12.1 The structure of household consumption sets and preferences

Households are elements of the finite set H numbered $1, 2, \ldots, \#H$. A household $i \in H$ will be characterized by its possible consumption set $X^i \subseteq \mathbf{R}^N_+$, its preferences \succeq_i , and its endowment $r^i \in \mathbf{R}^N_+$. We will soon move to using a utility function $u^i(\cdot)$ to represent \succeq_i .

12.2 Consumption sets

(C.I) X^i is closed and nonempty.

(C.II) $X^i \subseteq \mathbf{R}^N_+$. X^i is unbounded above, that is, for any $x \in X^i$ there is $y \in X^i$ so that y > x, that is, for $n = 1, 2, ..., N, y_n \ge x_n$ and $y \ne x$. (C.III) X^i is convex.

 $X = \sum_{i \in H} X^i.$

12.2.1 Preferences

Each household $i \in H$ has a preference quasi-ordering on X^i , denoted \succeq_i . For typical $x, y \in X^i$, " $x \succeq_i y$ " is read "x is preferred or indifferent to y (according to i)." We introduce the following terminology:

If $x \succeq_i y$ and $y \succeq_i x$ then $x \sim_i y$ ("x is indifferent to y"),

If $x \succeq_i y$ but not $y \succeq_i x$ then $x \succ_i y$ ("x is strictly preferred to y").

We will assume \succeq_i to be complete on X^i , that is, any two elements of X^i are comparable under \succeq_i . For all $x, y \in X^i, x \succeq_i y$, or $y \succeq_i x$ (or both). Since we take \succeq_i to be a quasi-ordering, \succeq_i is assumed to be transitive and reflexive.

The conventional alternative to describing the quasi-ordering \succeq_i is to assume the presence of a utility function $u^i(x)$ so that $x \succeq_i y$ if and only if $u^i(x) \ge u^i(y)$. We will show below that the utility function can be derived from the quasi-ordering. Readers who prefer the utility function formulation may use it at will. Just read $u^i(x) \ge u^i(y)$ wherever you see $x \succeq_i y$.

12.2.2 Non-Satiation

(C.IV) (Non-Satiation) Let $x \in X^i$. Then there is $y \in X^i$ so that $y \succ_i x$.

12.2.3 Continuity

We now introduce the principal technical assumption on preferences, the assumption of continuity.

(C.V) (Continuity) For every
$$x^{\circ} \in X^{i}$$
, the sets
 $A^{i}(x^{\circ}) = \{x \mid x \in X^{i}, x \succeq_{i} x^{\circ}\}$ and
 $G^{i}(x^{\circ}) = \{x \mid x \in X^{i}, x^{\circ} \succeq_{i} x\}$ are closed.

Note that this assumption represents precisely what we would expect from a continuous utility function: that the inverse images of the closed sets [0, a] and $[a, +\infty)$ are closed, where $a = u^i(x^\circ)$.

The following example represents an otherwise well-behaved preference ordering that is not continuous.

Example 12.1 (Lexicographic preferences) The lexicographic (dictionary-like) ordering on \mathbf{R}^N (let's denote it \succeq_L) is described in the following way. Let

 $\mathbf{2}$

12.2 Consumption sets

$$x = (x_1, x_2, \dots, x_N)$$
 and $y = (y_1, y_2, \dots, y_N)$.
 $x \succ_L y \text{if } x_1 > y_1, \text{ or}$
if $x_1 = y_1$ and $x_2 > y_2, \text{ or}$
if $x_1 = y_1, x_2 = y_2$, and $x_3 > y_3$, and so forth \dots
 $x \sim_L y \text{if } x = y.$

 \succeq_L fulfills non-satiation, trivially fulfills strict convexity (C.VI(SC), introduced below), but does not fulfill continuity (C.V).

