ROBUST REGRESSION IN THE PRESENCE
OF HETEROSCEDASTICITY

Shankar Subramanian and Richard T. Carson

This chapter is motivated by our belief that there are two primary
characteristics of cross-sectional economic data that affect regression
analyses. The first of these is heteroscedastic error terms, a problem
that has been well recognized in microlevel data since the path-breaking
work of Prais and Houthakker (1955) on family budgets. In aggregate-
level cross-sectional data the problem also exists. For example,
average wage rates for men and women across different political
jurisdictions (conditional on explanatory variables) are likely to have
different variances. This difference may be inherent or due to aggre-
gation over diflerent numbers of workers.! The second characteristic
is the presence of gross errors, or contamination, in the data.? Survey
researchers have identified a number of typical mistakes that respond-
ents make in answering both factual and attitudinal questions.’
Mistakes in coding and data entry of survey data are another all too
frequent occurrence. The errors in the microlevel data are translated
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into more or less severe errors in aggregated cross-sectional data,
which also may sulfer from differences in variable definitions used by
various reporting subunits. To these two characteristics, we should
also add that the assumption of a thick-tailed nonnormal error dis-
tribution is frequently more appropriate than the standard assumption
of normal error terms. An appropriate statistical ﬁor:_a ue for handling
data with these characteristics is robust regression with a correction
for heteroscedasticity.

The first of the chapters eight sections introduces notation and
briefly reviews the literature on robust regression. The second section
introduces the problem of heteroscedasticity and considers the
extensions necessary to obtain robust analogues of generalized least
squares. The third section reviews the distribution theory for M-
estimators for regression and for the trimmed least-squares estimator.
Problems with implementing various suggestions for estimating the
standard error of coeflicients, and testing hypotheses in the presence
of heteroscedasticity using these estimators are discussed. The fourth
section sets out our ideas on what typical cross-sectional data looks
like and discusses the mechanics of the Monte Carlo experiments
reported. The fifth section contains a number of Monte Carlo results
when there is a heteroscedasticity problem but no gross errors. The
sixth section presents Monte Carlo results under the conditions of
heteroscedasticity and gross errors. The seventh section presents the
results from the Harrison and Rubinfeld (1978) hedonic pricing
equation using various weighted and unweighted robust estimators.*
The final section provides some guidance for applied work and
suggests some directions for future research.

. A REVIEW OF THE ROBUST REGRESSION LITERATURE
AND NOTATION

Consider the linear model y = Xf + p, where the unknown parameter
B is to be estimated. The observables are y and X while u is
an unobservable vector of random deviations from Xf.° The
researcher obtains a random sample of # observations on y and X, and,
to greatly simplify our development, X is taken to be a nonstochastic
matrix. Because we have taken a linear model and nonstochastic X,
regressing ) on X using ordinary least-squares (OLS) yields a consistent,
although not necessarily efficient, estimate of all but the first element
of the f vector, f#;, which we always take to be the parameter
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associated with a vector of ones comprising the first column of the X
matrix. If E(u) = 0, then f, is consistently estimated using OLS. If the
w. are iid with mean zero and finite variance, OLS is the best linear
:_:Ewmaa estimator. If an addition, the error terms are Gaussian, then
OLS is the best unbiased estimator, and is equivalent to the maximum
likelihood estimator. .

In the univariate location problem, there is a whole class of maxi-
mum likelihood estimators for the center of unimodal symmetric
distributions ranging from averaging the minimum and maximum
observations if the distribution is the thin-tailed uniform, to taking the
mean if the distribution is normal, to taking the median if the distri-
bution is the thick-tailed, double-exponential. Thus, if one believes in
the maximum likelihood principle, for the thin-tailed, uniform distri-
bution, it is optimal to discard all of the observations except for :6
two extreme values. For the normal, a simple average sullices and for
the double exponential, the only order statistic nccessary is the
median.

The M (maximum likelihood type) robust estimators were developed
largely for the situation in which the w;’s are m:anvnza.n::w.w:a
identically distributed (iid) with a symmetric distribution with tails at
least as thick as the normal.® Three types of M-estimators can be
identified: (1) those with monotone pseudo-likelihood functions (i.e.,
some weight is put on all observations no matter how _m.:mn the
residual); (2) soft redescenders (i.e., the weight on an observation goes
to zero as the residual goes to infinity); and (3) hard redescenders (i.e.,
the weight on an observation with a residual larger than some fixed
constant is zero). An M-estimator is the solution to

min 3 pl(y: = xiB)/s): (1.0
i=1
where p(x), the pseudo-likelihood function, is convex and usually even
and s is an estimate of scale.” An alternative and perhaps more
operational form of Eq. (1.1) is known as the estimating equation,
where f is the solution to
- X
S oy (2

i=t §

(1.2a)

i
=

or equivalently,
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where w; = /(r;)/r;, the r,, are the standardized residuals ( y, — x,5)/s,
and ¥, the derivative of p, is taken to be odd and continuous except
at a finite number of points.

The most popular M-estimator is Huber’s classic 1964 “proposal
two” for which

r if |r] < K,
y(r) =< —-K, if r < — K, _ (1.3)
K, ifr>K,.

In this case, the weights w; in (1.2b) are unity when the standardized
residuals are smaller in magnitude than K, and the weights decrease
as the standardized residuals increase in magnitude beyond K,. The
tuning constant K, is usually chosen to achieve some desired level of
efliciency for a particular distribution (e.g., the normal) or to provide
some desired degree of protection against outliers. The Welsch
estimator (Holland and Welsch, 1977), used later in our Monte Carlo
experiments, is an example of a soft redescender, and has the
function,

~\\:. =r QXUH|¢.\\A:.V~__ :Avv

The two hard redescenders we use, Andrews’ sine and Tukey’s
bisquare, have the  functions,?

K, sin(r/K,) ifjr < K,
Y, = (1.5)
0 otherwise
and
"t = (/K)'if ] < K,
%v = A_Ov
0 otherwise.

There are two major drawbacks in practice to the M-estimators.
The first is that they are not scale invariant, that is s must be simul-
taneously estimated with 8 or obtained in some independent fashion.’
Joint optimization is diflicult and independent estimates of s dubious.
The most commonly used robust regression routine (ROSEPACK,
Holland and Welsch, 1977; Coleman et al., 1980) uses .

A

s = L48[med|(y; — ;%) — med(y; — ;9. (1.7)

where fi* is a consistent preliminary estimate of 8, usually LAD or
OLS, and the factor of 1.48 makes s an unbiased estimate of ¢ when
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the distribution is Gaussian. The second problem is finding suitable
starting values for f3 to use in the iteratively reweighted least-squares
routine. The poorer the quality of the data (either in terms of deviation
from normality or the number and magnitude of gross errors) the less
suitable is least squares for the starting value and the greater the need
to use the computationally more burdensome LAD.'

The LAD estimator is a member of the class of L-estimators, which
are formed by taking linear combinations of order statistics. A
familiar L-estimator in the location case is the trimmed mean, the
average of the central [(1 — 20)n] order statistics.' While L-estimators
have the advantage of not requiring estimates of scale, the develop-
ment of a regression analogue to the trimmed mean has lagged behind
that of M-estimators. Bickel (1973) proposed a regression analogue of
the trimmed mean, but it is diflicult to calculate, not invariant to some
reparametrizations, and dependent to some degree on the mnitial or
preliminary estimator, f3,. The estimator does, however, have a
number of desirable properties.

Koenker and Bassct (1978) introduced regression quantiles, the
analogue for the linear model to sample quantiles, and proposed a
trimmed least-square estimator based on these quantiles. Their
regression quantiles are solutions, f§(0), to the minimization problem:

5_: M po( i — x:f3),

i=\

where py(x) = x[0 — I(x < 0)]. They show that the regression quantiles
have an asymptotically normal distribution with mean f§ + n(0)e,,
where # is the inverse quantile function and ¢, = (1,0,0,...)". The
LAD estimator is of course (0 = 0.5). Analogues for the linear
model to some other univariate L-estimators can be found directly
by using the appropriate combinations of f({}). The ::QLF::_@
range is (0 = 0.75) — B(0 = 0.25), and the Gastwirth estimator is
1/4[B0 = 025+ 1/2[p0 = 0.5)] + 1/4|p0 = 0.75)]. For their
TLS estimator, Koenker and Basset suggest dropping those observa-
tions whose residuals from f(a) are positive or whose residuals from
B(1 — ) are negative, and forming the OLS estimator from the
remaining observations.

Ruppert and Carroll (1980) study Koenker and Basset’s trimmed
lcast-squares estimator and introduce an estimator formed by
performing OLS after deleting the [an]th largest and fon]th smallest
residuals from a preliminary estimator f,. They examine the per-
formance of several choices of preliminary estimator including Bors
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and f3, A, as well as the average of () and f(I — «).'> LAD gives an
inefficient TLS estimator, unless the error distribution is very thick
tailed. Surprisingly, the TLS estimator with OLS as preliminary
estimator is ineflicient even when o is small and the distribution
Gaussian. If the error distribution is symmetric, Ruppert and Carroll
show that the trimmed least-square estimator obtained when the
preliminary estimator is the average of the 3:;5 and [(I — o)n]th
regression quantiles is asymptotically equivalent to the TLS estimator
of Koenker and Basset. Ruppert and Carroll’s procedure has two
main advantages over directly deleting observations in the manner
suggested by Koenker and Bassett: (1) the number of observations to
be deleted is known a priori and is under direct control of the
researcher, and (2) the problem, particularly in smaller data sets, of
having to decide what to do with observations whose residuals are
equal to zero is avoided."

Before moving to the regression case with heteroscedastic crror
terms, two obscrvations are in order. IFirst, if the symmetric distri-
bution Fis known, for every M-cstimator there exists an asymptotically
equivalent L-estimator (Jaeckel, 1971). Second, it is necessary to make
a distinction between robustness and resistance in the regression case,
though they are generally equivalent in the location case. In keeping
with recent statistical practice (Mosteller and Tukey, 1977; Huber,
1981), we use the term distributional robustness to refer to estimators
that are robust against deviations from the normal distribution. We
use resistance to refer to estimators that are robust in the sense that
they limit the “influence” that one observation or a group of obser-
vations can have in determining the estimated coeflicients. The reasons
for the divergence between distributional robustness and resistance in
the regression case have to do with both the concept of leverage
(Belsley et al., 1980) in the design matrix and differences in breakdown
bounds between the same estimator in the location and the regression
problems. Leverage does not occur in the location problem because
the X matrix is simply a vector of ones, but is one of the blessings and
curses of the linear regression model. Some points in the X matrix
represent relatively sparse areas in the design space and exert a strong
influence (leverage) over the slope of the regression line particularly
when they occur at the extremes. Krasker and Welsch (1982) have
proposed a bounded influence estimator with regard to the elements
of the design matrix." The diflerence between an estimator’s break-
down point in the location and regression situations can be clearly
seen by examining the median and its regression analogue of minimizing
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least absolute deviations (Hoaglin et al., 1983). In the location case,
the median has a breakdown point of 50%, that is, 50% of the
observations can be changed without changing the Eo&mm. ._: the
regression case, the breakdown bounds of LAD is zero. This is true,
because, while one wild observation will move f3 from its true value
slower than OLS, potentially it can still move f arbitrarily m_.ﬂ away
from B. Thus, only the hard redescenders that can put zero weight on
some observations can have breakdown bounds of greater than zero

in the regression case.

1. ROBUST ESTIMATION WITH HETEROSCEDASTIC ERROR
TERMS

In the iid case, robust regression techniques essentially put less
weight on observations with large residuals than ac.mm OLS. E:mc :H.a
errors are independent but not identically distributed, the distri-
butional robustness and resistance of these techniques become
obscured. .

