Lecture Notes for January 13, 2014: Households

12.1 The structure of household consumption sets and preferences

Households are elements of the finite set H numbered $1,2, \ldots, \# H$. A household $i \in H$ will be characterized by its possible consumption set $X^{i} \subseteq \mathbf{R}_{+}^{N}$, its preferences \succeq_{i}, and its endowment $r^{i} \in \mathbf{R}_{+}^{N}$.

12.2 Consumption sets

(C.I) X^{i} is closed and nonempty.
(C.II) $X^{i} \subseteq \mathbf{R}_{+}^{N} . X^{i}$ is unbounded above, that is, for any $x \in X^{i}$ there is $y \in X^{i}$ so that $y>x$, that is, for $n=1,2, \ldots, N, y_{n} \geq x_{n}$ and $y \neq x$.
(C.III) X^{i} is convex.

$$
X=\sum_{i \in H} X^{i} .
$$

12.2.1 Preferences

Each household $i \in H$ has a preference quasi-ordering on X^{i}, denoted \succeq_{i}. For typical $x, y \in X^{i}, " x \succeq_{i} y$ " is read " x is preferred or indifferent to y (according to $i)$." We introduce the following terminology:

If $x \succeq_{i} y$ and $y \succeq_{i} x$ then $x \sim_{i} y$ (" x is indifferent to y "),
If $x \succeq_{i} y$ but not $y \succeq_{i} x$ then $x \succ_{i} y$ (" x is strictly preferred to y ").
We will assume \succeq_{i} to be complete on X^{i}, that is, any two elements of X^{i} are comparable under \succeq_{i}. For all $x, y \in X^{i}, x \succeq_{i} y$, or $y \succeq_{i} x$ (or both). Since we take \succeq_{i} to be a quasi-ordering, \succeq_{i} is assumed to be transitive and reflexive.

The conventional alternative to describing the quasi-ordering \succeq_{i} is to assume the presence of a utility function $u^{i}(x)$ so that $x \succeq_{i} y$ if and only if $u^{i}(x) \geq u^{i}(y)$. We
will show below that the utility function can be derived from the quasi-ordering. Readers who prefer the utility function formulation may use it at will. Just read $u^{i}(x) \geq u^{i}(y)$ wherever you see $x \succeq_{i} y$.

12.2.2 Non-Satiation

(C.IV) (Non-Satiation) Let $x \in X^{i}$. Then there is $y \in X^{i}$ so that $y \succ_{i} x$.

12.2.3 Continuity

We now introduce the principal technical assumption on preferences, the assumption of continuity. Any preferences that can be represented by a continuous utility function, $u^{i}: X^{i} \rightarrow \mathrm{R}$ will fulfill (C.V).
(C.V) (Continuity) For every $x^{\circ} \in X^{i}$, the sets

$$
A^{i}\left(x^{\circ}\right)=\left\{x \mid x \in X^{i}, x \succeq_{i} x^{\circ}\right\} \text { and }
$$

$$
G^{i}\left(x^{\circ}\right)=\left\{x \mid x \in X^{i}, x^{\circ} \succeq_{i} x\right\} \text { are closed. }
$$

Example 12.1 (Lexicographic preferences) The lexicographic (dictionary-like) ordering on \mathbf{R}^{N} (let's denote it \succeq_{L}) does not fulfill C.V. It is described in the following way. Let $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$.

$$
\begin{aligned}
& x \succ_{L} \text { yif } x_{1}>y_{1}, \text { or } \\
& \quad \text { if } x_{1}=y_{1} \text { and } x_{2}>y_{2}, \text { or } \\
& \quad \text { if } x_{1}=y_{1}, x_{2}=y_{2}, \text { and } x_{3}>y_{3}, \text { and so forth } \ldots . \\
& x \sim_{L} \text { yif } x=y .
\end{aligned}
$$

\succeq_{L} fulfills non-satiation, trivially fulfills strict convexity (C.VI(SC), introduced below), but does not fulfill continuity (C.V).

12.2.4 Attainable Consumption

Definition x is an attainable consumption if $y+r \geq x \geq 0$, where $y \in \mathcal{Y}$ and $r \in \mathbf{R}_{+}^{N}$ is the economy's initial resource endowment, so that y is an attainable production plan.

