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Economics 113 Prof. R. Starr UCSD Winter 2010

Lecture Notes for February 9, 2010

A market economy

Firms, profits, and household income

H , F , αij ∈ R+,
∑

i∈H αij = 1 ,

r ≡
∑

i∈H

ri.

π̃j(p) ≡ sup{p · y|y ∈ Yj} ≡ p · S̃j(p)

Theorem 13.1 Assume P.II, P.III, and P.VI. π̃j(p) is a well-defined contin-

uous function of p for all p ∈ R
N
+ , p 6= 0. π̃j(p) is homogeneous of degree

1.

M̃ i(p) = p · ri +
∑

j∈F αijπ̃j(p).

P =

{

p | p ∈ R
N , pk ≥ 0, k = 1 . . . , N,

N
∑

k=1

pk = 1

}

.

Excess demand and Walras’ Law

Definition The excess demand function at prices p ∈ P is

Z̃(p) = D̃(p) − S̃(p)− r =
∑

i∈H

D̃i(p) −
∑

j∈F

S̃j(p) −
∑

i∈H

ri.

Lemma 13.1 Assume C.I–C.V, C.VI(SC), C.VII, P.II, P.III, P.V, and P.VI.

The range of Z̃(p) is bounded. Z̃(p) is continuous and well defined for all

p ∈ P .

Proof Apply Theorems 11.1, 12.2, 13.1. The finite sum of bounded sets is

bounded. The finite sum of continuous functions is continuous. QED

Theorem 13.2 (Weak Walras’ Law) Assume C.I–C.V, C.VI(SC),C.VII, P.II,

P.III, P.V, and P.VI. For all p ∈ P , p·Z̃(p) ≤ 0. For p such that p·Z̃(p) < 0,

there is k = 1, 2, . . . , N so that Z̃k(p) > 0.

Proof of Theorem 13.2 p·D̃i(p) ≤ M̃ i(p) = p·ri+
∑

j∈F αij π̃j(p).
∑

i∈H αij =

1 for each j ∈ F .
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p·Z̃(p) = p·

[

∑

i∈H

D̃i(p)−
∑

j∈F

S̃j(p)−
∑

i∈H

ri

]

= p·

∑

i∈H

D̃i(p)− p·

∑

j∈F

S̃j(p)− p·

∑

i∈H

ri

=
∑

i∈H

p · D̃i(p) −
∑

j∈F

p · S̃j(p)−
∑

i∈H

p · ri

=
∑

i∈H

p · D̃i(p) −
∑

j∈F

π̃j(p) −
∑

i∈H

p · ri

=
∑

i∈H

p · D̃i(p) −
∑

j∈F

[

∑

i∈H

αij π̃j(p)

]

−
∑

i∈H

p · ri

=
∑

i∈H

p · D̃i(p) −
∑

i∈H

[

∑

j∈F

αij π̃j(p)

]

−
∑

i∈H

p · ri

Note the change in the order of summation

=
∑

i∈H

p · D̃i(p) −
∑

i∈H

{[

∑

j∈F

αij π̃j(p)

]

+ p · ri

}

=
∑

i∈H

p · D̃i(p) −
∑

i∈H

M̃ i(p)

=
∑

i∈H

[

p · D̃i(p) − M̃ i(p)

]

≤ 0.

since p·D̃i(p) ≤ M̃ i(p) This proves the weak inequality as required.

We now must demonstrate the positivity of some coordinate of Z̃(p) when

the strict inequality holds. Let p·Z̃(p)<0. Then p·
∑

i∈H D̃i(p)<p·r+p·

∑

j∈F S̃j(p)

=
∑

i∈H M̃ i(p), so for some i′ ∈ H , p·D̃i′(p) < M̃ i′(p). Now we apply

Lemma 5.3. We must have |D̃i′(p)| = c. Recall that c is chosen so that

|x| < c (a strict inequality) for all attainable x. But then D̃i′(p) is not

attainable. For no y ∈ Y do we have D̃i′(p) ≤ y + r. But for all i ∈ H ,

D̃i(p) ∈ R
N
+ . So

∑

i∈H D̃i(p) ≥ D̃i′(p). Therefore, Z̃k(p) > 0, for some

k = 1, 2, . . . , N . QED

General equilibrium of the market economy with an excess demand function

Existence of equilibrium

P =

{

p | p ∈ R
N , pk ≥ 0, k = 1 . . . , N,

N
∑

k=1

pk = 1

}

.
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Z̃(p) =
∑

i∈H

D̃i(·)−
∑

j∈F

S̃j(·) − r.

Definition p◦ ∈ P is said to be an equilibrium price vector if Z̃(p◦) ≤ 0 (the

inequality holds coordinatewise) with p◦k = 0 for k such that Z̃k(p
◦) < 0.

Weak Walras’ Law (Theorem 13.2): For all p ∈ P , p · Z̃(p) ≤ 0. For p

such that p · Z̃(p) < 0, there is k = 1, 2, . . . , N so that Z̃k(p) > 0, under

assumptions C.I–C.V, C.VI(SC), P.II, P.III, P.V, and P.VI.

Continuity: Z̃(p) is a continuous function, assuming P.II, P.III, P.V, P.VI,

C.I–C.V, C.VI(SC) and C.VII (Theorems 4.1, 5.2, and 6.1).

Theorem 9.3 Brouwer Fixed-Point Theorem: Let S be an N -simplex and

let f : S → S, where f is continuous. Then there is x∗ ∈ S so that

f(x∗) = x∗.

Theorem 14.1 Assume P.II, P.III, P.V, P.VI, C.I–C.V, C.VI (SC), and C.VII.