To show this consider one of the standard ways of representing
thick-tailed distributions, that of a mixture of normals." ﬁrw error
terms u; are considered to come from the &mﬂ.:c::o: l_.a,q_v with
probability 1 — € and distribution N, (0, qu. with naogc::v\ e, where
0.5> ¢ and o? > ¢2. The OLS estimator is consistent but becomes
increasingly ineflicient as e increases and o2 becomes large relative to

2

o .Zoi consider the classic case of heteroscedasticity Aw.ﬁ::n:.u 1937)
where the variance of u,,; depends on which of the m groups it came
from, and the indicator variable, A=1(1,2,....,m] 18 available. ﬁ:.n
appropriate procedure in this case (assuming normality m:g that o2, is
known) is to use generalized least squares where ::.w weights for each
of the j observations in the mth group is 1/0,,. 1t 1S ::coﬁ.::: to note
that the only difference between this case of heteroscedasticity and E.n
mixture of normals is the availability of A and the knowledge :ﬁ: it
is an indicator variable. Bickel (1976, 1978) has strongly anrmm._Noa
that inhomogeneity of scale of the error 8:5.:::. varies In a
systematic fashion (e.g., depending on Xp) is quite different from
inhomogeneity of scale that varies randomly.'

Application of any of the M-estimators 5. the mvo,.\o example of
heteroscedasticity without considering the indicator variable A R.m::m
in the down-weighting of the observations based upon the magnitude
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of the residuals «, without consideration of the variance, o2, of the
group that they belong to.

In general this is undesirable, since what the researcher desires is
first to weight each observation by the inverse of its group’s standard
deviation, and then to down-weight the observations with large
weighted residuals. 1f the variances of each o%:,o two groups were

known, then the M-estimator of f# would be found from
e yi—xiff
min _—
; _,,.M_ P . . . 2.n

Since o,, is rarely known, consistent estimates of the o,, may be used
to obtain a feasible estimator from

1o yi—xf

.._M_ ’y ¢ xl.|~ws = (). (2.2)
The feasible GLS estimator (IFGLS) is of course the special case where
P(x) = x.

The problem with the FGLS estimator, as with all the feasible
M-estimators, is the need to obtain consistent estimates of the g;. As
Carroll and Ruppert (1982b) point out, the usual procedure if a
consistent estimate of § is at hand is to assume a known functional
form for the o,

o; = H(x;, $,0), (2.3)

and to obtain a consistent estimate of the parameter vector 0. Then
consistent estimates of the g, are easily found. There are two common
specifications for the o;. In one o, is a function of x;f alone, i.e.,
o, = H(x;,[3,0). An example is the form used by Anscombe (1961) in
a test for heteroscedasticity, o, = o]l + x;B|". The second form does
not constrain o, to be a function of f, i.e., o, = G(z;,0), where the z
may be a subset or a superset of x; and [unctions hereof. Harvey’s
(1976) specification a; = g, exp(z;0) is a case in point.

In many cases, a simple but nonrobust estimate of 0 may be found
by regressing suitably transformed consistent estimates #; (from a
preliminary estimator ) on a suitable function of the x; or x,B. With
Harvey's specification, for example, regressing log(ii?) on the 2z, gives
a consistent estimate of 0. Another approach is to jointly estimate f3
and 0 by maximum likelihood, assuming the errors to be normally
distributed. In the case where ¢, is a function of x;f only and the errors
are normal, the MLE of # is, as Jobson and Fuller (1980) have found,
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more eflicient than the GLS estimator formed using consistent estimates
of the ¢,. Carroll and Ruppert (1982a) warn that Jobson and Fuller’s
(1980) ““feedback” procedure may not be robust to outliers or non-
normality of errors, and that it is not robust to misspecification of the
functional form of the heteroscedasticity.

Third, the parameter vector may be estimated robustly, as demon-
strated by Carroll and Rupper (1982b) for the model:

yi = X+ o (2.4a)
6, = H(x;B,0). (2.4b)
Let
G(0) = 3 i 1B, 010 log 1 (x;, B, 0)/ 80,
1

§==

where x(0) < 0, x(c0) > 0, and B is an n'?-consistent estimator of f5.
Under certain regularity conditions they show that a robust estimate
of 6 may be found by minimizing |G,(®|. Since |G, || may not
have a unique minimum, they suggest minimizing it on a subset
A of the parameter space. The choice of A is dictated by a priori
considerations.

- There are two reasons why Carroll and Ruppert’s method may be
unsuitable for use with survey data. It is often the case with survey
data that the variances of individual observations are strongly
influenced by one or more of the exogenous variables in the model.
This suggests that Harvey’s specification, i.e., o; = 0y exp(z;0), would
meet the case better than the specification employed by Carroll and
Ruppert. Harvey’s specification is quite flexible because the z; could be
chosen to be any function of the exogenous variables not involving 0
or f3. Harvey (1976) used this specification in the context of ML
estimation. His MLE procedure is not robust, however, it is not
difficult to extend Carroll and Ruppert’s robust estimation technique
to Harvey’s model. But as pointed out above, their technique calls for
a grid search and a constrained maximization which could be quite
time consuming for large sets of data such as those commonly
obtained from surveys. In view of these diflicultics we have chosen to
estimate the parameter 0 by robust regression of logdi; on the z.
Robust regression is superior to OLS in this instance because the
distribution of the log(u?) is decidedly nonnormal even when the i; are
normally distributed.
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lll.  ADAPTABILITY OF ROBUST ESTIMATORS UNDER
HETEROSCEDASTICITY

Carroll and Ruppert (1982b) have shown for the heteroscedastic
linear model (2.4) that M-estimators are adaptable, i.e., the estimator
obtained by using n'*-consistent estimates of the :Qoqomooamm:o:%
parameter 0 is asymptotically equivalent to that obtained using the
true ;. In this section we provide similar Rmc:L without proof, for
Harvey’s heteroscedasticity specilication, for M-estimators, regression
quantiles (including the LAD estimator) and Ruppert and Carroll’s
trimmed LS estimator. Consider the model

yi=xif+o, o, = oexp(z;0), (3.hH

where the ¢, are independent, identically distributed random variables
with a symmetric distribution function f. Taking up M-estimators
_:ﬁ let 3™ be an M-estimator of f$ obtained knowing the weights o,

, B satisfies

) al Yi(y: —x.p)a] = 0. (3.2)

i=1 O;
Let O be an n'?-consistent estimator of 0,
n'20 —0) = 0,1, : (3.3)
and let 6, = o, exp(z,;0). Let B be the solution to

Under the following mmm:BU:o:m,

—-N

s: Vi — X, Plé;] = (3.4)

Q>|><

Bl. % odd, Ey’ > 0,0 < Ey? < o0,

B2, lim,_, sup,.,n""|x,/o,] = 0,

B3. lim,., sup,.,n ")z = 0,

B4, sup,(n~' ¥, __x\q Iz < oo,

BS. n™'Si_ x{x,/ol = V,n7 Y8 zlz, - W, V, W positive definite,

and with certain smoothness conditions on  given by Carroll and
Ruppert (1982; thm. 1), we have
n2(B — By = o,(1). (3.5)

As a result, n'2(f — B) and n"2(B* — B) have the same limiting
distribution, a normal distribution with mean zero and variance

(EWIEY ) Y~
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We now show that regression quantiles are adaptable under hetero-
scedasticity. Let f°" () be the ath regression quantile found using the
known o, for model (3.1) and let f(«) be the «th regression quantile
formed using an n"?-consistent estimator 0 of the heteroscedasticity
parameter 0. f°(a) is the solution to

::: M 1 — x,8)/0;] (3.6)

and f(x) is the solution to

3—3 M En:.\v. \K..\wv\Q).L. Au\\v

B
Then, under assumptions B2-B5, we have
n'P(B@) - frie)] = o,(1). (3.8)

This result applics to the LAD estimator as well, which is the special
casc a = 0.5

Lastly, we take up the trimmed least-square estimator. Let B be
the preliminary estimator found by taking the average of the ath and
(1 — a)th regression quantiles from (3.6), with the ¢; known before-
hand. B(RQ) is the trimmed least-square estimator formed after
dropping observations that satisfy

(3 — xBs) o, < ryor (3 — X, BT > 1 (3.9)

where r,, and r,, are the [an]th and [(1 — o)n]th ordered weighted
residuals from the preliminary estimator ;"' Similarly, f,:(RQ) is
the trimmed LS estimator formed using the &, = o,exp(z;0). Then,
under assumptions B2-B5 we find that

"2 (B (RQ) — B (RQ)] = o,(1). (3.10)

The proofs of these propositions are similar to those in Carroll and
Ruppert (1982b) and in Ruppert and Carroll (1980) and are omitted.

In their derivation of the asymptotic distribution of regression
quantiles, Basset and Koenker (1978) assume that the design matrix
has a column of ones, as do Ruppert and Carroll (1980) in their study
of the TLS estimator. But the heteroscedastic linear model is unlikely
to have a constant term alter each observation has been weighted to
eliminate heteroscedasticity. While the absence of a constant term
does not alfect the results on adaptability presented above, it sub-
stantially alters the asymptotic distributions of regression quantiles
and the TLS estimator (Subramanian and Carson; 1987). In particular,



96 SHANKAR SUBRAMANIAN and RICHARD T. CARSON

if the constant is absent, the asymptotic variance of the TLS estimator
differs from its value when the modet has an intercept by an indefinite
matrix that is difficult to estimate. But if an intercept is added to the
transformed model, only to be dropped once the preliminary estimator
ithe average of the ath and (1 — «)th regression quantiles] has been
found, this modified TLS estimator has the same asymptotic distri-
bution as when there is an intercept. This modified estimator is used
throughout this study and its asymptotic variance is o*(a, )V =
where ¢*(o, /), the asymptotic variance for the Q_a:::oa mean in the
location model, is given by

{

oo, f) = (1 — 20)°2 % (S dx 20

where { = »(l — a) is the (1 — a)th inverse quantile.
A. Standard Errors and Hypothesis Testing

Our results on the adaptability of robust estimators for the linear
model with heteroscedasticity show that, using #'2-consistent estimates
of the heteroscedasticity parameter 0, we are able to obtain estimators
that are asymptotically equivalent, under certain regularity conditions,
to the “optimal™ robust estimators found using the actual g,, i.e., to
those found by transforming the model to eliminate heteroscedasticity
and then applying a robust estimation procedure. As a result, the
asymptotic covariance matrix for a “feasible” robust estimator that
uses the consistently estimated 6, is identical to that for the corre-
sponding transformed homoscedastic model. In principle, then, a
consistent estimate for the asymptotic covariance matrix may be
obtained by taking the expression for the asymptotic covariance
matrix of the transformed homoscedastic model and replacing all
unknown parameters by their consistent estimates.

For the M-estimators we use an expression suggested by Huber
(1981, p. 173) for the covariance matrix, which is unbiased to order
(p/n) in the case of a balanced design matrix,"” where p is the number
of variables and »n the number of observations. Strictly speaking,
Huber’s result is valid only for a balanced design matrix and for 14
twice differentiable and bounded. His result is

KN —=p)™ ' S (r ) T™'RT . (3.11)
i i
K is a correction factor given by
Vol
K=14270) (3.12)

n LYyt
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Here r; 1s given by
ro= (- k_.mv\%_.. (3.13)
and the matrices 7 and R are given by

T = 3 W' (r)x;x;y /6] and R = M X x, /6%, (3.14)

The terms V(") and EY’ in the expression for K are estimated by the
sample variance and sample mean, respectively, of the i’(r;). We have
not been able to establish whether the term (7 — p) in the above
expressions should be replaced with (n — p — ) where [ is the number
of heteroscedasticity parameters. This has been suggested by Carroll
and Ruppert (1982b), among others. However, with large samples
usually available with surveys, for example, this correction would be
unimportant.