12.2.4 Attainable Consumption

Definition x is an **attainable** consumption if $y + r \ge x \ge 0$, where $y \in \mathcal{Y}$ and $r \in \mathbf{R}^N_+$ is the economy's initial resource endowment, so that y is an attainable production plan.

Note that the set of attainable consumptions is bounded under P.VI.

12.2.5 Convexity of preferences

- (C.VI)(C) (Convexity of Preferences) $x \succ_i y$ implies $((1 \alpha)x + \alpha y) \succ_i y$, for $0 < \alpha < 1$.
- (C.VI)(SC) (Strict Convexity of Preferences): Let $x \succeq_i y$, (note that this includes $x \sim_i y$), $x \neq y$, and let $0 < \alpha < 1$. Then $\alpha x + (1 \alpha)y \succ_i y$.

Equivalently, if preferences are characterized by a utility function $u^i(\cdot)$, then we can state C.VI(SC) as

$$u^{i}(x) \ge u^{i}(y), x \ne y$$
, implies $u^{i}[\alpha x + (1 - \alpha)y] > u^{i}(y)$.

An immediate consequence of C.VI(C) is that $A^i(x^\circ)$ is convex for every $x^\circ \in X^i$.

3

4

Lecture Notes for February 8, 10, 13: Households

12.3 Representation of $\succeq_i:$ Existence of a continuous utility function

Definition Let $u^i: X^i \to \mathbf{R}$. $u^i(\cdot)$ is a utility function that **represents** the preference ordering \succeq_i if for all $x, y \in X^i$, $u^i(x) \ge u^i(y)$ if and only if $x \succeq_i y$. This implies that $u^i(x) > u^i(y)$ if and only if $x \succ_i y$.

12.3.1 Weak Conditions for Existence of a Continuous Utility Function

Theorem 12.1 Let \succeq_i, X^i , fulfill C.I, C.II, C.III, C.V. Then there is $u^i : X^i \to \mathbb{R}, u^i(\cdot)$ continuous on X^i , so that $u^i(\cdot)$ is a utility function representing \succeq_i .

Proof See Debreu (1959, Section 4.6) or Debreu (1954). QED

12.3.2 Construction of a continuous utility function

Shortcut: use weak desirability, $X^i = R^N_+$ and a 45° line.

12.4 Choice and boundedness of budget sets, $\tilde{B}^{i}(p)$

Choose $c \in \mathbf{R}_+$ so that |x| < c (a strict inequality) for all attainable consumptions x. Choose c sufficiently large that $X^i \cap \{x \mid x \in \mathbf{R}^N, c > |x|\} \neq \phi$;

$$\tilde{B}^i(p) = \{x \mid x \in \mathbf{R}^N, p \cdot x \le \tilde{M}^i(p)\} \cap \{x \mid |x| \le c\}.$$

$$\tilde{D}^{i}(p) \equiv \{x \mid x \in \tilde{B}^{i}(p) \cap X^{i}, x \succeq_{i} y \text{ for all } y \in \tilde{B}^{i}(p) \cap X^{i}\} \\ \equiv \{x \mid x \in \tilde{B}^{i}(p) \cap X^{i}, x \text{ maximizes } u^{i}(y) \text{ for all } y \in \tilde{B}^{i}(p) \cap X^{i}\}\$$

To characterize market demand let

$$\tilde{D}(p) = \sum_{i \in H} \tilde{D}^i(p).$$

12.4 Choice and boundedness of budget sets, $\tilde{B}^i(p)$

Lemma 12.1 $\tilde{B}^i(p)$ is a closed set.

We will restrict attention to models where $\tilde{M}^i(p)$ is homogeneous of degree one, that is, where $\tilde{M}^i(\lambda p) = \lambda \tilde{M}^i(p)$. It is immediate then that $\tilde{B}^i(p)$ is homogeneous of degree zero.

