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Introduction 

Most large databases contain numerous missing 
data points. This is particularly true in the social 
sciences where missing values are common in the two 
major forms of data collection, surveys and admin­
istrative records. Missing values occur in question­
naires when respondents fail to answer some ques­
tions or when screening procedures set implausible 
values for observations as missing. Missing values 
occur in administrative records when information 
is not available at the time of original data entry 
or, as frequently happens, is never recorded. Fre­
quently, a substantial fraction of the observations in 
a database have one or more missing values. Thus, a 
good method for handling observations with missing 
values is needed to effectively summarize the infor­
mation in a large database. 

The most common empirical practice for deal­
ing with missing data is to drop any observation with 
a missing value on any variable of internst. This 
common practice, however, results in inconsistent 
estimates of both univariate statistics and the rela­
tionships between the variables except in the fairly 
unusual case when variable values are missing com.­
plet.ely a.t random (Little and Rubin, 1987). Even in 
this case, where missing values are said to be ignor­
a.hle, dropping observations generally results in inef­
ficient estimates, particularly if the fraction of miss­
ing data is large. For this reason, ad hoc methods 
are o~en used in empirical practice, such as setting 
a missing value on a variable equal to the variable's 
mean or to the last valid value from a hot <leck. 1 Un­
der typical circumstances, however, variable values 
are not missing at random. Thus, it is useful to iden­
tify two different situations that differ on whether a 
variable's values are missing at random or not at 
random conditional on a set of observed covariates. 

The first case is amenable to imputing consis­
tent estimates for the missing values using a variety 

of classical and Bayesian techniques (Little and Ru­
bin, 1987; Gelman et a.l., 1995). To impute miss­
ing values in this case, one specifies a statistical 
model, typically in a regression or maximum likeli­
hood framework, to predict the missing values. The 
most popular classical and Bayesian approaches are 
based upon the well-known EM algorithm where 
some missing values ( e.g., those on the first variable 
of interest) are predicted first on the basis of com­
plete observations and then, conditional on those im­
puted values and the observed data, other missing 
values arc imputed. The process is continued with 
the original imputed values being progressively re­
placed with more refined estimates until some con­
vergence criterion is met. This paper proposes an 
alternative to these methods based upon binary par­
titioning approach of CART (Breiman, et a.l., 1984). 

Consistent estimates of the missing values can 
also be obtained in the second situation, but often 
with considerably more difficulty because the mech­
anism causing the rr:issing values is tied to the unob­
served error distribution and often involves unknown 
censoring or truncation processes. This second sit­
uation is often referred to in econometrics as the 
sample selection bias issue (Heckman, 1979). We 
do not explicitly deal with this case here except to 
note that using an additional covariate can change a 
(b) situation to an (a) situation, as can knowing the 
functional relationship (up to an estimable param­
eter vector) bet.ween the variables of interest. As a 
consequence, we believe that more situations will fall 
into (a) rather than into (b) when using a CART­
based missing value imputation approach than when 
using an ElVl-based approach due to CAR.T's ability 
to effectively search over large sets of possible covari­
ates and to uncover highly non-linear relationships. 



Characteristics of An Ideal Missing-Value Im­
putation Procedure 

An ideal missing valuation imputation proce­
dure should have six characteristics. It should pro­
duce estimates for the missing values that are (1) 
unbiased and (2) reasonably efficient. The proce­
dure should work well with (3) both continuous and 
categorical variables and mixtures of these two types 
of variables. Further, the estimates for the missing 
values should be fairly insensitive to specific model­
ing assumptions, particularly those involving (4) er­
ror distributions and (5) the functional relationships 
between variables. Finally, the procedure should (6) 
be easily automated for a large number of variables 
and not require substantial hand tuning or individ­
ual functional form specification for each variable of 
interest. 

Ad hoc imputation measures such as replacing 
missing values with the variable's mean meet only 
(4), (5), and (6). In general, estimates from such 
procedures tend to use available information very 
inefficiently and can introduce substantial bias into 
the parameter estimates of interest. Regression and 
EM-based approaches also usually fail (4), (5), and 
(6), although robust variants of these approaches 
that solve some of the issues with (4) are available. 
Automated versions of the EM approach, such as 
the procedure contained in the statistical package 
BMDP, effectively maximize a correlation matrix. 
This procedure satisfies (6) by giving up (2) and (:3) 
and increasing the sensitivity to (4). 