Note that the set of attainable consumptions is bounded under P.VI.

12.2.5 Convexity of preferences

(C.VI)(C) (Convexity of Preferences) $x \succ_{i} y$ implies $((1-\alpha) x+\alpha y) \succ_{i} y$, for $0<\alpha<1$. (C.VI)(SC) (Strict Convexity of Preferences): Let $x \succeq_{i} y$, (note that this includes $x \sim_{i} y$), $x \neq y$, and let $0<\alpha<1$. Then $\alpha x+(1-\alpha) y \succ_{i} y$.

Equivalently, if preferences are characterized by a utility function $u^{i}(\cdot)$, then we can state C.VI(SC) as

$$
u^{i}(x) \geq u^{i}(y), x \neq y, \text { implies } u^{i}[\alpha x+(1-\alpha) y]>u^{i}(y) .
$$

An immediate consequence of $\mathrm{C} . \mathrm{VI}(\mathrm{C})$ is that $A^{i}\left(x^{\circ}\right)$ is convex for every $x^{\circ} \in X^{i}$.
12.3 Representation of \succeq_{i} : Existence of a continuous utility function

Definition Let $u^{i}: X^{i} \rightarrow \mathbf{R} . u^{i}(\cdot)$ is a utility function that represents the preference ordering \succeq_{i} if for all $x, y \in X^{i}, u^{i}(x) \geq u^{i}(y)$ if and only if $x \succeq_{i} y$. This implies that $u^{i}(x)>u^{i}(y)$ if and only if $x \succ_{i} y$.

12.3.1 Weak Conditions for Existence of a Continuous Utility Function

Theorem 12.1 Let \succeq_{i}, X^{i}, fulfill C.I, C.II, C.III, C.V. Then there is $u^{i}: X^{i} \rightarrow \mathrm{R}, u^{i}(\cdot)$ continuous on X^{i}, so that $u^{i}(\cdot)$ is a utility function representing \succeq_{i}.

Proof See Debreu (1959, Section 4.6) or Debreu (1954).
QED
12.3.2 Construction of a continuous utility function

Shortcut: use weak desirability, $X^{i}=R_{+}^{N}$ and a 45° line.

12.4 Choice and boundedness of budget sets, $\tilde{\boldsymbol{B}}^{i}(\boldsymbol{p})$

Choose $c \in \mathbf{R}_{+}$so that $|x|<c$ (a strict inequality) for all attainable consumptions x. Choose c sufficiently large that $X^{i} \cap\left\{x\left|x \in \mathbf{R}^{N}, c>|x|\right\} \neq \phi\right.$;

$$
\tilde{B}^{i}(p)=\left\{x \mid x \in \mathbf{R}^{N}, p \cdot x \leq \tilde{M}^{i}(p)\right\} \cap\{x| | x \mid \leq c\} .
$$

$$
\begin{aligned}
\tilde{D}^{i}(p) & \equiv\left\{x \mid x \in \tilde{B}^{i}(p) \cap X^{i}, x \succeq_{i} y \text { for all } y \in \tilde{B}^{i}(p) \cap X^{i}\right\} \\
& \equiv\left\{x \mid x \in \tilde{B}^{i}(p) \cap X^{i}, x \text { maximizes } u^{i}(y) \text { for all } y \in \tilde{B}^{i}(p) \cap X^{i}\right\} .
\end{aligned}
$$

To characterize market demand let

$$
\tilde{D}(p)=\sum_{i \in H} \tilde{D}^{i}(p) .
$$

Lemma $12.1 \tilde{B}^{i}(p)$ is a closed set.
We will restrict attention to models where $\tilde{M}^{i}(p)$ is homogeneous of degree one, that is, where $\tilde{M}^{i}(\lambda p)=\lambda \tilde{M}^{i}(p)$. It is immediate then that $\tilde{B}^{i}(p)$ is homogeneous of degree zero.