We use the following estimate of the covariance matrix for the LAD
estimator

[2/(0)] R, (3.15)

where f(0)~' is estimated by differentiating a smoothed version of the
empirical quantile function (Parzen, 1979). The smoothing was
performed using Friedman and Stuetzle’s (1982) supersmooth
algorithm. This was found to be quicker than the method suggested
by Koenker and Bassett (1982). Their method involves finding of

R(@) = Bus M Pl yi — xifi(@)] (3.16)
for several values of o, and twice differentiating a smoothed version of
R(a). . ; ,

For the trimmed least-squares estimator, we estimate o~ («, /) along
the lines suggested by Ruppert and Carroll (1980) with the modifi-
cation suggested by Subramanian and Carson (1987) when the trans-
formed model does not have an intercept,

(o f) = (1 = 20) *[S/(n — p) + ol — )(ci + 3) — 22’ e,¢3),

where .S is the sum of squared weighted residuals for the observations
that were not dropped, from the preliminary estimator and ¢, and ¢,
are the [an]th and [(I — «)n]th ordered weighted residuals from the
TLS estimator. When heteroscedasticity is assumed to be absent, we
follow Ruppert and Carroll (1980) and take ¢, and ¢, to be fi(x), — f3,
and (1 — a), — f8,, where f8 is the TLS estimator.
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IV.  EXPERIMENTAL DESIGN

The difficulty in designing Monte Carlo experiments lies in depicting
those aspects of actual data sets that are relevant to a wide class of
applied problems and in choosing what aspects of the data sets to vary
across treatments. Failure on either count renders a Monte Carlo
exercise close to useless as far as guidance for applied work is
concerned. .

The first choice we made, and the one we feel the strongest about,
is sample size. Cross-sectional analysis, almost @w definition, implies
a sample of moderate to large size."® We have recently estimated
regression equations using 50 states, 73 developing countries, 92
consumers, }17 farmers, 210 utilities, 506 census tracts, 564 household
heads, 1016 voters, and 3012 counties. The fifty states represent the
lower end of the range of samples sizes we wish to consider and the
3012 counties are somewhat outside the upper end of the range we
wish to consider. The sample range we are interested in has been
described by Tukey as the size where the researcher should be willing
to accept small increases in variance in order to reduce the bias.
Researchers, particularly those who deal with survey data, have been
quite willing to delete a few observations if the responses seem
unreasonable but would be very reluctant to drop 25 to 50% of their
sample. ’

Since researchers typically increase the number of parameters as the
sample size increases it is the ratio of p to n which matters.'” We
consider p/n ratios of 0.12 to 0.012 concentrating on the case of 100
observations with six parameters including those influencing a,.

The second choice made was the form of heteroscedasticity. Here
we chose the multiplicative form, ¢} = exp(Z0), of Harvey (1976)
because (1) it is one of the more popular functional forms estimated
in applied work and (2) it contains as special cases, or can closely
approximate, most other functional forms including those where the
variance is a function of y,. The equation we estimate in all cases is

yi = 2+ N\d_.N + N\n\..u + u;, Ah_v
where
u; = v;[exp(0.02x;, + 0.02x,,)]""". 4.2)

There are many possible distributions for v. We were tempted here
to repeat in its entirety the famous quote about how mathematicians
believe in normality because they think it is an empirical fact while

-
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applied workers believe in normality because it is a mathematical fact,
but this quote from Hotelling (1961, p. 319) seems more apt:

Practical statisticians have tended to disregard nonnormality, partly for lack of an
adequate body of mathematical theory to which an appeal can be made, partly because
they think it is too much trouble, and partly because of a hazy tradition that all
mathematical ills arising from nonnormality will be cured by sufficiently large numbers.
This last idea presumably stems from central limit theorems, or rumors or inaccurate
recollections of them.

We believe the presence of heteroscedasticity suggests that v is unlikely
to be distributed normally with a constant variance. This is because

“heteroscedasticity implies that one is no longer dealing with the pure

measurement error (using a single instrument) case.

Some of the early work on robust estimators emphasized the stable
family of distributions, which included the normal and the very thick-
tailed Cauchy. The Cauchy is now considered by most statisticians as
an unrealistic situation especially for error terms from a regression
equation. Attention has now turned to the Box-Tiao (1973) family of
exponential power distributions, whose density with mean pu and
shape parameter f§ is

S uB) = [D(G + B)/2)2°4 P27  exp(—1/2lx — ™7, (4.3)

where x is finite, and — 1 < < 1, and to the Student ¢-distribution
with varying degrees of freedom.” Kurtosis seems to be the primary
deciding factor within a family of distributions on the best estimator.
We use three members of the exponential power family, the normal,
the double exponential, and a distribution with a level of kurtosis
halfway in between those two distributions, which we call ZAP after
our computer acronym.?’ We also use the contaminated normal,
which is an attractive distribution for v because it suggests that
different groups (with the grouping variable unobserved) come from
distributions with diflerent variances.”? Heteroscedasticity in this case
suggests that, within a group, the variances of observations differs
according to measured characteristics.

All of the v, were drawn so that they had a mean of zero and a
standard deviation of 25. This gave our equation an R* of approxi-
mately 0.4 which is typical in cross section studies.

Belsley et al. (1980) have shown the importance of leverage in the
design matrix in a wide variety of situations. Techniques that do not
work well in the face of nonnormality or gross errors with low
leveraged X matrix tend to get worse when the leverage increases. In
particular problems with parameter and standard error calculations
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appear to shift from the intercept to the slope terms in the presence of
high leverage points. In this study, we have created the X matrix by
generating the second two columns of the design matrix (the firstis a
column of I’s) from a uniform distribution on the interval 0 to 100.
This will create an X matrix with the minimum possible leverage. Thus
our Monte Carlo results are based on a design matrix likely to be more
sympathetic to OLS and FGLS than found in actual empirical
situations. If we relax this restriction, it is possible to create situations
where OLS and GLS give arbitrarily bad results in the face of gross
errors.”® The penultimate section presents estimations using the
Boston housing data that are well known for their' high leverage data
points.

The question of how to generate gross errors also arises. We believe
the frequently used method of generating the bad y/s from a distri-
bution that has the same mean, X5, but a much larger variance than
the correct /s to be a poor characterization of the gross errors likely
to occur.” Keypunch and coding errors are likely to have a uniform
distribution having no relationship to Xfi. Errors in answering survey
questions are much harder to characterize as random draws from
some distribution, however, what is clear is that they are not likely to
have mean zero. We have chosen to generate random errors as
random draws from a uniform distribution on the interval 0 to 1000.%
Thus the gross errors have an expected value of 500 (while the mean
of the true y{s is 202) and bear no necessary relationship to their
corresponding x values.

The regression techniques we examine are OLS, generalized least-
squares using estimated weights (FGLS), the LAD and weighted LAD
estimator, the weighted and unweighted forms of the HUBER, the
WELSCH, the BISQUARE, and the ANDREWS, and the Ruppert
and Carroll form of the trimmed least-squares estimator (TRIM) with
oo = 0.1 and 0.2, with and without weights. A “W” in front of the
technique, such as WHUBER, denotes the weighted form of the
robust estimator. In each case, the mean square error of these
estimators is compared with those of GLS with known weights and
the bias, standard error, and the number of times out of 200 the true
value of each parameter was rejected at the 5% level ?® In all cases for
the M-estimators we used LAD starting values and the robust
estimator of scale given by Eq. (1.7). We used the now standard
convention of setting K so that 95% cfliciency results if the true error
terms are iid Gaussian.”’ The weights for the FGLS estimator are
obtained by finding the OLS coellicients from the OLS regression of

[
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the log of the squared first stage OLS residuals on the X matrix. The
weights for the other M-estimators are found in a similar fashion by
substituting that particular technique for OLS and GLS. The weighted
trimmed least-squares estimators use the weights estimated by trimmed
least squares on the residuals from the corresponding unweighted
trimmed least-squares equation.

Most of the Monte Carlo experiments were performed with the Bell
Lab’s statistical language S. The estimation routine used for the
M-estimators was the S implementation of ROSEPACK (Coleman
et al., 1980).2 The trimmed least-squares regressions used the modifi-
cations of the Barrodale and Roberts (1973) /, algorithm suggested by
Fulton et al. (1987) and Koenker and D’Ofrey (1987). The method of
implementing the standard errors for each of the robust regression
procedures is described above. The method of calculating the standard
errors for the LAD regressions described above needs a smooth.
Friedman and Stuetzle’s (1982) supersmooth, which we elected to use,
worked well most of the time, particularly if its penalty function was
used to keep the smallest smoothing window from getting too much
weight. Different penalty functions were optimal with different distri-
butions. We finally settled on use a penalty function of 9 (which
greatly reduced the weight put on the small window unless the data
were very well behaved since in practice the distribution of the data
would be unknown).

Two hundred repetitions of each experiment were run. The experi-
ments can be placed into two major groups: (1) those without gross
errors that are to be found in Section V, and (2) those with gross errors
that are to be found in Section VI.

V. MONTE CARLO RESULTS (NO GROSS ERRORS)

The Monte Carlo results in this section are for the model
yi = fixy + faxy + fixy + g,

where 8, = 2, f, = 2, iy = 2. The sample size is 100 in every case.
Except for the first table (Table 1), u, is a heteroscedastic error term
defined according to Eq. (4.2). Tables are given for differcnt under-
lying distributions for the random component of 1. The tables report
the ratio of the mean square error of each estimator to that of GLS
with known weights (MRATIO), the bias (BIAS), the standard
error (STDERR), and the number of times a technique rejected the
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Table 1.

Gaussian Errors with No Heteroscedasticity

MRATIO X! MRATIO X2 MRATIO X3 STDERR X1 STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (#REJECT) (#REJECT) (#REJECT)
OLS 1.0000 1.0000 1.0000 6.9767 0.0916 0.0845
(0.0878) (—0.0034) (—0.0031) an (13) ®)
FGLS 1.0666 1.0852 1.1716 6.9862 0.0909 0.0839
(0.2416) (—0.0065) (—0.0034) (10) (20) (10)
LAD 1.6768 1.2434 1.9276 7.9265 0.1041 0.0960
(0.3606) (—0.0088) (0.0028) (23) v2)) n
WLAD 1.7702 1.2773 2.0471 7.8837 0.1039 0.0956
(0.3977) (—0.0094) (0.0028) (23) (20 (25)
HUBER 1.0478 1.0350 1.0910 7.0783 0.0928 0.0857
(—0.0230) (—-0.0035) (—0.0021) (10) (18) (®)
WHUBER 1.0754 1.0708 1.1887 7.0002 0.0910 0.0846
(—0.0296) (—0.0046) (—0.0010) (12) (20 (1
WELSCH 1.0583 1.0335 1.0998 7.1099 0.0933 0.0863
(0.0690) (—0.0056) (—0.0026) ) (17 (8)
WWELSCH 1.0859 1.0743 1.1921 7.0155 0.0915 0.0849
(0.0653) (—0.0067) (—0.0016) (15) (19) (10)
BISQUARE 1.0590 1.0344 1.1072 7.1269 0.0935 0.0864
(0.0742) (—0.0055) (—0.0026) (1) (18) (N
WBISQUARE 1.0854 1.0759 1.1918 7.0336 0.0918 0.0851
(0.0804) (—0.0067) (—0.0018) (14) (19) )
ANDREWS 1.0542 1.0345 1.1075 7.1306 0.0935 0.0865
(0.0289) (—0.0048) (—0.0023) (12) (16) (8)
WANDREWS 1.0855 1.0761 1.1908 7.0370 0.0918 0.0852
(0.0810) (—0.0067) (—0.0018) (14) (19) 9
TRIM(.1) 1.2055 1.2811 1.2263 7.4565 0.0976 0.0902
(0.1204) (—0.0076) (~0.0013) (13) @n (1)
WTRIM(. 1) 1.1734 1.1993 1.2125 7.1774 0.0947 0.0868
(0.0869) (—0.0062) (~0.0022) (15) (n (15)
TRIM(.2) 1.2608 1.1467 1.3418 7.6613 0.1002 0.0930
(—0.1363) (—0.0072) (0.0020) (20 (14) (15)
WTRIM(.2) 1.1721 1.1587 1.2938 7.4703 0.0979 0.0900
(—0.1366) (—0.0052) (—0.0005) (17 (16) (1
MSE OLS 47.5698 0.0103 0.0066
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parameter value of 2 at the 5% level.” These tables can be.charac-
terized by the error distribution used, sample size, and the presence or
absence of heteroscedasticity:

Tuble . Error Sample
number distribution size Heteroscedasticity
1 Gaussian 100 No heteroscedasticity
2 Gaussian 1100 Iwﬁoaomooammso:w
3 ZAP 100 Heteroscedasticity
4 Double exponential 100 Heteroscedasticity
5 Contaminated normal 100 Heteroscedasticity

Tuable 1 shows results from the classic reference case of normality
with no heteroscedasticity, no gross errors, and no leverage points in
the X matrix. An interesting feature here is that we went ahead and
corrected for the heteroscedasticity suggested by the Harvey equations
in the weighted version of each estimator even though the hetero-
scedasticity parameter estimates in almost all cases were insignilicant.
The cost of doing this is about a 5% decrease in efficiency when
compared to the unweighted form of each estimator. Only the LAD
and WLAD estimators are grossly inefficient relative to OLS. The
efficiency of the other robust estimators range from the Huber which
is about 5% less eflicient to the WTRIM (0.2) which is about 20% less
eflicient. It is important to note that none of the estimators is biased
and the number of true parameter values rejected suggests that 5%
level (-tests should be interpreted as lying somewhere between 5 and
10%.

