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Economics 200A – Part 2, Prof. R. Starr UCSD Fall 2010

Lecture Notes for October 30 or November 1, 2012 —
depending how fast we talk

A market economy

Firms, profits, and household income

H , F , αij ∈ R+,
∑

i∈H αij = 1 ,

r ≡
∑

i∈H

ri.

Theorem 13.1 Assume P.II, P.III, and P.VI. π̃j(p) is a well-defined

continuous function of p for all p ∈ R
N
+ , p 6= 0. π̃j(p) is homoge-

neous of degree 1.

M̃ i(p) = p · ri +
∑

j∈F αij π̃j(p).

P =

{

p | p ∈ R
N , pk ≥ 0, k = 1 . . . , N,

N
∑

k=1

pk = 1

}

.

Excess demand and Walras’ Law

Definition The excess demand function at prices p ∈ P is

Z̃(p) = D̃(p) − S̃(p) − r =
∑

i∈H

D̃i(p) −
∑

j∈F

S̃j(p) −
∑

i∈H

ri.

Lemma 13.1 Assume C.I–C.V, C.VI(SC), C.VII, P.II, P.III, P.V,

and P.VI. The range of Z̃(p) is bounded. Z̃(p) is continuous and

well defined for all p ∈ P .

Proof Apply Theorems 11.1, 12.2, 13.1. The finite sum of bounded

sets is bounded. The finite sum of continuous functions is con-

tinuous. QED

Theorem 13.2 (Weak Walras’ Law) Assume C.I–C.V, C.VI(SC),C.VII,
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P.II, P.III, P.V, and P.VI. For all p ∈ P , p·Z̃(p) ≤ 0. For p such

that p·Z̃(p) < 0, there is k = 1, 2, . . . , N so that Z̃k(p) > 0.

Proof of Theorem 13.2 p·D̃i(p) ≤ M̃ i(p) = p·ri +
∑

j∈F αij π̃j(p).
∑

i∈H αij = 1 for each j ∈ F .

p·Z̃(p) = p·

[

∑

i∈H

D̃i(p) −
∑

j∈F

S̃j(p) −
∑

i∈H

ri

]

= p·
∑

i∈H

D̃i(p) − p·
∑

j∈F

S̃j(p) − p·
∑

i∈H

ri

=
∑

i∈H

p · D̃i(p) −
∑

j∈F

p · S̃j(p) −
∑

i∈H

p · ri

=
∑

i∈H

p · D̃i(p) −
∑

j∈F

π̃j(p) −
∑

i∈H

p · ri

=
∑

i∈H

p · D̃i(p) −
∑

j∈F

[

∑

i∈H

αijπ̃j(p)

]

−
∑

i∈H

p · ri

=
∑

i∈H

p · D̃i(p) −
∑

i∈H

[

∑

j∈F

αijπ̃j(p)

]

−
∑

i∈H

p · ri

Note the change in the order of summation

=
∑

i∈H

p · D̃i(p) −
∑

i∈H

{[

∑

j∈F

αij π̃j(p)

]

+ p · ri

}

=
∑

i∈H

p · D̃i(p) −
∑

i∈H

M̃ i(p)

=
∑

i∈H

[

p · D̃i(p) − M̃ i(p)

]

≤ 0.

since p·D̃i(p) ≤ M̃ i(p) This proves the weak inequality as re-

quired.

We now must demonstrate the positivity of some coordinate

of Z̃(p) when the strict inequality holds. Let p·Z̃(p)<0. Then

p·
∑

i∈H D̃i(p)<p·r+p·
∑

j∈F S̃j(p) =
∑

i∈H M̃ i(p), so for some i′ ∈
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H, p·D̃i′(p) < M̃ i′(p). Now we apply Lemma 12.3. We must have

|D̃i′(p)| = c. Recall that c is chosen so that |x| < c (a strict

inequality) for all attainable x. But then D̃i′(p) is not attainable.