Carson (1984) proposed a missing-value impu­
tation approach based on CART which meets (1), 
(3), (4), and (5) and also improves on (2) relative to 
commonly-used ad hoc approaches. 2 CART is widely 
used as a non-parametric approach to uncovering 
the relationship between a dependent variable and a 
large set of possible predictor variable,s. As a binary 
partitioning method, it can potentially avoid prob­
lems associated with not knowing the structure of 
the relationship between variables. Like most non­
parametric procedures, CART avoids the need to 
make distributional assumptions but requires a large 
number of observations to work well. The major 
drawback of Carson's (1984) proposed use of CART 
as a method for imputing missing values on a large 
number of variables was that it required substan­
tially more computational resources than were gen­
erally available to researchers at the time. As this 
limitation is no longer binding even for quite large 
datasets, we consider the possibility of automating 
the original CART missing-value approach and im-

proving the efficiency of the estimates of the missing 
values. We also consider how various imputation op­
tions introduced in conjunction with the EM and hot 
deck missing-value procedures can be incorporated 
into a CART framework. 

A Sketch of Automated CART Missing-Value 
Imputation 

Here we sketch how an automated CART miss­
ing value imputation algorithm works. Start with a 
data matrix X consisting of i = 1, .. . , n rows (obser­
vations) and j = 1, ... , k, ... , m columns (variables). 
X is allowed to have an arbitrary pattern of miss­
ing values, although consistency of the algorithm 
require,,s that the missing-at-random conditional-on­
available-covariates requirement be met. The algo­
rithm works as follows: 

(1) Starting with column vector X1, estimate a 
CART tree, dropping all the observations with miss­
ing values on x 1 and using the surrogate split feature 
to handle observations with missing values on the 
predictor variables Xk (k -::J 1). Obtain predicted x 1 

for observations with missing x 1 values based upon 
the terminal nodes defined by the estimation proce­
dure using one of the approaches described in the 
next section. Repeat this procedure using each col­
umn in X in turn as the dependent variable and the 
other Xk's as the independent variables. 

(2) Now re-estimate a CART tree for each col­
umn of X using as the dependent variable the origi­
nally valid Xj values where available or the predicted 
Xj values from (I) if not. Obtain a new set of pre­
dicted Xj values for observations originally missing. 

(3) Now re-estimate the CART trees using only 
originally valid values of Xj and as predictors use the 
other Xk variables where the values used for these 
variables are the originally valid Xk values if avail­
able or, if originally missing, the predicted Xk from 
(2). Obtain a new set of predicted values for the Xj 

originally missing. 
(4) Re-estimate CART trees again using origi­

nally valid Xj or the predicted Xj from (3) if origi­
nally missing. Obtain a new set of predicted Xj. 

(5) Repeat (3) and ( 4) until the convergence 
criteria are met. 

Alternative Terminal Node Imputation 
Schemes 

Conceptually, the terminal nodes from a CART 
estimation can be thought of as defining an impu­
tation class. Thus, the difference between hot deck 



imputation classes and CART imputation classes is 
that the CART imputation classes are estimated 
non-parametrically from the data rather than be­
ing determined a priori by the researcher on an ad 
hoc basis. Given the CART imputation classes, it 
is possible to use a variety of methods to obtain an 
estimate for a missing value. 

The simplest way is to take as the estimate of 
the missing value a summary statistic such as the 
mean from the terminal node into which the obser­
vation falls. This method improves on the common 
practice of replacing the missing value of a variable 
by its unconditional mean by using the conditional 
1nean. 

The hot deck exploits user-defined imputation 
classes and positive spatial or temporal autocorre­
lation within the imputation class. CART-defined 
imputation classes should be better on average than 
those defined by users on the basis of variables 
thought to be predictive of the variable of inter­
est. Within a CART imputation class, possible pos­
itive autocorrelation can be exploited by imputing 
the value of the observation in the imputation class 
which is closest according to some measure of dis­
tance or time. 