The experimental designs for Tables 2-5 are identical except for the
increase in the kurtosis of the error terms as one goes from the normal
to contaminated normal case. We were surprised at how inefficient
OLS waus relative to any of the weighted estimators. Dramatic efliciency
gains such as this are rarely emphasized in econometrics classes. We
took fairly reasonable values for the heteroscedasticity parameters
and found OLS to always be less than 50% as efficient as GLS. In
contrast, FGLS does not give up much relative to GLS. However,
even at the mildly thick-tailed ZAP distribution WHUB is 5-10%
more eflicient than GLS. At the thicker tailed double exponential and
contaminated normal the weighted robust estimators are 20-30%
more eflicient than GLS and 40% more eflicient than FGLS. The
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results of these tables suggest that the robust estimators are much less
sensitive than OLS to heteroscedasticity. A comparison between the
weighted and unweighted versions of the robust estimators shows
substantial gains from using the weighted forms but nothing like the
100% plus efficiency gain that can be obtained by switching from OLS
to FGLS. There is again no appreciable bias in the parameter estimates
from any of the estimators although the same statement cannot be
made about the estimates of the standard errors. The unweighted
LLAD and TRIM estimators tend to reject the true parameter value
much too frequently. The weighted TRIM’s and the weighted and
unweighted M-estimators tend to be somewhat conservative rejecting
the true parameter value a bit more often than they should. The
least-squares estimators are somewhat erratic as far as their rejection
pattern.

Moderate changes in simple size do not really change these argu-
ments. In experiments not reported here with sample sizes of 50 and
500 the relative performance of the estimators appears quite similar.™

VI. MONTE CARLO RESULTS (GROSS ERRORS)

The tables presented in this section all contain 10% gross errors that
were generated by replacing the last 10% of the y values with a draw
from a uniform distribution over the interval 0 to 1000. These tables
can be characterized by the error distribution used and the presence
or absence of heteroscedasticity:

Table Error Sample
nmumber distribution size Heteroscedasticity
6 Gaussian 100 No heteroscedasticity
7 Gaussian 100 Heleroscedasticity
8 ZAP 100 Heteroscedasticity
9 Double exponential 100 Heteroscedasticity
10 Contaminated normal 100 Heteroscedasticity

The introduction of gross errors causes a marked deterioration in
the performance of the OLS and FGLS estimators. Table 6 (Gaussian
errors and no heteroscedasticity), OLS and FGLS are over 1000% less
efficient than GLS on the good observations and there is a significant

amount of bias in both cases in the intercept parameter.’’ The LAD
(Text continues on page 124}
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Tuble 2.

Gaussian Errors

MRATIO X1 MRATIO X2 MRATIO X3 STDERR XI STDERR X2 STDERR X3
(BIAS) (BIAS) | (BIAS) (#REJECT) (#REJECT) (#REJECT)
GLS 1.0000 1.0000 1.0000 14.2648 0.2606 0.2171
(—0.0206) (—0.0071) (—0.0022) (12) o) - )]
OLS 2.3473 1.7611 1.6802 23.8754 0.3135 0.2892
(0.7677) (-0.0124) (-0.0132) 6 (14 (5)
FGLS 1.0485 1.0555 1.0005 14.4507 0.2581 0.2181
(—0.1955) (—0.0061) (0.0020) an (14) )
LAD 1.5882 L6165 1.5444 22.0283 0.2892 0.2668
(—0.3694) (—0.0052) (0.0060) (8) (22) (20)
WLAD 1.4500 1.5562 1.3867 16.8276 0.3014 0.2554
(0.4594) (—0.0229) (0.0047) (15) (13) (20)
HUBER 1.6853 1.4123 1.4147 20.5663 0.3013 0.2619
(0.5634) (—0.0143) (—0.0096) (4) (12) %)
WHUBER 1.0268 1.0361 1.0400 14.1476 0.2587 0.2173
(0.4143) (—0.0187) (—0.0029) (13) (13) (5
WELSCH 1.6922 1.4256 1.4661 20.8769 0.3109 0.2662
(0.6749) (—0.0149) (—0.0120) (5) ) 5
WWELSCH 1.0385 1.0459 1.0404 14.4139 0.2612 0.2192
(0.4863) (—0.0193) (—0.0026) (1 (13) (6)
BISQUARE 1.7631 1.4902" 1.5326 21.3398 0.3178 0.2706
(0.6770) (—0.0147) (—0.0124) (5) (13) (6)
WBISQUARE 1.0431 1,0590 1.0425 14.4546 0.2624 0.2197
(0.5418) (—0.0195) (—0.0036) (12) (12) (5)
ANDREWS 1.7675 1.4970 1.5294 21.4413 0.3199 0.2717
(0.6842) (—0.0158) (—0.0119) (5) (12) (6)
WANDREWS 1.0460 1.0619 1.0382 14.4516 0.2625 0.2197
(0.4923) (—0.0192) (—0.0030) (12) (13) (5)
TRIM(.1) 1.6276 1.5162 1.8712 17.1140 0.2370 0.2124
(1.2091) (—0.0082) (—0.0192) (15) (23) (31)
WTRIM(.1) 1.3267 1.1784 1.5719 15.1255 0.2684 0.2267
(—0.1160) (—0.0059) (0.0143) () (17 (10)
TRIM(.2) 1.6616 1.5212 2.0288 15.2735 0.2227 0.1961
(2.2950) (—0.0086) (—0.0382) (20) 3 (37)
WTRIM(.2) 1.2867 1.2399 1.3402 15.3676 0.2768 0.2344
(—0.2206) (0.0015) (0.0082) (9) (13) (13)
MSE GLS 205.1405 0.0674 0.0432

RS B
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Table 3. Zap Errors

MRATIO X1 MRATIO X2 MRATIO X3 STDERR X1i STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (#REJECT) (REJECT) (#REJECT)
GLS 1.0000 1.0000 1.0000 14.2712 0.2607 0.2172
(1.2004) (—0.0215) (~0.0230) (12) (8) (13)
OLS 2.2603 1.6460 1.7904 23.9411 0.3143 0.2900
(3.8254) (—0.0544) (—0.0476) (6) ) (13)
FGLS 1.0194 0.9915 1.0775 14.4038 0.2586 0.2169
(1.5753) (—0.0240) (—0.0298) (10) (10) (13)
LAD 1.4394 13714 1.1209 16.9586 0.2226 0.2054
(1.9109) (—0.0242) (—0.0282) (12) (27 @h
WLAD 1.1361 1.2418 0.9432 13.2278 0.2370 0.2000
(0.9081) (—0.0094) (—0.0168) (23) (17 (26)
HUBER 1.5717 1.1928 1.2510 18.5840 0.2738 0.2388
(2.6228) (—0.0340) (=0.0327) (0 @) (12)
WHUBER 0.9280 0.9064 0.9511 13.2752 0.2422 0.2005
(1.1901) (—0.0180) (—0.0200) (13) 9 (14)
WELSCH 1.7296 1.2395 1.4147 18.8599 0.2841 0.2436
(0.6132) (0.0001) (=0.0127) (10) (12) (16)
WWELSCH 1.0904 1.0300 0.9951 13.3748 0.2421 0.2032
(0.4950) (—0.0101) (—0.0021) (b (16) (14)
BISQUARE 1.6919 1.2920 1.3426 18.9518 0.2871 0.2441
(2.3171) (—0.0325) (—0.0243) (9) (8) (18)
WBISQUARE 1.0902 0.9580 1.0694 13.5028 0.2428 0.2018
(1.2262) (~0.0284) (0.0145) (16) (10) (20)
ANDREWS 1.7223 1.3141 1.3456 18.9034 0.2865 0.2438
(2.1433) (—0.0293) (—0.0246) ()] @®) (19)
WANDREWS 0.9998 0.9981 0.9655 13.3448 0.2432 0.2037
(1.3114) (—0.0237) (—0.0170) (14) (1) (13)
TRIM(.1) 1.3465 1.1265 1.1503 15.8899 0.2187 0.1975
(—0.1637) (—0.0044) (0.0106) 9) (2h) (26)
WTRIM(.1) 1.1291 1.1055 0.9968 13.8099 0.2491 0.2098
(—0.8614) (0.0188) (0.0150) (10 (12) (N
TRIM(.2) 1.0830 1.0069 0.8946 13.9421 0.2008 0.1783
(—0.2554) (—0.0167) (0.0193) (12) (26) 2n
WTRIM(.2) 0.9792 1.0375 0.9194 13.4408 0.2428 0.2044
(—0.7898) (0.0082) (0.0250) (13) (18) (13)
MSE GLS 201.9332 0.0664 0.0521
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Tuble 4.