For no y ∈ Y do we have D̃i′(p) ≤ y + r. But for all i ∈ H,

D̃i(p) ∈ RN
+ . So

∑

i∈H D̃i(p) ≥ D̃i′(p). Therefore, Z̃k(p) > 0, for

some k = 1, 2, . . . , N . QED

General equilibrium of the market economy with an excess demand function

Existence of equilibrium

P =







p | p ∈ R
N , pk ≥ 0, k = 1 . . . , N,

N
∑

k=1

pk = 1







.

Z̃(p) =
∑

i∈H

D̃i(·) −
∑

j∈F

S̃j(·)− r.

Definition p◦ ∈ P is said to be an equilibrium price vector if

Z̃(p◦) ≤ 0 (the inequality holds coordinatewise) with p◦k = 0 for

k such that Z̃k(p
◦) < 0.

Weak Walras’ Law (Theorem 13.2): For all p ∈ P , p · Z̃(p) ≤ 0.

For p such that p · Z̃(p) < 0, there is k = 1, 2, . . . , N so that

Z̃k(p) > 0, under assumptions C.I–C.V, C.VI(SC), P.II, P.III,

P.V, and P.VI.

Continuity: Z̃(p) is a continuous function, assuming P.II, P.III,

P.V, P.VI, C.I–C.V, C.VI(SC) and C.VII (Theorems 11.1, 12.2,

and 13.1).

Theorem 9.3 Brouwer Fixed-Point Theorem: Let S be an N -

simplex and let f : S → S, where f is continuous. Then there is

x∗ ∈ S so that f(x∗) = x∗.
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Theorem 14.1 Assume P.II, P.III, P.V, P.VI, C.I–C.V, C.VI (SC),

and C.VII. There is p∗ ∈ P so that p∗ is an equilibrium.

Proof Let T : P → P , where T (p) = (T1(p), T2(p), . . . , Ti(p), . . . , TN (p)).

Ti(p) is the adjusted price of good i, adjusted by the auctioneer

trying to bring supply and demand into balance. Let γi > 0. The

adjustment process of the ith price can be represented as Ti(p),

defined as follows:

Ti(p) ≡
max[0, pi + γiZ̃i(p)]

N
∑

n=1

max[0, pn + γnZ̃n(p)]

. (14.1)

In order for T to be well defined, we must show that the denom-

inator is nonzero, that is,

N
∑

n=1

max[0, pn + γnZ̃n(p)] 6= 0. (14.2)

In fact, we claim that
∑N

n=1 max[0, pn + γnZ̃n(p)] > 0. Suppose

not. Then for each n, max[0, pn + γnZ̃n(p)] = 0. Then all goods

k with pk > 0 must have Z̃k(p) < 0. So p · Z̃(p) < 0. Then

by the Weak Walras’ Law, there is n so that Z̃n(p) > 0. Thus
∑N

n=1 max[0, pn + γnZ̃n(p)] > 0.

By Lemma 13.1, Z̃(p) is a continuous function. Then T (p) is a

continuous function from the simplex into itself since continuity

is preserved under the operations of max, addition, and division

by a positive-valued continuous function.

By the Brouwer Fixed-Point Theorem there is p∗ ∈ P so that

T (p∗) = p∗. But then for all k = 1, . . . , N ,

Ti(p
∗) ≡

max[0, p∗i + γiZ̃i(p
∗)]

N
∑

n=1

max[0, p∗n + γnZ̃n(p
∗)]

. (14.3)
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We’ll demonstrate that Z̃n(p
∗) ≤ 0 all n.

Looking at the numerator in this expression, we can see that

the equation will be fulfilled either by

p∗k = 0 (Case1) (14.4)

or by

p∗k =
p∗k + γkZ̃k(p

∗)
N
∑

n=1

max[0, p∗n + γnZ̃n(p
∗)]

> 0 (Case2). (14.5)

CASE 1 p∗k = 0 = max[0, p∗k + γkZ̃k(p
∗)]. Hence, 0 ≥ p∗k +

γkZ̃k(p
∗) = γkZ̃k(p

∗) and Z̃k(p
∗) ≤ 0. This is the case of free

goods with market clearing or with excess supply in equilibrium.