Lemma 12.2 Let $\tilde{M}^{i}(p)$ be homogeneous of degree 1. Let $\tilde{B}^{i}(p)$ and $\tilde{D}^{i}(p) \neq \emptyset$. Then $\tilde{B}^{i}(p)$ and $\tilde{D}^{i}(p)$ are homogeneous of degree 0 .

$$
P \equiv\left\{p \mid p \in \mathbf{R}^{N}, p_{n} \geq 0, n=1,2,3, \ldots, N, \sum_{n=1}^{N} p_{n}=1\right\} .
$$

12.4.1 Adequacy of income

(C.VII) For all $i \in H, \tilde{M}^{i}(p)>\inf _{x \in X^{i} \cap\{x| | x \mid \leq c\}} p \cdot x$ for all $p \in P$.

Example 12.2 [The Arrow Corner] (fails C.VII with resultant discontinuity)

$$
\begin{aligned}
X^{i} & =\mathbf{R}_{+}^{2}, \\
r^{i} & =(1,0), \\
\tilde{M}^{i}(p) & =p \cdot r^{i} .
\end{aligned}
$$

Let $p^{\circ}=(0,1)$. Then

$$
\tilde{B}^{i}\left(p^{\circ}\right) \cap X^{i}=\{(x, y) \mid c \geq x \geq 0, y=0\}
$$

the truncated nonnegative x axis. Consider the sequence $p^{\nu}=(1 / \nu, 1-1 / \nu) . p^{\nu} \rightarrow$ p°. We have

$$
\tilde{B}^{i}\left(p^{\nu}\right) \cap X^{i}=\left\{(x, y)\left|p^{\nu} \cdot(x, y) \leq \frac{1}{\nu},(x, y) \geq 0, c \geq|(x, y)| \geq 0\right\}\right.
$$

$(c, 0) \in \tilde{B}^{i}\left(p^{\circ}\right)$, but there is no sequence $\left(x^{\nu}, y^{\nu}\right) \in \tilde{B}^{i}\left(p^{\nu}\right)$ so that $\left(x^{\nu}, y^{\nu}\right) \rightarrow(c, 0)$. On the contrary, for any sequence $\left(x^{\nu}, y^{\nu}\right) \in \tilde{B}^{i}\left(p^{\nu}\right)$ so that $\left(x^{\nu}, y^{\nu}\right)=\tilde{D}^{i}\left(p^{\nu}\right),\left(x^{\nu}, y^{\nu}\right)$ will converge to some $\left(x^{*}, 0\right)$, where $0 \leq x^{*} \leq 1$. For suitably chosen \succeq_{i}, we may have $(c, 0)=\tilde{D}^{i}\left(p^{\circ}\right)$. Hence $\tilde{D}^{i}(p)$ need not be continuous at p°. This completes the example.
12.5 Demand behavior under strict convexity

Theorem 12.2 Assume C.I-C.V, C.VI(SC), and C.VII. Let $\tilde{M}^{i}(p)$ be a continuous function for all $p \in P$. Then $\tilde{D}^{i}(p)$ is a well-defined, point-valued, continuous function for all $p \in P$.

Proof $\tilde{B}^{i}(p) \cap X^{i}$ is the intersection of the closed set $\left\{x \mid p \cdot x \leq \tilde{M}^{i}(p)\right\}$ with the compact set $\left\{x||x| \leq c\}\right.$ and the closed set X^{i}. Hence it is compact. It is nonempty by C.VII. Because $\tilde{D}^{i}(p)$ is characterized by the maximization of a continuous function, $u^{i}(\cdot)$, on this compact nonempty set, there is a well-defined maximum value, $u^{*}=u^{i}\left(x^{*}\right)$, where x^{*} is the utility-optimizing value of x in $\tilde{B}^{i}(p) \cap X^{i}$. We must show that x^{*} is unique for each $p \in P$ and that x^{*} is a continuous function of p.

We will now demonstrate that uniqueness follows from strict convexity of preferences (C.VI(SC)). Suppose there is $x^{\prime} \in \tilde{B}^{i}(p) \cap X^{i}, x^{\prime} \neq x^{*}, x^{\prime} \sim_{i} x^{*}$. We must show that this leads to a contradiction. But now consider a convex combination of x^{\prime} and x^{*}. Choose $0<\alpha<1$. The point $\left[\alpha x^{\prime}+(1-\alpha) x^{*}\right] \in \tilde{B}^{i}(p) \cap X^{i}$ by convexity of X^{i} and $\tilde{B}^{i}(p)$. But C.VI(SC), strict convexity of preferences, implies that $\left[\alpha x^{\prime}+(1-\alpha) x^{*}\right] \succ_{i} x^{\prime} \sim_{i} x^{*}$. This is a contradiction, since x^{*} and x^{\prime} are elements of $\tilde{D}^{i}(p)$. Hence x^{*} is the unique element of $\tilde{D}^{i}(p)$. We can now, without loss of generality, refer to $\tilde{D}^{i}(p)$ as a (point-valued) function.