Double Exponential Errors

MRATIO X[ MRATIO X2 MRATIO X3 STDERR X/ STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (#REJECT) (# REJECT) (#REJECT)
GLS 1.0000 1.0000 1.0000 14.3187 0.2616 0.2180
(0.2748) (—0.0260) (0.0047) (8) (6) 9
OLS 2.3378 1.6018 1.6866 23.6969 03111 0.2870
(0.7655) (—0.0198) (=0.0117) 3) (14) (6)
FGLS 1.1066 1.0128 1.0843 15.1111 0.2640 0.2199
(0.4227) (—0.0363) (0.0051) (5) (5) (12)
LAD 1.0055 0.9736 0.6168 13.5863 0.1784 0.1646
(0.1710) (—0.0208) (0.0052) (I (24) (16)
WLAD 0.8378 0.8008 0.6435 10.7463 0.1913 0.1611
(0.4284) (—0.0207) (0.0033) (18) @n (20)
HUBER 1.2237 0.9119 1.0086 16.2858 0.2406 0.2078
(0.4965) (—0.0173) (—0.0072) 9 an (12)
WHUBER 0.7774 0.7431 0.7925 12.1923 0.2175 0.1807
(0.2060) (—0.0239) (0.0036) ) (12) (15)
WELSCH 1.2635 09374 0.9903 15.9602 0.2425 0.2057
(0.6758) (—0.0224) (—0.0074) 9) (12) (15)
WWELSCH 0.7727 0.7458 0.7783 11.9206 0.2144 0.1776
(—0.0291) (—0.0214) (0.0074) ) (12) 17)
BISQUARE 1.3211 0.9909 1.0197 16.1847 0.2468 0.2088
(0.6666) (—0.0223) (—0.0078) () (13) (15)
WBISQUARE 0.8270 0.7843 0.8155 12.0756 0.2174 0.1797
0.1737) (—0.0228) (0.0029) (13) (12) amn
ANDREWS 1.3249 0.9958 1.0211 16.1822 0.2468 0.2091
(0.6657) (—0.0223) (—0.0078) ) (13) (15)
WANDREWS 0.8312 0.7857 0.8183 12.0873 0.2175 0.1800
(0.1663) (—0.0227) (0.0029) (13) (12) an
TRIM(.1) 1.1009 0.8252 0.8958 13.8650 0.1909 0.1715
(—0.5078) (0.0091) (0.0088) (10) @n (24)
WTRIM(.1) 0.8434 0.8014 0.7948 12.9495 0.2306 0.1948
(—0.0902) (0.0174) (0.0001) 9) (15) (13)
TRIM(.2) 0.8720 0.7225 0.7681 11.1964 0.1602 0.1420
(—0.5203) (0.0166) (0.0026) an (36) (33)
WTRIM(.2) 0.7231 0.6810 0.7108 12.3295 0.2188 0.1833
(0.5803) (0.0048) (—0.0015) an (15) )
MSE GLS 187.9246 0.0661 0.0506
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Table 5. Contaminated Normal Errors

MRATIO XI MRATIO X2 MRATIO X3 STDERR X1 STDERR X2 STDERR X3
(BIAS) (BIA4S) (B1A4S) (#REJECT) (#REJECT) (#REJECT)
GLS 1.0000 1.0000 1.0000 14.5534 0.2659 0.2215
(—0.0291) (0.0011) (0.0001) (12) 3) (12)
OLS 2.8615 2.0580 1.9321 24.3326 0.3195 0.2947
(—0.4699) (0.0035) (0.0070) (8) (16) (19)
FGLS 11110 1.0602 1.0725 14.8567 0.2631 0.2216
(—0.1686) (0.0108) (—0.0059) (15 (6) (15)
LAD 1.4263 1.3532 1.2896 16.8370 0.2211 0.2039
(—0.2892) (0.0195) (—0.0092) (13) 3N (29)
WLAD 0.7080 0.8524 0.5405 10.2326 0.1845 0.1556
(0.4355) (—0.0232) (0.0039) (26) (26) (22)
HUBER 1.4208 1.1814 1.0768 17.3874 0.2544 0.2210
(0.0130) (0.0167) (—0.0101) (1) (14) (15)
WHUBER 0.7264 0.7378 0.7395 12.1020 0:2209 0.1850
(0.9271) (0.0053) (—0.0201) ) (I (15)
WELSCH 1.2925 1.1162 1.0220 17.2151 — 0.2571 0.2204
(—0.0181) (0.0214) (=0.0137) (12) (15) (14)
WWELSCH 0.6962 0.7101 0.7058 11.9232 0.2813 0.1829
(1.3240) (0.0039) (—0.0255) (18) (12) (14)
BISQUARE 1.3009 1.1324 1.0392 17.5891 0.2620 0.2239
(—0.0928) (0.0242) (—0.0139) (1) (15 (15)
WBISQUARE 0.6935 0.7123 0.6973 11.9458 0.2183 0.1831
(1.3488) (0.0043) (—0.0258) (15) (12) (14)
ANDREWS 1.3034 1.1328 1.0428 17.6408 0.2629 0.2244
(~0.0961) (0.0243) (—0.0139) (n (14) (15)
WANDREWS 0.6929 0.7130 0.6952 11.9406 0.2181 0.1832
(1.3592) (0.0042) (—0.0257) (16) (13) (14)
TRIM(.1) 1.0886 1.0549 0.9315 13.0436 0.1800 0.1612
(1.4831) (0.0036) (—0.0276) (24) (43) (33)
WTRIM(.1) 0.8129 0.8599 0.7837 12.5578 0.2282 0.1915
(1.2891) (0.0032) (—0.0270) (19) (16) (17
TRIM(.2) 1.0237 1.0234 0.8438 9.8937 0.1440 0.1266
(1.2054) (—0.0051) (—0.0167) (41 (62) (50)
WTRIM(.2) 0.8676 0.9191 0.8321 12.5487 0.2287 0.1921
(0.9720) (0.0039) (—0.0202) (22) (14) (19)
MSE GLS 232.4865 0.0656 0.0582
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Table 6. Gaussian Errors with Gross Errors

MRATIO X1 MRATIO X2 MRATIO X3 STDERR X!/ STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (#REJECT) (# REJECT) (#REJECT)
OLS[1:90.] 1.0000 1.0000 1.0000 7.4782 0.0961 ) 0.0906
0.0137) (0.0015) (0.0024) (i (12) ; an
OLS 23.7827 10.2662 13.4302 33.9565 0.4506 0.4160
(20.8789) (0.0743) 0.0021) - (13) ) (5)
FGLS 22.3339 13.4484 10.5225 30.2811 0.4256 0.3911
(29.1452) (0.0582) (—0.1490) ) (6) (6)
LAD 1.6524 - 16530 1.3641 8.5156 0.1118 0.1031
(1.4670) (0.0092) (=0.00t1) (24) (23) (15)
WLAD 1.6002 1.5790 1.4146 8.2036 0.1137 0.1028
(0.3976) (—0.0094) (0.0028) (23) (23) (2D
HUBER 1.2192 1.2244 1.1136 8.7589 0.1110 0.1067
(1.6532) (0.0128) (0.0061) 9) (13) (tn
WHUBER 1.2112 1.2320 1.1557 8.3420 0.1094 0.1043
(1.8463) (0.0159) (0.0005) 9) ) (1)
WELSCH 1.0369 1.0564 1.0722 7.8651 0.0991 0.0958
(0.3575) (0.0010) (—0.0023) an (18) (13)
WWELSCH 11,0625 1.0646 1.1374 7.5508 0.0982 0.0943
(0.3210) (0.0027) (—0.0030) (12) (16) (20)
BISQUARE 1.0380 1.0499 1.0642 7.8404 0.0987 0.0955
(0.2982) (0.0001) (=0.0010) ) (14) (13)
T AT g SR S e T T Ll e o S T R W S T A T e S N TR, T A I T R A T W DR T 5 e - % T e e R, ke e e v
X
WBISQUARE 1.0729 1,0641 1.1401 7.5562 0.0979 0.0943
(0.2216) (0.0028) (—0.0021) (12) (14) (16)
ANDREWS 1.0623 1.0469 1.0587 7.8274 0.0986 0.0954
(0.1753) (= 0.0003) (0.0003) (11 (13) (16)
WANDREWS 1.0797 1.0794 1.1381 7.5376 0.0979 0.0942
(0.2103) (0.0021) (—0.0014) (13) (15) (15)
TRIM(.1) 1.8610 2.1419 1.7178 7.7844 0.1012 0.0945
(—2.0455) (0.0522) (0.0377) 31 (40) (28)
WTRIM(.1) 1.4950 1.6357 1.5531 9.9863 0.1331 0.1224
(0.6097) (0.0301) (0.0101) (14) @) (10)
TRIM(.2) 1.3462 1.2644 1.2852 7.6595 0.0987 0.0930
. (1.1032) (0.0158) (0.0064) 1) 27 (23)
WTRIM(.2) 1.3089 1.2923 1.2250 8.4897 0.1125 0.1045
(1.9266) (0.0109) (—0.0043) (16) an Q)

MSE OLS 57.1537 0.0104 0.0099




Table 7.

Gaussian Errors

MRATIO X]

MRATIO X2 MRATIO X3 STDERR X1 STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (#REJECT) (# REJECT) (#REJECT)
GLS(1:90.) 1.0000 1.0000 1.0000 19.2253 0.2890
(—1.2859) (0.0157) (0.0228) (6) (6) (6
oLS 7.4861 2.5971 3.2873 40.8507 0.5363 0.4948
(26.8895) (0.0325) (~0.0620) (12) (5) (5)
FGLS 10.0072 2.0947 5.7588 33.1230 0.5537 0.4689
(42.3009) (0.0620) (— 0.4005) (27) 3) (16)
LAD 1.7203 1.6771 1.5414 22.6582 0.2975 0.2744
(—1.9932) (0.0814) (0.0675) (17) (33) (16)
E WLAD 1.3817 1.3884 1.4587 17.0704 0.3144 0.2634
(—0.0817) (0.0763) (0.0252) (20) (17 (18)
HUBER 2.1252 1.8184 1.4959 24.6736 0.3410 0.3117
(2.5477) (0.0595) (0.0306) 0] (22) (5)
WHUBER 1.0591 1.0718 1.0811 16.4077 0.2851 0.2555
(2.6047) (0.0840) (—0.0099) ay 1)) 9)
WELSCH 2.1149 1.7966 1.5441 23.9647 0.3342 0.3041
" (1.5416) (0.0085) (—0.0065) 9) (19) (5)
WWELSCH 1.0427 1.0364 1.0854 15.6347 0.2721 0.2462
(—2.8810) (0.0655) (0.0455) (15) (10) (8)
BISQUARE 2.1829 1.8591 1.5810 24.4549 0.3404 0.3090
(1.6379) (0.0018) (—0.0131) 9) (20) (6)
0.2456
WBISQUARE 1.0534 1.0274 1.0780 15.5618 0.21713 10
(—2.4879) (0.0556) (0.0352) (14) an
< 3109
ANDREWS 2.2040 1.9067 1.5588 24.6325 0.3433 ’ 3(13())
(1.4479) (0.0075) (=0.0151) © @n
0.2456
WANDREWS 1.0572 1.0285 1.0811 15.5599 0.27114 10
(—2.4716) (0.0550) (0.0345) (14) an
1 0.2221
TRIM(.1) 1.8490 2.0404 1.6625 18.0435 O.i‘glé 08)
(—9.4064) (0.2118) (0.1306) (20) (43)
0.2934
WTRIM(.1) 1.4201 1.2984 1.5018 21.2781 0-3278 9y
(2.5582) (0.1165) (—0.0333) (1) (1)
. 0.1696
© TRIM(.2) 1.5108 1.4997 1.3491 13.3167 0-283 (55
(—3.3181) (0.1156) (0.0753) (34) 61
— 1.2797 17.4662 0.3044 0.2647
= WTRIM(.2) 1.2898 1.2933 2 18) (1
N (0.9467) (0.0857) (0.0113) an (
MSE GLS 268.9060 0.0818 0.0563




Table 8. Zap Errors

MRATIO X1 MRATIO X2 MRATIO X3 STDERR XI STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (#REJECT) (#REJECT) (#REJECT)
GLS[1:90.] 1.0000 1.0000 1.0000 15.0772 0.2670
(—0.6987) (0.0276) (—0.0013) an ©) (10)
oLs 8.7335 2.5556 4.2964 40.7582 0.5351 0.4936
(26.9735) (0.0474) (—0.0701) (13) o) (10)
FGLS 12,6471 2.7040 6.5094 33.1596 0.5549 0.4682
(44.3936) (0.0407) (—0.4176) (33) () (13)
LAD 1.6783 1.5367 1.4889 18.5240 0.2432 0.2244
(0.4821) (0.0455) (0.0079) (25) (35) (24)
- WLAD 13240 1.2383 1.2684 13.7275 0.2543 0.2139
S (1.9742) (0.0368) (—0.0269) (25) (24) 22)
HUBER 2.1441 1.4196 1.6749 22.8846 0.3165 0.2897
(3.3737) (0.0624) (0.0062) (6) ) (®)
WHUBER 1.0943 1.0476 1.0958 15.5677 0.2681 0.2402
(3.7846) (0.0767) (—0.0299) ©) (13) (12)
WELSCH 2.0397 1.3672 16173 21.8801 0.3059 0.2798
(2.6104) (0.0079) (=0.0319) ) (14) (12)
WWELSCH 1.0074 0.9528 1.0849 14.8813 0.2562 0.2304
(—1.2949) (0.0594) (0.0151) (10) (13) (13)
BISQUARE 2.0589 13853 1.6553 22.3102 03114 0.2848
(2.8094) (—0.0004) (=0.0371) 6) (12) 12)
. 14.8735 0.2571 0.2309
WBISQUARE 1.0170 0.9370 1.1063 6
? (~0.9949) (0.0503) (0.0074) (14) b (o
0.3131 0.2866
ANDREWS 2.0586 1.3868 1.6577 2aaT 12 (12)
(2.7769) (—0.0005) (—0.0369) (©)
0.2574 0.2310
WANDREWS 0.9970 0.9219 1.1018 14.9;214 (13) (14)
(—0.8186) (0.0470) (0.0058) (12)
0.2283 0.2108
TRIM(.1) 22284 1.9537 1.9407 17,9876 53) 3)
(—7.4595) 0.1762) (0.1043) 22)
0.3274 0.2848
WTRIM(.1) 12756 11020 e s (15) @n
(4.1482) (0.0810) (—0.0530) (18)
0.1546
1.5481 12.1578 0.1692
TRIM(.2) 1.5746 13199 P
(—3.4677) 0.1006) 0.0656) (40) (58) 53)
.9283 0.2773 0.238%
= WTRIM(.2) 1.1254 0.9566 1.3353 o (12) (13)
C (2.7533) (0.0446) (—0.0150) (10
MSE GLS 227.8113 0.0727 0.0510
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Table 9.