CASE 2 To avoid repeated messy notation, let

λ =
1

N
∑

n=1

max[0, p∗n + γnZ̃n(p
∗)]

> 0 (14.6)

so that Tk(p
∗) = λ(p∗k + γkZ̃k(p

∗)). We’ll demonstrate that

Z̃n(p
∗) ≤ 0, all n. Since p∗ is the fixed point of T we have

p∗k = λ(p∗k + γkZ̃k(p
∗)) > 0. This expression is true for all k with

p∗k > 0, and λ is the same for all k. Let’s perform some algebra

on this expression. We first combine terms in p∗k:

(1 − λ)p∗k = λγkZ̃k(p
∗), (14.7)

then multiply through by Z̃k(p
∗) to get

(1 − λ)p∗kZ̃k(p
∗) = λγk(Z̃k(p

∗))2, (14.8)

and now sum over all k in Case 2, obtaining

(1 − λ)
∑

k∈Case2

p∗kZ̃k(p
∗) = λ

∑

k∈Case2

γk(Z̃k(p
∗))2. (14.9)
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The Weak Walras’ Law says

0 ≥
N
∑

k=1

p∗kZ̃k(p
∗) =

∑

k∈Case1

p∗kZ̃k(p
∗) +

∑

k∈Case2

p∗kZ̃k(p
∗). (14.10)

But for k ∈ Case 1, p∗kZ̃k(p
∗) = 0, and so

0 =
∑

k∈Case1

p∗kZ̃k(p
∗). (14.11)

Therefore,
∑

k∈Case2

p∗kZ̃k(p
∗) ≤ 0. (14.12)

There are two subcases, λ ≤ 1, and λ > 1. In the case λ ≤ 1,

from (14.9) we have

0 ≥ (1 − λ) ·
∑

k∈Case2

p∗kZ̃k(p
∗) = λ ·

∑

k∈Case2

γk(Z̃k(p
∗))2. (14.13)

The left-hand side ≤ 0. But the right-hand side is necessarily

nonnegative. It can be zero only if Z̃k(p
∗) = 0 for all k such that

p∗k > 0 (k in Case 2). Thus, p∗ is an equilibrium. This concludes

the proof for the case λ ≤ 1.

In the event λ > 1 equation (14.8) implies

(1 − λ)p∗kZ̃k(p
∗) ≥ 0 for all k ∈ Case 2.

Since λ > 1, this results in Z̃k(p
∗) ≤ 0 for all k ∈ Case 2. But

there can be no k ∈ Case 2 so that Z̃k(p
∗) < 0. If that were to

occur, then p∗ ·Z̃(p∗) < 0 and by the Weak Walras Law Zk(p
∗) > 0

for some k ∈ Case 1 or Case 2, a contradiction. Hence in this

subcase, we have Z̃k(p
∗) = 0 for all k ∈ Case 2. This concludes

the proof.

QED

Lemma 14.1 Assume P.II, P.III, P.V, P.VI, C.I–C.V, C.VI(SC),

and C.VII. Let p∗ be an equilibrium. Then for all i ∈ H, |D̃i(p∗)| <
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c, where c is the bound on the Euclidean length of demand,

D̃i(p∗). Further, in equilibrium, Walras’ Law holds as an equality:

p∗ · Z̃(p∗) = 0.

Proof Since Z̃(p∗)≤0 (coordinatewise), we know that
∑

i∈H D̃i(p∗) ≤
∑

j∈F S̃j(p∗) +
∑

i∈H ri,

where the inequality holds coordinatewise. However, that im-

plies that the aggregate consumption
∑

i∈H D̃i(p∗) is attainable,

so for each household i, |D̃i(p∗)| < c, where c is the bound on

demand, D̃i(·).

We have for all p, p · Z̃(p) ≤ 0. In equilibrium, at p∗, we have

Z̃(p∗) ≤ 0 (co-ordinatewise) with p∗k = 0 for k so that Z̃k(p
∗) < 0.

Therefore p∗ · Z̃(p∗) = 0. QED


