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L Introduction

Data smooths have become increasingly popular
as a means of summarizing the relationship between
two variables particularly when a non-linear relation-
ship is suspected or when a graphical display is
desired. There are a number of distinct types of
data  smooths: histograms, nearest-neighbor
smooths, kernel smooths, and regression smooths.
Of these regression smooths have been the most fre-
quently used because of their speed and ease of
interpretation. There are three key features of a
regression data smooth. These are its ability to
_trade off bias and variance, its robustness and resis-
tance properties, and its speed. What we propose in
this paper is a regression data smooth based on an
i~estimator, trimmed least squares, which represents
one attempt to balance these different objectives.

A data smooth by definition estimates the
expected value of the variable y; given the variable
z;. To make the data smooth operational one must
place restrictions on the relationship between the ;
and the y;. The larger the window size used in the
smooth the smaller the variance, due to the larger
number of points over which the regression is
estimated, but the greater the risk of bias if the Yy
do not change smoothly with the z; since a small win-
dow size allows the fitted values to change quickly
with changes in the z;. (The ordinary bivariate
regression can be seen to simply be a regression
data smooth with a window size fixed at the length of
the data.) Recent work on regression data smooths
has tended to emphasize two approaches to defining
window size. The first of these is represented by
Friedman and Stuetzle's super smoother (1982) and
various spline smooths which allow for a variable
number of knots (e.g., Wahba and Wold, 1975). These

- smooths use either local cross-validation or calcu-
‘late fitted values for several different window sizes to
determine the appropriate window size in different
regions of the data space in order to optimize some
predefined trade-off between bias and variance (usu-
elly mean square error). The second approach uses
a fixed window size but assigns decreasing weights to
- values of x as they get further away from the T, at
_ which that particular window {or regression) is cen-
tered. Cleveland (1979) has combined such a
_W.Enghting scheme with the robust M-estimator, the
bisquare. The data smooth we propose closely fol-
lows Cleveland’s LOWESS except that it is based on
the L-estimator, trimmed least squares. Qur data
" an.ooth which we will term LOWTESS, for Locally
: Weighted Trimmed Least Squares, has advantages

:_ver LOWESS in some (but certainly not all) situa-
ions.

I Cleveland's LOWESS

Since LOWTESS is basically a modification of
LOWESS (Cieveland, 1979), we examine in this section
‘the basic characteristics of LOWESS and define the
_Dotation to be used. We will use X and Y to represent
the two random variables of interest, and x and y to
denote realizations of those variables with subscripts
to denote particular values. The fitted value, 4. of
the v, at the point z, depends on all the z; and y; in
the sample and the properties of the smooth, S.

To define S, one needs to specify the window size
- either the fraction of the observations or the range
of X values to be included within the window - and
how the observations falling within the window are to
be used in determining the fitted value y,. The win-
dow size in LOWESS is determined by the fraction, f,
of the data points (rounded to the nearest integer)
to be included within the window. Cleveland recom-
mends choosing f in the range 0.2 to 0.8, suggesting
that a value of 0.5 is a good starting point if the user
has little 'feel' for the data. The later implementa-
tion of LOWESS in the Bell Laboratories statistical
language, S (Becker and Chambers, 1984), uses a
default value of 0.8667 for f. Obviously, the more data
points one has or the greater the suspected non-
linearity, the smaller f should be, while the converse
is also true. Cleveland suggest some methods for
optimally choosing [ but these are generally not
practicable for everyday work.

The weight function used by LOWESS is the tricu-
bic. Observations outside the regression window
receive zero weight while the weights for observa-
tions inside the window decline smoothly (in a sym-
metric fashion) with the distance from the point z, at
which the window is centered. This weight function is
given by

(1 = [uw|®)if |u|<l
lu) = 0 otherwise

(1)

where u=[(z — z,)/ h,] for any z within the window
and h, is the window width. Cleveland notes that the
tricubic weight function provides a "third moment
match” of the chi-square distribution with the
squared residuals from the smooth in the case where
bias is negligible and the underlying distribution is
normal.

The next step is to choose the degree, d, of the
polynomial in the z; to be fitted (using a weighted
regression) to the y; within the window. The obvious
choice when all the z; within the window are identical
is simply to take the mean of the corresponding y; as
the fitted value, which amounts to taking d=0. Cleve-
land suggests that a linear fit {(d=1) is a good choice
because of the computational burden of fitting qua-
dratic or higher-order (d=>2) polynomials.-(We shall
see that this is less true of LOWTESS). One interpreta-
tion of the degree d of the fitted polynomial is in
terms of the order of a Taylor series expansion,
where due to the weights and the more local nature
of the regression estimated this interpretation is less
"inappropriate” than it is in the standard regression
case (White, 1980).

The vulnerability of regression smooths to
outliers is especially troublesome if the data have a
thick-tailed, non-normal distribution or if the rela-
tion between the X and Y is not smooth, the more so
because the number of data points within the window
can be small and because of the large weight given to
points near the point z; where the fitted value is to
be found. Cleveland’'s LOWESS proposal calls for
using Beaton and Tukey's (1974) bisquare robust M-
estimator.