Double Exponential Errors

MRATIO X1 MRATIO X2 MRATIO X3 STDERR X1 STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (#REJECT) (#REJECT) (#REJECT)
GLS[1:90,] 1.0000 1.0000 1.0000 15.1497 0.2683 0.2327
(~0.4149) (0.0013) (0.0141) (1 ©) ®
oLs 7.9487 3.0563 43155 40.7147 0.5345 0.4931
(22.4447) (0.0793) (—0.0199) (10) ©6) ®)
FGLS 10.6423 28319 5.7409 32,6186 0.5446 0.4597
(40.7972) (0.0497) (—0.3674) 29) ©) (1)
LAD 0.9670 0.8913 0.8121 14.9761 0.1966 0.1814
(0.0564) (0.0215) (0.0352) (10) 9) (7
WLAD 0.7683 0.7355 0.7585 11.2887 0.2082 0.1734
2.0717) (0.0072) (—0.0025) (0) @3) (18)
HUBER 1.6941 1.1459 1.2568 20.6269 0.2849 02617
(2.5736) (0.0479) (0.0182) ®) ®) %
WHUBER 1.0105 0.8456 0.9291 14.2227 0.2449 02187
(2.7940) (0.0579) (—0.0059) (14) (10) (12)
WELSCH 1.4798 1.0230 1.1060 192377 0.2701 0.2468
(2.0095) (—0.0062) (—0.0163) ® %) )
WW
ELSCH 0.883 0.6861 0.9097 13.3632 0.2295 0.2071
(—0.9871) (0.0236) (0.0254) (12) @®) (12)
BISQUARE 1.5024 1.0744 11132 19.4834 0.2742 0.2509
(1.4476) (—0.0027) (~0.0120) ) ®) ©)
R S - PR i e T TE L = = e A RS A RS
WBISQUARE 0.8912 £ 0.6856 0.8998 13.4084 0.2306 0.2085
(= 0.5433) (0.0125) (0.0187) (12) 10 b
ANDREWS 1.5051 1.0794 11147 19.4956 0.2746 0.2512
(1.3766) (—0.0021) (=0.0113) ©) ®) ®
WANDREWS 0.8909 0.6851 0.8983 13.3905 0.2305 0.2088
(~04732) (0.0113) (0.0177) an (an an
TRIM(.1) 1.5586 1.5761 1.5374 16.1798 0.2157 0.1995
(—51832) (0.1527) 0.0775) (18) (46) &)
WTRIMC) 12210 1.0941 1.4803 19.5393 0.3119 0.2702
(5.0055) (0.0693) (—0.0615) (14) ®) (20)
TRIM(.2) 1.0068 1.0063 1.0613 10.9571 0.1522 0.1394
(—2.2847) (0.0935) (0.0415) Gh (36) c0
WTRIM(.2) 0.7995 0.7754 1.0307 14.5129 0.2495 0.2170
(3.3809) (0.0448) (~0.0323) (14 (10) ©
MSE GLS 236.8983 0.0762 0.0488
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Table 10.

Contaminated Normal Errors

e A g G e

€T

MRATIO X! MRATIO X2 MRATIO X3 STDERR X! STDERR X2 STDERR X3
(BIAS) (BIAS) (BIAS) (# REJECT) (#REJECT) (#REJECT)
GLS[1:90,) 1.0000 1.0000 1.0000 15.4454 0.2735 - 0.2373
(0.4106) (0.0015) (—0.0041) (13) (6) (12)
OLS 9.7300 3.4671 3.8771 40.8564 0.5364 0.4948
(27.3668) (0.0290) (—0.0686) (13) (5) (7
FGLS 13.3217 3.1486 5.6785 33.0883 0.5478 0.4662
(45.4147) (—0.0003) (—0.4071) @n 3) (15)
LAD 1.7104 1.7055 1.4901 18.3040 0.2403 0.2217
(0.7501) (0.0691) (0.0068) an (34) (28)
WLAD 1.2470 1.3036 1.2131 10.2326 0.1845 0.1556
(3.7229) (0.0456) (—0.0435) (36) (27 (33)
HUBER 2.2230 1.5362 1.5077 21.2072 0.2925 0.2673
(2.9597) (0.0545) (0.0133) (13) (16) (15)
WHUBER 1.0867 0.9539 0.9857 14.0063 0.2455 0.2196
(4.2041) (0.0564) (—0.0291) (14) (10) (20)
WELSCH 1.9640 1.4063 1.4055 20.0T83" 0.2801 0.2547
(1.7178) (0.0111) (=0.0192) (12) (12) (17
WWELSCH 0.9116 0.8708 0.9371 13.1401 0.2309 0.2079
(—0.2996) (0.0394) (0.0068) (19) (1 (20)
BISQUARE 1.9789 1.4332 1.4274 20.3081 0.2835 0.2574
(1.4152) (0.0121) (—0.0202) (11) 13 (19)
WBISQUARE 0.9032 0.8625 0.9213 13.1031 0.2301 0.2076
(0.0573) (0.0299) (—0.0010) (18) an (20)
ANDREWS 1.9756 1.4302 1.4299 20.3709 0.2844 0.2581
(1.3867) 0.0121) (—0.0202) (1 (13) (18)
WANDREWS 0.9026 0.8632 0.9175 13.1204 0.2304 0.2077
(0.0817) (0.0293) (—0.0019) (19) (1) (19)
TRIM(.1) 2.0882 1.8924 1.5573 16.1757 0.2158 0.1989
(—7.2130) 0.1731) 0.1111) (30 (42) (35)
WTRIM(.1) 1.3664 1.2607 1.2003 19.7012 0.3114 0.2710
(5.9778) (0.0708) (= 0.0751) 22) (12) (18)
TRIM(.2) 1.2951 1.2000 1.1256 11.3159 0.1591 0.1441
(—1.5137) (0.0932) (0.0445) (37 (53) (48)
WTRIM(.2) 1.0948 0.9993 1.0219 14.5334 0.2561 0.2225
(3.8142) (0.0539) (—0.0346) (16) (8) (16)
MSE GLS 232.4865 0.0656 0.0582
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and TRIM estimators are relatively ineflicient compared to the
M-estimators, and particularly the hard redescenders that put zero or
low weights on many of the bad observations. Somewhat surprisingly
the weighted forms of the trimmed estimators perform better both in
terms of MSE and producing standard errors which result in correct
{-tests. The same comments in Section V about the actual level of the
{-test generally holds here for most of the other estimators. There are
stronger indications, however, that the test statistics from OLS and
FGLS are unreliable.

When we move to the heteroscedasticity case with gross errors, as
Tables 7-10 show, the performance of OLS and FGLS appears to
improve (relative to the GLS estimated based :F good observations)
from what it was in Table 6, but this is largely an illusion due to the
larger true variances caused by the heteroscedasticity multiplier. In
contrast to the simulations in Section V (no gross errors) where FGLS
performed reasonably well, FGLS is now clearly an undesirable
estimator duec to its bias. The TRIM, HUBER, and the LAD
estimators pick up part of the gross errors in the form of bias although
to a much smaller degree than FGLS and OLS.*? The weighted hard
redescenders (WBISQUARE and WANDREWS) as expected are best
able to deal with the combination of very thick error tails, hetero-
scedasticity, and a significant number of gross errors. Results for
sample sizes of 50 and 500 (not reported here) suggest that increasing
the sample size increases the problems with FGLS and OLS if the
gross errors increase proportionately.”® The ability of most of the
robust techniques to capture the true parameter estimates in the face
of these adversities is truly impressive. Their ability to provide fairly

reasonable hypothesis tests concerning those values is even more
impressive.**

VIl. AN EMPIRICAL EXAMPLE:
THE BOSTON HOUSING DATA

The Boston housing data set collected by Harrison and Rubinfeld
(1978) has been used by a number of authors [e.g., Belsley et al. (1980)
and Krasker et al. (1982)] to illustrate different statistical techniques.
This data set is characterized by a number of very high leverage points
and very influential observations as well as nonnormal error terms.

We estimated the Boston housing equation using each of the tech-

niques employed in the previous two sections. The results are displayed
in Table 11.%

Table 11.

Boston Parameter Estimates and Standard Errors

WHUBER
(STDERR)

HUBER
(STDERR)

WLAD
(STDERR)

LAD
(STDERR)

GLS

(STDERR)

OLS
(STDERR)

VAR

9.47830 9.65357 9.62482 9.62442

9.64219

9.75629
(.14958)
—.01186

(.00124)

INTERCEPT

(.10491)
—.01356

(.12957)
~.01109

(.11526)
—.01322

)

A

(117

(11971)

—.01266

—-.01179

CRIME

(.00296)
00023

(.00026)
00106

(.00277) (.00325)
00005
(.00119)

(.00098)

(.00237)
00016

.00056
(.00030)

38

(.00039)

.00008
(.00051)

ZN

(.00037)

{.00033)
00124
(.00164)
07821
(.00119)
— 00405

00124
(.00161)

.00065

(.00143)

00218

(.00186)

.00024
(.00237)

INDUS

.06066
(.02137)
—.00383

07510
(.02438)

—.00499

.04499
(.01867)
—.00346

06319

(.02608)

—.00443

09140
(.03320)
- 00638

CHAS

(.00083)
01654

(.00098)
—.00139

0.1181
(.00152)
~.00069

(.00094)

01762
(.00098)

—.00159

(.00107)

.01399
(.00103)

(.00089)

(.00098)
01379

(.00121)
—.00104

(.00113)
00633
(.00131)

NOXSQ
ROOMS

125

2

—.0006

.00009
(.00053)
—.19126

AGE

(.00034)
— 1586}

(.00045)

—.16309

(.00032)
—.15426

(.00041)

—.13854

(.00037)
~ 14404

DIiS§

(.02239)
.05493

(.01125)
—.00035

(.02884)
.06943
(.01478)

—.00036

(.02270)
.05375
(01181

(.02559) (.02623)
—-.00038

07309

(.03339)

05649
(.01503)

—.00034

09571t
(.01913)

—.00042

RAD

(.01295)
—.00040

TAX

(.00007)
—.02799

(.00009)

—.02881

(.00009)

(.00008) (.00010)
— 02567 —.02812

—.02614

(.00012)
— 03112

PTRATIO

(.00279)
67693

(.09973)
—.18033

(.00356)

(.00320)
68531

(.00337) (.00394)
.58695

(10371
~ 22334

(.00501)

55271
(.11583)

—.27619

63315
(.08098)

