^{*}\right)>0$ for some $k \in$ Case 1 or Case 2, a contradiction. Hence in this
subcase, we have $\tilde{Z}_{k}\left(p^{*}\right)=0$ for all $k \in$ Case 2 . This concludes the proof.

Lemma 14.1 Assume P.II, P.III, P.V, P.VI, C.I-C.V, C.VI(SC), and C.VII. Let p^{*} be an equilibrium. Then for all $i \in H,\left|\tilde{D}^{i}\left(p^{*}\right)\right|<$ c, where c is the bound on the Euclidean length of demand, $\tilde{D}^{i}\left(p^{*}\right)$. Further, in equilibrium, Walras' Law holds as an equality: $p^{*} \cdot \tilde{Z}\left(p^{*}\right)=0$.

Proof Since $\tilde{Z}\left(p^{*}\right) \leq 0$ (coordinatewise), we know that
$\sum_{i \in H} \tilde{D}^{i}\left(p^{*}\right) \leq \sum_{j \in F} \tilde{S}^{j}\left(p^{*}\right)+\sum_{i \in H} r^{i}$,
where the inequality holds coordinatewise. However, that implies that the aggregate consumption $\sum_{i \in H} \tilde{D}^{i}\left(p^{*}\right)$ is attainable, so for each household $i,\left|\tilde{D}^{i}\left(p^{*}\right)\right|<c$, where c is the bound on demand, $\tilde{D}^{i}(\cdot)$.
We have for all $p, p \cdot \tilde{Z}(p) \leq 0$. In equilibrium, at p^{*}, we have $\tilde{Z}\left(p^{*}\right) \leq 0$ (co-ordinatewise) with $p_{k}^{*}=0$ for k so that $\tilde{Z}_{k}\left(p^{*}\right)<0$. Therefore $p^{*} \cdot \tilde{Z}\left(p^{*}\right)=0$.