Lemma 12.2 Let $\tilde{M}^i(p)$ be homogeneous of degree 1. Let $\tilde{B}^i(p)$ and $\tilde{D}^i(p) \neq \emptyset$. Then $\tilde{B}^i(p)$ and $\tilde{D}^i(p)$ are homogeneous of degree 0.

$$P \equiv \left\{ p \mid p \in \mathbf{R}^{N}, p_{n} \ge 0, n = 1, 2, 3, \dots, N, \sum_{n=1}^{N} p_{n} = 1 \right\}.$$

12.4.1 Adequacy of income

Continuity of demand behavior may require sufficient income for the household to keep the budget set from coinciding with the boundary of X^i .

(C.VII) For all $i \in H$, $\tilde{M}^i(p) > \inf_{x \in X^i \cap \{x \mid |x| \le c\}} p \cdot x$ for all $p \in P$.

The example below demonstrates that when (C.VII) is not fulfilled, demand behavior may be discontinuous.

Example 12.2 [The Arrow Corner]

$$X^{i} = \mathbf{R}_{+}^{2},$$

$$r^{i} = (1, 0),$$

$$\tilde{M}^{i}(p) = p \cdot r^{i}.$$

Let $p^{\circ} = (0, 1)$. Then

$$\tilde{B}^{i}(p^{\circ}) \cap X^{i} = \{(x, y) \mid c \ge x \ge 0, y = 0\},\$$

the truncated nonnegative x axis. Consider the sequence $p^{\nu} = (1/\nu, 1 - 1/\nu)$.

5

 $p^{\nu} \rightarrow p^{\circ}$. We have

$$\tilde{B}^{i}(p^{\nu}) \cap X^{i} = \left\{ (x, y) \mid p^{\nu} \cdot (x, y) \le \frac{1}{\nu}, (x, y) \ge 0, c \ge |(x, y)| \ge 0 \right\},$$

 $(c,0) \in \tilde{B}^i(p^\circ)$, but there is no sequence $(x^{\nu}, y^{\nu}) \in \tilde{B}^i(p^{\nu})$ so that $(x^{\nu}, y^{\nu}) \to (c,0)$. On the contrary, for any sequence $(x^{\nu}, y^{\nu}) \in \tilde{B}^i(p^{\nu})$ so that $(x^{\nu}, y^{\nu}) = \tilde{D}^i(p^{\nu}), (x^{\nu}, y^{\nu})$ will converge to some $(x^*, 0)$, where $0 \leq x^* \leq 1$. For suitably chosen \succeq_i , we may have $(c,0) = \tilde{D}^i(p^\circ)$. Hence $\tilde{D}^i(p)$ need not be continuous at p° . This completes the example.

12.5 Demand behavior under strict convexity

Theorem 12.2 Assume C.I–C.V, C.VI(SC), and C.VII. Let $\tilde{M}^i(p)$ be a continuous function for all $p \in P$. Then $\tilde{D}^i(p)$ is a well-defined, point-valued, continuous function for all $p \in P$.

Proving well-defined, point-valued, is easy. Proving continuity is hard, because the proof necessarily involves C.VII. Continuity is proved by contradiction; we know the proof is going to be tricky.

Proof $\tilde{B}^i(p) \cap X^i$ is the intersection of the closed set $\{x \mid p \cdot x \leq \tilde{M}^i(p)\}$ with the compact set $\{x \mid |x| \leq c\}$ and the closed set X^i . Hence it is compact. It is nonempty by C.VII. Because $\tilde{D}^i(p)$ is characterized by the maximization of a continuous function, $u^i(\cdot)$, on this compact nonempty set, there is a well-defined maximum value, $u^* = u^i(x^*)$, where x^* is the utility-optimizing value of x in $\tilde{B}^i(p) \cap X^i$. We must show that x^* is unique for each $p \in P$ and that x^* is a continuous function of p.