—.24011

.36370
(.10312)
-.37116

BLACK

(.13512)
—~.15065

LSTAT

(.02014)

(.02898%)

(.01910)

(.01964)

(.02153)

(.02501)




Table 11. (continued)

WELSCH WWELSCH BISOUA
RE )
VAR (STDERR) (STDERR) (ST%ERR) ngTSQbARE ANDREWS WANDREWS
INTER (STDERR) (STDERR) (STDERR)
ERCEPT 9.55781
2 963497 9.52720 9.58101 952677
(-12343) (.10737) (.13668) (10298 : 9.57996
CRIME 00983 ~ 01316 ~.01792 o (13594) (10373)
(.00343) (00252) 00448 — 01735 - 01799 — 10736
ZN - (:00448) (.00321) (.00629) o
— 00004 00029 (.00323)
‘ 00005 .00035 .00005
(.00031) (.00026) (.00031) (.00026 00035
INDUS 00182 00092 -00026) (.00031) (.00026)
00 ' 00168 00112 00169
(.00146) (.00120) (.00146) (.00122) ; 00116
CHAS 06687 05842 06276 . (.00147) (.00124)
(02314) (.01871) ('oﬂzzl 05955 06249 .05917
NOX 02221 (.01850) (.02247)
— SQ — 00399 —.00390 ~ 00340 00 (.01844)
N (.00099) (.00083) 0010 —.00355 —.00338 — 00354
ROOMS (:00103) (:00081) (00116) 00
01542 01689 01619 ; (.00081)
(.00155) (.00093) (.00150) '8(')009 01625 01711
AGE —.00129 — 00140 — 00153 (-00090) (.00162) (.00090)
(.00046) (.00034) (00042 ~oues - 00155 — 00145
DIS -00042) (.00032) (.00042) 0032
=.14140 ~ 16549 —.14451 16350 (:00321)
(.02778) (.02313) (.02925) (-02725) —.14420 —.16262
RAD 05650 05312 06209 05622 (:03076) (02210)
(.01349) (.01146) (:01337) 'gffz 06951 05614
TAX ~.00037 — 00037 00029 (01153) (.01359) (01150
(-00009) (.00007) 00009) ‘(-mgé) —.00029 — 00031
PTRATIO - 02777 - 02759 — 02674 i (:00010) (.00008)
(.00322) (00271 (00314) _(2(2)‘2’22 — 02673 — 02690
BLACK 69204 6781 X . ) (.00321) (.00262)
: 70327 69806 70391 2
(.12149) (11141 (12857) (11154 69727
LSTAT 1073 i oo . " (.13626) (-11160)
(.03149) (.01998) (-02908) - (1) 66 —.18931 —.17067
: (:01920) (:02997) (.01959)
TRIM(.1) WTRIM(.) TRIM(.2) WTRIM(.2)
(STDERR) (STDERR) (STDERR) (STDERR)
INTERCEPT 9.81525 9.70798 9.67698 9.61341
(0.16584) (0.11128) (0.07322) (0.11092)
CRIME —0.01559 —0.01387 ~0.01312 ~0.01472
(0.00200) (0.00274) (0.00132) (0.00318)
ZN 0.00044 0.00024 £.00043 0.00054
(0.00050) (0.00030) {0.00022) (0.00028)
INDUS 0.00080 0.00035 0.00093 0.00109
(0.00232) (0.00131) (0.00102) (0.00131)
CHAS 0.05767 0.3921 0.05355 0.04008
(0.03496) (0.01911) (0.01628) (0.01832)
NOXSQ ~0.00532 —0.00422 —0.00496 —0.00390
{0.00123) (0.00091) (0.00059) (0.00093)
- ROOMS 0.01413 0.01676 0.01433 0.01772
N (0.00166) (0.60096) (0.00075) (0.00106)
AGE ~0.00132 ~0.00140 ~0.00091 ~0.00150
(0.00056) (0.00033) (0.00025) (0.00033)
DIS ~0.20908 —0.17564 —0.18503 ~0.16536
{0.03620) (0.02303) (0.01604) (0.02261)
RAD 0.06933 0.05722 0.06595 0.05933
{0.01964) (0.01196) {0.00894) (0.01206)
TAX —0.00038 ~0.00038 —0.00039 —0.00038
{0.00012) (0.00008) {0.00006) (0.00008)
PTRATIO ~0.02734 ~0.02746 ~0.02916 —0.02632
(0.00498) (0.00311) (0.00219) (0.00290)
BLACK 0.44888 0.55580 0.61855 0.67597
{0.13108) (0.11620) (0.06183) {0.11565)
LSTAT —0.21178 ~0.17575 ~0.2267} ~0.15807
(0.03151) (0.01979) (0.01453) (0.01925)
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The first thing to note is the NOXSQ parameter (obtained using
OLS) that was the primary focus of the original Harrison and
Rubinfeld (1978) study is over one and a half times that obtained with
any of the other techniques including FGLS. Evidently, correcting for
heteroscedasticity using the Harvey functional form and Z = X for
.:H heteroscedasticity design matrix is suflicient to bring this parameter
in .::n with that suggested by the robust methods.” The FGLS
wm:_:u:o: downweights the center city Boston tracts that Belsley et al.
identify as causing estimation problems.

The (Harvey) heteroscedasticity equations using several of the
robust estimators and OLS are displayed in Table 12. There is agree-
ment among all of the equations that the <m1m:#m of the error terms

Table 12. Boston Heleroscedasticity Parameters

) .C\:,m TRIM(.2) HUBER WeELSCH BISQUARE — ANDRI
(STDERR) (STDERR) (STDIERR) (STDERR) (STDERR) (STDERR)

INTERCEPT  — 28522 ~3.0354 —4.1814 —5.7942 — 5.349] —531712
(1.8026) (1.277) (1.6503) (1.7257) (1.6981) (1.6959)
CRIME 0.0250 0.0144 0.0256 0.0202 0.0489 0.0488
(0.0150) (0.0091) (0.0120) (0.0129) (0.0131) (0.0131)
ZN 0.0022 0.0046 0.0061 0.0081 0.0072 0.007}
(0.0060) (0.0039) (0.0050) (0.0052) (0.0052) (0.0052)
INDUS —~ 0.0308 —0.0218 —0.0472 —0.0451 —0.0157 —0.0355
(0.0284) (0.0199) (0.0242) (0.0284) (0.0274) (0.0272)
CHAS (.4401 —0.176 0.267% 0.1185 0.1150 0.1096
(0.4001) (0.314) (0.3381) (0.3670) (0.4076) (0.4050)
NOXSQ ~ 0.0066 —0.0043 —0.00971 —0.0032 ~10.0102 —0.0102
(0.0136) (0.0097) (0.0119) (0.0125) (0.0127) (0.0127)
ROOMS —0.0012 ~0.0232 —0.0265 —0.0338 —0.0350 —0.0355
(0.0158) (0.0116) (0.0147) (0.0157) (0.0157) (0.0155)
AGE —0.0099 0.003% —~0.0014 0.0027 0.0036 0.0033
(0.0063) (0.0045) (0.0056) (0.0057) (0.0059) (0.0059)
DIS —1.5756 — 0.5008 ~1.2595 — 10649 = 1.005] —1.0009
(0.4024) (0.283) (0.3672) (0.3712) (0.3669) {0.3664)
RAD © 01010 0.0075 —0.0430 ~0.0735 —0.0709
(0.2305) (0.2004) (0.2061) (0.2006)
TAX 0.0017 0.0042 0.0050 0.0043
0.001) (0.0012) (0.0014) (0.0013)
PTRATIO —0.0213 0.0188
(0.0604) (0.0399) (0.0505) (0.0529) (0.0528)
BLACK 1.3183 0.3687 1.0071 0.7049 —0.0432 —0.0879
(1.2426) (0.8821) (1.1314) (1.1971) (1.2583) (1:353%)
LSTAT — 0.0800 —0.3663 —0.3259 —0.4526 ~0.4828 —0.4780
(0.3013) (0.2163) (0.2732) (0.2757) (0.2586) (0.2870)
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decreases as the distance to the nearest employment center (DIS)
increase. The robust estimators, however, also suggest that the
variance of the error terms increases with the crime rate, decreases as
the number of rooms goes up, and increases with the tax rate. These
results are fairly consistent with the urban economics literature and
could be expected in center city areas where some of the most
expensive and least expensive census tracts are in close proximity to
each other. However, the large change in some of the coeflicients
indicates that we are probably dealing with other problems in addition
to heteroscedasticity. .

Belsley et al. (1980, pp. 238-239) using a variety of indicators,
including those based on the observation’s leverage (the hat matrix)
and the magnitude of the studentized residuals, provide a list of 67
observations (out of 506) that are likely to cause problems in estimating
the Boston housing equation. Table 13 shows how many of these 67
observations were down-weighted by each of the M-estimators. The
10% trimmed least-squares estimator (20% of the observations
deleted) sets 46 (of the 67) observations to zero; the weighted 10%
trimmed least squares, 48; the 20% trimmed least squares estimator,
54: and the weighted 20% trimmed least squares estimator, 54."
Table 14 shows the total number of times (out of 12) that the M-
estimators or trimmed least-squares estimators placed each of the 67
observations among the 20% of those observations with the smallest
weights. It is interesting to note that many of the Cambridge tracts
[143-172] were not down-weighted while most of the Boston city
tracts (including a number of those not in Belsley et al.’s list) were
heavily down-weighted by almost all of the techniques. This finding
reinforces Belsley et al.’s basic conclusion that it is likely that many of
the Boston (proper) tracts belong toa fundamentally difTerent housing
market than the majority of tracts included in the Harrison and

Rubinfeld study.

Vill. CONCLUDING REMARKS

What we have attempted to do in this chapter is to adhere to the
original philosophy behind the development of robust estimators:
(1) the estimator should not give up much efficiency relative to the
maximum likelihood estimator if the assumptions being made are true
and (2) the estimator should be more efficient and more importantly
less prone to bias if those assumptions are not met. The standard

)
|



Number of Troublesome Observation Down-weighted by M-Estimators

Tuble 13.

WELSCH WWELSCH  BISQUARE WBISQUARE  ANDREWS WANDREWS

WHUBER

HUBER

35
46

35
46
53

20
35
50

37

37

Lowest 10%

34
47

34
47

46
54

37

47

Lowest 20%

48 37

Lowest 40%
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Table 14. Robust Estimators (12) Down-weighting Each Troublesome

Observation
; OB # #LOW  OB# #LOW  OB# #LOW  OB# #LOW
(8] 12 [163] 0 1369] 12 [410) 12
{124) 0 {164 0 (370} 12 4] 9
[127) 0 [215] 12 [371] 9 [412] 8
[143] 8 [258] 3 1372} 12 {413} 12
[144] 0 (284] 0 (373] 12 [414] [0
{148} 0 [285) 2 [381] 8 j415] 6
1149) 12 1343} 12 [386] 10 [416) 12
[151] 0 [358) 2 (388 9 {417 12
(152] ! 1359} 9 1392) 12 [419} 9
{153 0 (360] 12 [398 12 [420] 12
[154} 1 1361} [ [399] 10 [427) 8
[155] 2 1362} 5 {400} 12 (467} 12
1156} 0 [363] 9 [401] 12 [474) 12
(157] 0 365] 12 1402} 12 1490} 12
{160} 0 {366} 12 (404] 9 [491] 12
[161] 0 1367} 12 (406} 5 (506] 12
[162) 2 [368] 12 [408) 12

robust regression estimators fail on the first criteria. In the presence of
heteroscedasticity, they can be quite inefficient relative to the maximum
likelihood estimator that takes account of that heteroscedasticity.
Unfortunately, the cross-sectional regression problems typically con-
sidered by economists wil be characterized by heteroscedasticity as
well as the other problems that make robust regression look attractive.
Robust regression retains all of its good properties in this situation,
however, after weighting to correct for the heteroscedasticity. And
there appears to be a bonus to this weighting of the robust estimator
if the weights are estimated robustly rather than with OLS. This is
particularly true if the underlying error distribution is somewhat thick
tailed or contaminated with gross errors.