To demonstrate continuity, let $p^{\nu} \in P, \nu=1,2,3, \ldots, p^{\nu} \rightarrow p^{\circ}$. We must show that $\tilde{D}^{i}\left(p^{\nu}\right) \rightarrow \tilde{D}^{i}\left(p^{\circ}\right)$. $\tilde{D}^{i}\left(p^{\nu}\right)$ is a sequence in a compact set. Without loss of generality take a convergent subsequence, $\tilde{D}^{i}\left(p^{\nu}\right) \rightarrow x^{\circ}$. We must show that $x^{\circ}=\tilde{D}^{i}\left(p^{\circ}\right)$. We will use a proof by contradiction.

Define

$$
\hat{x}=\underset{x \in X^{i} \cap\left\{y\left|y \in \mathbf{R}^{N}, c \geq|y|\right\}\right.}{\arg \min } p^{\circ} \cdot x .
$$

The expression " $\hat{x}=\arg \min _{x \in X^{i} \cap\left\{y\left|y \in \mathbf{R}^{N}, c \geq|y|\right\}\right.} p^{\circ} \cdot x$ " defines \hat{x} as the minimizer of $p^{\circ} \cdot x$ in the domain $X^{i} \cap\left\{y\left|y \in \mathbf{R}^{N}, c \geq|y|\right\}\right.$. \hat{x} is well defined (though it may not be unique) since it represents a minimum of a continuous function taken over a compact domain.

Now consider two cases. In each case we will construct a sequence w^{ν} in $X^{i} \cap\left\{y\left|y \in \mathbf{R}^{N}, c \geq|y|\right\}\right.$.

Case 1: If $p^{\circ} \cdot \tilde{D}^{i}\left(p^{\circ}\right)<\tilde{M}^{i}\left(p^{\circ}\right)$ for ν large $p^{\nu} \cdot \tilde{D}^{i}\left(p^{\circ}\right)<\tilde{M}^{i}\left(p^{\nu}\right)$. Then let $w^{\nu}=D^{i}\left(p^{\circ}\right)$.

Case 2: If $p^{\circ} \cdot \tilde{D}^{i}\left(p^{\circ}\right)=\tilde{M}^{i}\left(p^{\circ}\right)$ then by (C.VII) $p^{\circ} \cdot \tilde{D}^{i}\left(p^{\circ}\right)>p^{\circ} \cdot \hat{x}$.

Let

$$
\alpha^{\nu}=\min \left[1, \frac{\tilde{M}^{i}\left(p^{\nu}\right)-p^{\nu} \cdot \hat{x}}{p^{\nu} \cdot\left(\tilde{D}^{i}\left(p^{\circ}\right)-\hat{x}\right)}\right]
$$

For ν large, the denominator is positive, α^{ν} is well defined (this is where C.VII enters the proof), and $0 \leq \alpha^{\nu} \leq 1$. Let $w^{\nu}=\left(1-\alpha^{\nu}\right) \hat{x}+\alpha^{\nu} \tilde{D}^{i}\left(p^{\circ}\right)$. Note that $\tilde{M}^{i}(p)$ is continuous in p. The fraction in the definition of α^{ν} is the proportion of the move from \hat{x} to $\tilde{D}^{i}\left(p^{\circ}\right)$ that the household can afford at prices p^{ν}. As ν becomes large, the proportion approaches or exceeds unity.