We will now demonstrate that uniqueness follows from strict convexity of preferences (C.VI(SC)). Suppose there is $x' \in \tilde{B}^i(p) \cap X^i, x' \neq x^*, x' \sim_i x^*$. We must show that this leads to a contradiction. But now consider a convex

 $\mathbf{6}$

combination of x' and x^* . Choose $0 < \alpha < 1$. The point $\alpha x' + (1 - \alpha)x^* \in \tilde{B}^i(p) \cap X^i$ by convexity of X^i and $\tilde{B}^i(p)$. But C.VI(SC), strict convexity of preferences, implies that $[\alpha x' + (1 - \alpha)x^*] \succ_i x' \sim_i x^*$. This is a contradiction, since x^* and x' are elements of $\tilde{D}^i(p)$. Hence x^* is the unique element of $\tilde{D}^i(p)$. We can now, without loss of generality, refer to $\tilde{D}^i(p)$ as a (point-valued) function.

To demonstrate continuity, let $p^{\nu} \in P$, $\nu = 1, 2, 3, \ldots, p^{\nu} \to p^{\circ}$. We must show that $\tilde{D}^{i}(p^{\nu}) \to \tilde{D}^{i}(p^{\circ})$. $\tilde{D}^{i}(p^{\nu})$ is a sequence in a compact set. Without loss of generality take a convergent subsequence, $\tilde{D}^{i}(p^{\nu}) \to x^{\circ}$. We must show that $x^{\circ} = \tilde{D}^{i}(p^{\circ})$. We will use a proof by contradiction.

Define

$$\hat{x} = \underset{x \in X^{i} \cap \{y | y \in \mathbf{R}^{N}, c \ge |y|\}}{\arg \min} p^{\circ} \cdot x.$$

The expression " $\hat{x} = \arg \min_{x \in X^i \cap \{y | y \in \mathbf{R}^N, c \ge |y|\}} p^{\circ} \cdot x$ " defines \hat{x} as the minimizer of $p^{\circ} \cdot x$ in the domain $X^i \cap \{y | y \in \mathbf{R}^N, c \ge |y|\}$. \hat{x} is well defined (though it may not be unique) since it represents a minimum of a continuous function taken over a compact domain.

Now consider two cases. In each case we will construct a sequence w^{ν} in $X^i \cap \{y \mid y \in \mathbf{R}^N, c \ge |y|\}.$

Case 1: If $p^{\circ} \cdot \tilde{D}^{i}(p^{\circ}) < \tilde{M}^{i}(p^{\circ})$ for ν large $p^{\nu} \cdot \tilde{D}^{i}(p^{\circ}) < \tilde{M}^{i}(p^{\nu})$. Then let $w^{\nu} = D^{i}(p^{\circ})$.

Case 2: If $p^{\circ} \cdot \tilde{D}^i(p^{\circ}) = \tilde{M}^i(p^{\circ})$ then by (C.VII) $p^{\circ} \cdot \tilde{D}^i(p^{\circ}) > p^{\circ} \cdot \hat{x}$. Let

$$\alpha^{\nu} = \min \Big[1, \frac{M^{i}(p^{\nu}) - p^{\nu} \cdot \hat{x}}{p^{\nu} \cdot (\tilde{D}^{i}(p^{\circ}) - \hat{x})} \Big].$$

For ν large, the denominator is positive, α^{ν} is well defined (this is where C.VII enters the proof), and $0 \leq \alpha^{\nu} \leq 1$. Let $w^{\nu} = (1 - \alpha^{\nu})\hat{x} + \alpha^{\nu}\tilde{D}^{i}(p^{\circ})$.

Note that $\tilde{M}^i(p)$ is continuous in p. The fraction in the definition of α^{ν} is the proportion of the move from \hat{x} to $\tilde{D}^i(p^{\circ})$ that the household can afford at prices p^{ν} . As ν becomes large, the proportion approaches or exceeds unity.