There are obvious extensions to the work we have pres
here. These include experimenting with different forms of hetero-
scedasticity,” different methods of generating gross errors, different
types of leverage in the design matrix, gross €rrors in the design
matrix, and other possible error distributions including short-tailed
and more importantly, asymmetric ones (Carroll, 1979). We devoted

— much of this chapter to discussing the estimation of regression
coellicients. The issue of robust estimation of variances has barely

ented

been touched upon and yet the ““{rail” nature of variance estimates
with nonnormal data and the relatively good performance of location
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estimators were noted long ago in Box’s (1953) classic article. One of
the reasons for the good performance of the robust estimators in the
:oﬁ:m_ heteroscedastic cases is that they are superior in estimating the
Ea_m_:.m. The Boston housing regressions touched upon this issue, and
we believe that most tests of heteroscedasticity should be oma:om out
using one of the robust techniques.

To some extent the M-estimators outperformed the TRIM esti-
mgm:oa. We note here that in our modification of the Barrodale and
Roberts algorithm, the trimmed least-squares estimator is extremely
fast and has none of the slow convergence problems of the hard
redescenders.” It is also scale invariant which is an attractive feature
M<o have real problems with the LAD om::::vh The need for m.

m_:o.o:ﬂ, to get the proper LAD standard errors is toublesome. For
the distributions under investigation, we were able oxvoaaoam:v\ to
set :6. degree of smoothing used so that the parameter f(0)~' could
vo. om:_:.ﬁoa reasonably efliciently. In very large samples the appro-
priate window size for the smooth is less troublesome. This is an area
of voﬂo::s:v\ useful research although the LAD estimators were
consistently dominated by the other robust estimators so we do not
So.o:::o:a their use. In general, however, the choice of which robust
estimator is less important than simply the use of one of them. We
have a slight preference for the WHUBER or the WTRIM(0.1) :r_omm
one expects a high percentage of bad observations in which case one
of the hard redescenders would be preferred. ‘

We 5.:5:% thought that confidence interval estimation and
hypothesis testing was going to be much more of a problem than it
appears to be. We had anticipated having to use Efron’s (1979)
bootstrap .8 obtain valid standard errors. That technique is very
computer ::a:m?o and tends to produce results less accurate than
.:58 obtained here.”” Bootstrapping’s best applications are.probably
in smaller m.u::u_mm where it is unlikely that any asymptotic maova:mom
can be relied upon. A related but less computationally intensive
_:Q:.oa would be to modify White’s (1980b) heteroscedasticity-
consistent variance matrix for the robust estimators used here. It
Eop.__a be interesting to compare the efficiency ol that Eoooa.:a
against direct estimation of the weights when the functional form of
the heteroscedasticity equation was misspecilied. -

As a recommendation for applied work we can see little reason not
6 use one of the robust estimators. They are quick and produce
virtually the same results as OLS and FGLS when the normality
and no gross error assumptions are met. This is by now an old

3

-
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recommendation, but economists are only slowly moving in that
direction with their applied work. We have shown that robust methods
work well in the presence of heteroscedasticity and gross errors, two
of the primary characteristics of the cross-sectional data sets used by
economists. The gains from using weighted robust regression estimators
appear to be even larger in this environment than in the simple
location cases often put forth by statisticians to support the use of
robust techniques.

Finally, we hope that we have provided the missing elements that
we so often hear as the reason for not using robust regression, i.e., how
do you test hypotheses and where are my t-statistics. Our work here
suggests that doing this in a robust regression framework is not much
more difficult than in the OLS/FGLS framework." We believe that
hypothesis tests carried out with robust methods are likely to be much
more valid than those based on methods requiring independence,

normality, and the absence of gross errors.

NOTES

1. White (1980a) suggests a number of reasons, particularly stratification in
sample surveys, why regression estimales of cross-seclional economic dala are almost
always characterized by heleroscedasticity. Most introductory and advanced ccono-
metric books contain good descriplions of how heteroscedasticily comes about. Judge
et al. (1985) provides a good overview of the different test and correction methods

commonly used in econometrics.
2. Krasker ct al. (1982) have emphasized the gross error nature of ecconomic

cross-scctional data.
3. Recent work on this topic includes Dijkstra and van der Zouwen (1983), Rossi

ct al. (1983), and Wright (1983).
4. This data set has become well known through its use in the book by Belslcy

ct al. (1980) on regression diagnostics.

5." We can only hope to present a bricf overview of robust regression here. The
interested reader should refer to the review article by Koenker (1982), the chapter by
Goodall in Hoaglin et al. (1983), and the books by Huber (1981) and Hampel et al.
(1986) for more discussion.

6. The two other general classes of estimators arc L-cstimalors, which are based
on lincar combinations of order statistics, and R-cstimators, which are based on
ranks. M- and L-cstimators arc considered in this paper. Huber (1981) and Lehmann
(1983) provide general discussions ol the different types of estimalors.

7 Several M-estimators with diflerent p's have been proposed (Andrews et al,
1972: Lluber, 1981), most of whcih can be efliciendy and casily computed using
iteratively reweighted Icast squares (Coleman ct al., 1980). 1f the p.d.f. fis known, the
choice p = —log(f) gives the maximum likelihood estimator, which for the normal

density (p = x7) is the OLS estimalor.
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8. The Andrews and the bisquarc are smooth redescenders that have some
desirable propertics that the discontinuous threc-part Hampel redescenders do not
enjoy (Hoaglin ct al., 1983).

9. This is not true of those M-estimators in the /; norm (LAD) or the /, norm
(OLS).

10. The problem of starting values is far more acute for redescending estimators
that may have local minima than for the Huber which is well behaved and converges
rcadily. .

1. We consider symmetric trimming here. The trimmed mecans with trimming
fraction « between 0 and 0.25 has been shown to perform well in a wide variety of
situations including those in which only normal micasurcment error of a physical
constant should have been present (Stigler, 1977).

12, Ruppert and Carroll also show that as « approaches cither zero or 0.5 that the
trimmed least-squares estimator approachces its preliminary estimator.

13, By recasting the minimization problem for the Smﬂwmm,o: quantile as a lincar
programming problem, it can be shown that k of the residuals from the regression
quantile are zero.

14, Since genceralization of this estimator to the heteroscedasticity case appears
quite different from the traditional M-estimators, we do not consider it Turther in this
chapter.

15. A mixturc of normals is frequently relerred to as a contaminated normal,
particularly when the percentage of observations coming from the normal with the
larger variance is small.

16. Sims (1971) over a decade ago noted the problem and importance of dis-
tinguishing between heteroscedasticity and long-tailed error distributions.

17. In the sensc that the diagonal clements of the hat matrix arc equal.

_m.. We note that almost alt of the Monte Carlo results on robuist regression
_oQ_:o:.nm::::oG to date have involved samples sizes between five and fifty
obscrvations. Results on moderate and larger size samples are almost nonexistent,

19. Theorems such as those proved by Huber (1981) that are based on the
behavior of an estimator as n becomes large with a fixed p/n ratio tend to provide
much more guidance for applied work with moderately sized samples than do
standard asymptotic results.

20. Notc that at fairly high levels of kurtosis (i.c., kurtosis > 4.5, where the
kurtosis of the normal distribution is 3) the performance of various robust and
nonrobust estimators begins to diverge quite significantly between the members of the
cxponential power family and the ¢-distribution with the same level of kurtosis. Sce
D'Agostino and Lec (1977) for some results in the location case.

21, We used the algorithm of Johnson et al. (1980).

22, The ZAP is virtually indistinguishable from a Student’s ¢-distribution with 6
degrees of frcedom. The normal has a kurtosis of 3, the ZAP 4.5, the double
cxponential 6, and the particular contaminated normal we used 8.3. Qur contaminated
normal draws 10% of the error terms from a normal distribution with a variance 9
times that of the other 90% of the error terms. .

23, The rescarcher should consider Krasker and Welsch's (1982) vo:r:_oa
influence estimator if the x7s can take on a very wide range of values and the X matrix
has very high leverage points that cannot be rejected a priori as bad data.

o
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24. Virtually all of the Monte Carlo simulations we have come across have
represented gross errors in this way. The contaminated normal and the “one wild”
distribution have been particularly popular (e.g., Hoaglin et al., 1983).

25. Again we feel that y;s above 1000 are likely to be caught by the careful
researcher. Y/s in the 500 to 1000 range are occasionally generated by the truc
distribution and hence could not be rejected easily a priori as bad data, although such
points might be suspicious.

26. I there is no heteroscedasticity as in Tables 1 and 6, the GLS estimator is
simply OLS. In the Monte Carlo experiments reported in Section Y1 the comparisons
arc always made to the GLS estimator using only the good obscrvations.

27. For the Huber, K, = 1.345; for the WELSCH K, = 2.985; for the BI-
SQUARE K, = 6.2; for the ANDREWS K, = 1.339.

28. The potential user should note two flaws in this routine that we had to correct
for our experiments: (1) the WELSCH function is miscoded in ROSEPACK and (2)
the intrinsic weight function in the S interface (nccessary for heteroscedasticity
correction) is miscoded.

29, Out of 200 repetitions, 10 rejects is exactly the two-tailed 5% level of
rejections. The number of rejections has a binomial distribution and the expected
range for most of these distributions is 8 to 12 rcjections.

30. Tables for experiments using sample sizes of 50 and 500 are to be found in the
discussion paper version of this chapter (No. 87-24, Dept. of Economics, University
of California, San Dicgo).

31. Keep in mind that these results are for a design matrix with virtually no
leverage. It is easy to obtain results (not reported here) which show that OLS and
FGLS can become arbitrarily bad as gross errors occur in combination with high
leverage points.

32, Bias is usually picked up in the intereept coefficient ff, and in the /i, cocflicient.
An cxamination of the X matrix reveals that what litUe leverage this matrix has is in
the last 10 obscrvations and is caused by a small x; value.

33. Tables for these sample sizes are presented in our Discussion Paper 87-24,
University of California, San Diego.

34. Only the LAD, WLAD, and unwcighted TRIMs consistently produce con-
fidence intervals that are much too short. The properties of this estimator are known
to change somewhat in the presence of heteroscedasticity. The work reported in this
and the previous section suggests that valid hypothesis testing for this estimator will
depend on determining whether or not the heteroscedasticity can be detected. In the
experiments presented here this does not secm to be a problem.

35. This data set is reproduced in Belsley et al. (1980).

36. Harrison and Rubinfcld (1978) state that they obtained positive results from
a test of heteroscedasticity but that correcting for it did not make much ol a change
in the NOXSQ cocllicient. The test they performed is not described in detail.

37. The bisquare scts the weights of 20 obscrvations to zcro, all of which are
among the 67 enumerated by Belsley ct al. The weighted bisquare sets the weights on
4 observations to zero, 3 of which arc among the 67; the Andrew’s. 22, all of which
arc among 67: and the weighted Andrew’s, 6, 4 of which arc among the 67.

38, Carroll and Ruppert's (1982b) work is the only other that we know of that
provides Montc Carlo results on robust estimation with heteroscedasticity. They
found that the form of heteroscedasticity had little effect in a comparison between

different estimators.
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39.  In onc small experiment of 10 repetitions including calculating the standard
crrors for the 100 observation case, we found the following times (in seconds) on the
VAX 11/750 using the S statistical computing package: OLS (16), LAD (29), TRIM
(33), HUBER (46), and ANDREWS (57). ,

40.  Wu (1986) dclails some of the problems with using the boostrap with the
heteroscedastic lincar model.

41. Programs for cstimators, including the calculation of standard errors
described in this chapter are available from the authors which arc easily installed mm,
uscr supplied S (Becker and Chambers, 1984) functions on a UNIX machine.
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