The drawback of these approaches, as noted in 
the EM-based imputation literature (Rubin, 1987), 
is that they all tend to depress a variable's variabil­
ity after imputation relative to the true variance of 
the variable if it had no missing values. This occurs 
because one is effectively imputing some variant of 
an expected values. The problem of variance sup­
pression with CART-based missing value imputation 
can be overcome in similar ways to those proposed 
for EM-based approaches. Methods include imput­
ing a randomly-chosen valid value from the CART 
terminal node or using multiple draws from the valid 
values of the CART terminal node. It is also possible 
to draw from CART "residuals" or to fit a distribu­
tion to the valid values in the imputation class and 
draw from that distribution. 

Discussion 

A key issue in implementing the proposed ap­
proach is whether it is computationally feasible. To 
examine this issue we have been using a subset of the 
U.S. Census Bureau's March 1992 Current Popula­
tion Survey with 25 variables roughly split between 
continuous and categorical and 35,000 observations 
with 20% of observations on each variable randomly 
set to missing. On a mid-range DEC Alpha with 
two complete iterations through the data, imputa-

tion of all the missing values takes less than 15 min­
utes. Thus, the proposed procedure seems inside 
the computationally feasible set for a wide range of 
problems. The performance of the algorithm in this 
instance, where most approaches to missing value 
imputation work well, is quite good, producing un­
biased and fairly efficient estimates. We are cur­
rently experimenting with how computational re­
quirements change with the number of observations, 
the number of variables, the number of categorical 
variables, the number of categories comprising the 
categorical variables, and the number of times the 
algorithm is allowed to iterate. 

On smalh~r data. sets we have examined the abil­
ity of the proposed algorithm to uncover reason­
ably complex relationships that make the missing­
at-random conditional-on-available covariates a rea­
sonable assumption. This is obviously the more com­
mon and more important case than the missing­
completely-at-random case. In very limited testing, 
the algorithm appears to work well on these prob­
lems, producing estimates that are considerably less 
biased than most other approaches, including the au­
tomated version of the EM algorithm and variations 
on the hot deck. Much of our future simulation work 
will attempt to characterize situations where the al­
gorithm is or is not likely to work well. 

The iterative structure of this proposed algo­
rithm is similar in many ways to the EM algorithm. 
Other iterative paths to updating missing variable 
values than the one proposed here are possible. For 
instance, it may be desirable in the first step to use 
predicted values from the CART trees already es­
timated in predicting subsequent Xj. The relative 
performance of these various paths is an open re­
search issue. Following the general CART frame­
work, incorporation of priors for categorical data is 
straightforward and may result in substantial effi­
ciency gains where there is outside information on 
characteristics of the relevant population. The per­
formance of the proposed procedure with priors 
should be examined. A number of potential conver­
gence criteria generally can be expressed in terms 
of changes in either the structure or predictive abil­
ity of the CART trees grown for each Xj or in the 
predicted values of the missing observations. The 
performance of various crite ria, and more gener­
ally, the improvement from additional complete it­
erations beyond two, is also an open question. 



Footnotes 

1 The hot deck is a commonly-used approach 
for large survey data sets based on user-defined im­
putation classes and exploiting autocorrelation (typ­
ically spatial) within the imputation class. There are 
many variants of the approach. 
See Matlow et al .. (1983) for a discussion. 

2 The approach proposed here is substantively 
different than one currently embodied in the com­
mercially available version of CART (Steinberg and 
Colla, 1995), which has built into it a procedure 
for handling missing values. That procedure does 
not explicitly impute missing values but rather deals 
with missing values in a consistent and somewhat 
more efficient fashion than do most other statistical 
procedures. CART currently finds the single binary 
split that maximizes the objective criteria by exam­
ining splits based on bivariate pairs of complete cases 
involving the dependent variable and the allowable 
set of independent variables. After finding this split, 
CART determines the other bivariate splits that be.st 
mimic the optimal binary split. This information is 
then used to determine in which direction in the tree 
to send an observation with a missing value on the 
independent variable in the optimal split. The list is 
gone down until there is a "surrogate" split for the 
observation in which the independent variable does 
not have a missing value. 
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