Then in both Case 1 and Case 2, $w^{\nu} \to \tilde{D}^{i}(p^{\circ})$ and $w^{\nu} \in \tilde{B}^{i}(p^{\nu}) \cap X^{i}$. Suppose, contrary to the theorem, $x^{\circ} \neq \tilde{D}^{i}(p^{\circ})$. Then $u^{i}(x^{\circ}) < u^{i}(\tilde{D}^{i}(p^{\circ}))$. But u^{i} is continuous, so $u^{i}(\tilde{D}^{i}(p^{\nu}) \to u^{i}(x^{\circ})$ and $u^{i}(w^{\nu}) \to u^{i}(\tilde{D}^{i}(p^{\circ}))$. Thus, for ν large, $u^{i}(w^{\nu}) > u^{i}(\tilde{D}^{i}(p^{\nu}))$. But this is a contradiction, since $\tilde{D}^{i}(p^{\nu})$ maximizes $u^{i}(\cdot)$ in $\tilde{B}^{i}(p^{\nu}) \cap X^{i}$. The contradiction proves the result. This completes the demonstration of continuity. QED

Theorem 12.2 gives a family of sufficient conditions for demand behavior of the household to be very well behaved. It will be a continuous (pointvalued) function of prices if preferences are continuous and strictly convex and if income is a continuous function of prices and sufficiently positive.

What will household spending patterns look like? What is the value of household expenditures, $p \cdot \tilde{D}^i(p)$? There are two significant constraints on $p \cdot \tilde{D}^i(p)$, budget and length: $p \cdot \tilde{D}^i(p) \leq \tilde{M}^i(p)$ and $|\tilde{D}^i(p)| \leq c$. In addition, of course, $\tilde{D}^i(p)$ must optimize consumption choice with regard to preferences \succeq_i or equivalently with regard to the utility function $u^i(\cdot)$. We have enough structure on preferences and the budget set to actually say a fair amount about the character of spending and where $\tilde{D}^i(p)$ is located. This is embodied in

Lemma 12.3 Assume C.I–C.V, C.VI(C), and C.VII. Then $p \cdot \tilde{D}^i(p) \leq \tilde{M}^i(p)$. Further, if $p \cdot \tilde{D}^i(p) < \tilde{M}^i(p)$ then $|\tilde{D}^i(p)| = c$.

Proof $\tilde{D}^i(p) \in \tilde{B}^i(p)$ by definition. However, that ensures $p \cdot \tilde{D}^i(p) \leq \tilde{M}^i(p)$ and hence the weak inequality surely holds. Suppose, however, $p \cdot \tilde{D}^i(p) < \tilde{D}^i(p)$

8

 $\tilde{M}^{i}(p)$ and $|\tilde{D}^{i}(p)| < c$. We wish to show that this leads to a contradiction. Recall C.IV (Non-Satiation) and C.VI(C) (Convexity). By C.IV there is $w^{*} \in X^{i}$ so that $w^{*} \succ_{i} \tilde{D}^{i}(p)$. Clearly, $w^{*} \notin \tilde{B}^{i}(p)$ so one (or both) of two conditions holds: (a) $p \cdot w^{*} > \tilde{M}^{i}(p)$, (b) $|w^{*}| > c$.

Set $w' = \alpha w^* + (1 - \alpha) \tilde{D}^i(p)$. There is an $\alpha(1 > \alpha > 0)$ sufficiently small so that $p \cdot w' \leq \tilde{M}^i(p)$ and $|w'| \leq c$. Thus $w' \in \tilde{B}^i(p)$. Now $w' \succ_i \tilde{D}^i(p)$ by C.VI(C), which is a contradiction since $\tilde{D}^i(p)$ is the preference optimizer in $\tilde{B}^i(p)$. The contradiction shows that we cannot have both $p \cdot \tilde{D}^i(p) < \tilde{M}^i(p)$ and $|\tilde{D}^i(p)| < c$. Hence, if the first inequality holds, we must have $|\tilde{D}^i(p)| = c$. QED