Then in both Case 1 and Case 2, $w^{\nu} \rightarrow \tilde{D}^{i}\left(p^{\circ}\right)$ and $w^{\nu} \in \tilde{B}^{i}\left(p^{\nu}\right) \cap X^{i}$. Suppose, contrary to the theorem, $x^{\circ} \neq \tilde{D}^{i}\left(p^{\circ}\right)$. Then $u^{i}\left(x^{\circ}\right)<u^{i}\left(\tilde{D}^{i}\left(p^{\circ}\right)\right)$. But u^{i} is continuous, so $u^{i}\left(\tilde{D}^{i}\left(p^{\nu}\right) \rightarrow u^{i}\left(x^{\circ}\right)\right.$ and $u^{i}\left(w^{\nu}\right) \rightarrow u^{i}\left(\tilde{D}^{i}\left(p^{\circ}\right)\right)$. Thus, for ν large, $u^{i}\left(w^{\nu}\right)>u^{i}\left(\tilde{D}^{i}\left(p^{\nu}\right)\right)$. But this is a contradiction, since $\tilde{D}^{i}\left(p^{\nu}\right)$ maximizes $u^{i}(\cdot)$ in $\tilde{B}^{i}\left(p^{\nu}\right) \cap X^{i}$. The contradiction proves the result. This completes the demonstration of continuity.

QED
Theorem 12.2 gives a family of sufficient conditions for demand behavior of the household to be very well behaved. It will be a continuous (point-valued) function of prices if preferences are continuous and strictly convex and if income is a continuous function of prices and sufficiently positive.

What will household spending patterns look like? What is the value of household expenditures, $p \cdot \tilde{D}^{i}(p)$? There are two significant constraints on $p \cdot \tilde{D}^{i}(p)$, budget and length: $p \cdot \tilde{D}^{i}(p) \leq \tilde{M}^{i}(p)$ and $\left|\tilde{D}^{i}(p)\right| \leq c$. In addition, of course, $\tilde{D}^{i}(p)$ must optimize consumption choice with regard to preferences \succeq_{i} or equivalently with regard to the utility function $u^{i}(\cdot)$. We have enough structure on preferences and the budget set to actually say a fair amount about the character of spending and where $\tilde{D}^{i}(p)$ is located. This is embodied in

Lemma 12.3 Assume C.I-C.V, C.VI(C), and C.VII. Then $p \cdot \tilde{D}^{i}(p) \leq \tilde{M}^{i}(p)$. Further, if $p \cdot \tilde{D}^{i}(p)<\tilde{M}^{i}(p)$ then $\left|\tilde{D}^{i}(p)\right|=c$.

Proof $\tilde{D}^{i}(p) \in \tilde{B}^{i}(p)$ by definition. However, that ensures $p \cdot \tilde{D}^{i}(p) \leq \tilde{M}^{i}(p)$ and hence the weak inequality surely holds. Suppose, however, $p \cdot \tilde{D}^{i}(p)<\tilde{M}^{i}(p)$ and $\left|\tilde{D}^{i}(p)\right|<c$. We wish to show that this combination leads to a contradiction; one of the conditions must fail. Recall C.IV (Non-Satiation) and C.VI(C) (Convexity). By C.IV there is $w^{*} \in X^{i}$ so that $w^{*} \succ_{i} \tilde{D}^{i}(p)$. Clearly, $w^{*} \notin \tilde{B}^{i}(p)$ so one (or both) of two conditions holds: (a) $p \cdot w^{*}>\tilde{M}^{i}(p)$, (b) $\left|w^{*}\right|>c$.

Set $w^{\prime}=\alpha w^{*}+(1-\alpha) \tilde{D}^{i}(p)$. There is an $\alpha(1>\alpha>0)$ sufficiently small so that $p \cdot w^{\prime} \leq \tilde{M}^{i}(p)$ and $\left|w^{\prime}\right| \leq c$. Thus $w^{\prime} \in \tilde{B}^{i}(p)$. Now $w^{\prime} \succ_{i} \tilde{D}^{i}(p)$ by C.VI(C), which is
a contradiction since $\tilde{D}^{i}(p)$ is the preference optimizer in $\tilde{B}^{i}(p)$. The contradiction shows that we cannot have both $p \cdot \tilde{D}^{i}(p)<\tilde{M}^{i}(p)$ and $\left|\tilde{D}^{i}(p)\right|<c$. Hence, if the first inequality holds, we must have $\left|\tilde{D}^{i}(p)\right|=c$. QED