There is p∗ ∈ P so that p∗ is an equilibrium.

Proof Let T : P → P , where T (p) = (T1(p), T2(p), . . . , Ti(p), . . . , TN(p)).

Ti(p) is the adjusted price of good i, adjusted by the auctioneer trying to

bring supply and demand into balance. Let γi > 0; γi has the dimension,

1/i . The adjustment process of the ith price can be represented as Ti(p),

defined as follows:

Ti(p) ≡
max[0, pi + γiZ̃i(p)]

N
∑

n=1

max[0, pn + γnZ̃n(p)]

. (14.1)

In order for T to be well defined, we must show that the denominator is

nonzero, that is,

N
∑

n=1

max[0, pn + γnZ̃n(p)] 6= 0. (14.2)

In fact, we claim that
∑N

n=1 max[0, pn +γnZ̃n(p)] > 0. Suppose not. Then

for each n, max[0, pn + γnZ̃n(p)] = 0. Then all goods k with pk > 0 must

have Z̃k(p) < 0. So p · Z̃(p) < 0. Then by the Weak Walras’ Law, there is n

so that Z̃n(p) > 0. Thus
∑N

n=1 max[0, pn + γnZ̃n(p)] > 0.
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By Lemma 13.1, Z̃(p) is a continuous function. Then T (p) is a continuous

function from the simplex into itself since continuity is preserved under the

operations of max, addition, and division by a positive-valued continuous

function.

By the Brouwer Fixed-Point Theorem there is p∗ ∈ P so that T (p∗) = p∗.

But then for all k = 1, . . . , N ,

Ti(p
∗) ≡

max[0, p∗i + γiZ̃i(p
∗)]

N
∑

n=1

max[0, p∗n + γnZ̃n(p∗)]

. (14.3)

We’ll demonstrate that Z̃n(p∗) ≤ 0 all n.

Looking at the numerator in this expression, we can see that the equation

will be fulfilled either by

p∗k = 0 (Case1) (14.4)

or by

p∗k =
p∗k + γkZ̃k(p∗)

N
∑

n=1

max[0, p∗n + γnZ̃n(p∗)]

> 0 (Case2). (14.5)

CASE 1 p∗k = 0 = max[0, p∗k + γkZ̃k(p
∗)]. Hence, 0 ≥ p∗k + γkZ̃k(p

∗) =

γkZ̃k(p
∗) and Z̃k(p

∗) ≤ 0. This is the case of free goods with market clearing

or with excess supply in equilibrium.

CASE 2 To avoid repeated messy notation, let

λ =
1

N
∑

n=1

max[0, p∗n + γnZ̃n(p∗)]

> 0 (14.6)

so that Tk(p
∗) = λ(p∗k + γkZ̃k(p∗)). We’ll demonstrate that Z̃n(p∗) ≤ 0

all n . Since p∗ is the fixed point of T we have p∗k = λ(p∗k + γkZ̃k(p
∗)) > 0.

This expression is true for all k with p∗k > 0, and λ is the same for all k.

Let’s perform some algebra on this expression. We first combine terms in

p∗k:

(1− λ)p∗k = λγkZ̃k(p
∗), (14.7)

then multiply through by Z̃k(p
∗) to get

(1 − λ)p∗kZ̃k(p∗) = λγk(Z̃k(p
∗))2, (14.8)
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and now sum over all k in Case 2, obtaining

(1 − λ)
∑

k∈Case2

p∗kZ̃k(p
∗) = λ

∑

k∈Case2

γk(Z̃k(p
∗))2. (14.9)

The Weak Walras’ Law says

0 ≥
N

∑

k=1

p∗kZ̃k(p
∗) =

∑

k∈Case1

p∗kZ̃k(p
∗) +

∑

k∈Case2

p∗kZ̃k(p∗). (14.10)

But for k ∈ Case 1, p∗kZ̃k(p
∗) = 0, and so

0 =
∑

k∈Case1

p∗kZ̃k(p
∗). (14.11)

Therefore,
∑

k∈Case2

p∗kZ̃k(p
∗) ≤ 0. (14.12)

Hence, from (14.9) we have

0 ≥ (1 − λ) ·
∑

k∈Case2

p∗kZ̃k(p∗) = λ ·
∑

k∈Case2

γk(Z̃k(p
∗))2. (14.13)

The left-hand side ≤ 0. But the right-hand side is necessarily nonnegative.

It can be zero only if Z̃k(p
∗) = 0 for all k such that p∗k > 0 (k in Case 2).

Thus, p∗ is an equilibrium. This concludes the proof.

QED

Lemma 14.1 Assume P.II, P.III, P.V, P.VI, C.I–C.V, C.VI(SC), and C.VII.

Let p∗ be an equilibrium. Then for all i ∈ H , |D̃i(p∗)| < c, where c is the

bound on the Euclidean length of demand, D̃i(p∗). Further, in equilibrium,

Walras’ Law holds as an equality: p∗ · Z̃(p∗) = 0.

Proof Since Z̃(p∗)≤0 (coordinatewise), we know that
∑

i∈H D̃i(p∗) ≤
∑

j∈F S̃j(p∗) +
∑

i∈H ri,

where the inequality holds coordinatewise. However, that implies that the

aggregate consumption
∑

i∈H D̃i(p∗) is attainable, so for each household i,

|D̃i(p∗)| < c, where c is the bound on demand, D̃i(·).

We have for all p, p·Z̃(p) ≤ 0. In equilibrium, at p∗, we have Z̃(p∗) ≤ 0 (co-

ordinatewise) with p∗k = 0 for k so that Z̃k(p
∗) < 0. Therefore p∗ · Z̃(p∗) = 0.

QED