Let z; = {1z z? - - zf) and let ¥, = W(z;). The
fitted value, §;, is given by z; ,S where 5 is a solution
to

Bty - 2) 8y ~mp)/8s) = 0. (@)

Here the biweight weighting function, B, is given by

(1 —-2%)? if |z]|<1
otherwise (3)

and s is the median of the |#¥(y, —2;8)]. For a
linear fit (d=1), (2) is easily and quickly solved using
iteratively reweighted least squares (Coleman et al.,
1980), with the least squares estimate of 8 as the
starting value. While several other M-estimators
could have been chosen, the biweight has the advan-
tage of having a redescending weight function,
assigning zero weight to observations with large resi-
duals.

B(z) =

Il Trimmed Least Squares

An alternative to the family of M-estimators is
that of L-estimators which are linear combinations of
order statistics. In the simple location case, the best
known member of this family of estimator is the a-
trimmed mean which includes the ordinary mean
(« = 0, no trimming) and the median (a = 0.5) as spe-
cial cases. A regression analogue of the o -trimmed
mean using regression gquantiles (Koenker and
Basset, 1978; Basset and Koenker, 1982) has been
proposed by Koenker and Basset (1978) and Ruppert
and Carroll (1980). Extending the concept of quan-
tiles to.the linear model, y; = z;8+e; (where 8 is a
px1 parameter vector), Koenker and Bassett (1978)
defined regression quantiles, ﬁ(ﬂ) to be solutions of

min 3} pa(yi—2,6). 0<8<1, (4)

where pg(u) = $u — uwl(u<0). Eq. (4) may be recast
as a linear programming problem: and solved
efficiently using a modified version (Fulton,
Subramanian and Carson, 1984) of the Barrodale and
Roberts algorithm (1974) for the least absolute devi-
ations the estimation problem (ie., the case
theta =0.5).

Ruppert and Carroll's (1980) trimmed least
squares (TLS) estimator is the least squares estima-
tor computed after dropping the observations
corresponding to the [anlth largest and [an]th
smallest residuals from a consistent preliminary esti-
mator, fq. When fg is chosen to be the average of

8(x) and §(1 — «), their TLS estimator has an asymp-
totic distribution (under certain regularity and sym-
metry assumptions) completely analogous to that of
the trimmed mean in the location case.

IV. A Smooth Based on Trimmed Least Squares

Our data smooth simply substitutes TLS for the
biweight M-estimator used by Cleveland in LOWESS.
LOWTESS and LOWESS produce similar results. It is
fairly easy to construct situations where one estima-
tor does quite well in uncovering the underlying
"true" relation generating the data while the other
does'not.

As one is performing a different regression at
each data point in the sample space it is easy to see
why speed is important in a data smooth. For a
linear fit (d=1), LOWTESS, the smooth based on TLS,
is slower than LOWESS. Since the LOWESS implemen-
tation in S does not make higher-order fits, we have
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no time comparisons for d=2. However, we expect
that LOWTESS will be faster than LOWESS for dap
because the time taken to compute regression quan-
tiles increases slower with d than does the time
taken for solving the least squares problem. More-
over, we expect that the regression quantile compuy-
tation can be speeded up substantially by making
use of a useful feature of the data smooth. We find
that the optimal solution bases (in the LP algorithrm)
for the regression quantiles computed (in the course
of the TLS computations) at two adjacent data
points, z; and z;,,, are very nearly and often the
same. As a result, by using the optimal solution
bases obtained during the TLS calculations at z; as
the initial bases {in the LP algorithm) at the next
data point, z;,,, the number of iterations required to
compute the regression quantiles falls very consider-
ably. The fastest TLS-based smooth is when a=0.5,
i.e, a smooth based on the LAD estimator.!

V. Monte Carlo Results

In the first set of Monte Carlo experiments, the |
relation between X and Y is linear and the window
size of both smooths has been fixed at .687. Three
error distributions have been used: a normal, a
heavily contaminated normal {30% contamination by
a normal distribution with 9 times the variance), and
the double exponential. All three error distributions -
have the same variance. For LOWTESS, results are -
given for a= 0.1, 0.2 and 0.5 (LAD) and d=1. In the
second set of Monte Carlo experiments, the relation
between X and Y is quadratic, the window size has ’
been set at 0.4 and the same three error distribu-
tions have been used. Here the LOWTESS results are
also given for d=2. In the third set of simulations, Y
is a cosine function of X, the window size is 0.3, and ~
the same three error distributions have been used.
The mean square error from the true curves are
given in Tables [, II, and Iil. In-all cases, the mean -
square error from the actual observations shows a
very similar pattern.

The figures provide examples of smooths gen-
erated by LOWESS and LOWTESS with different error-
distributions.

Discussion and Concluding Remarks

Our results at this point are very rough and
preliminary. While in almost all cases some variant of
LOWTESS performs better than LOWESS, these
differences are small and LOWESS usually outdoes
most of the variants of LOWTESS. This is particularly
true in those cases where there is any curvature in
which case LOWTESS must be used with d=2 while
LOWESS need not for the same basic level of accu-
racy. When this is done LOWTESS gives up any advan- .
tage in speed to LOWESS. LOWESS appears to be the -
safer smooth to use.

It has also become apparent in this work how
critical the choice of the window size is. DBoth
LOWESS and LOWTESS perform very badly if the win-
dow size is poorly chosen. We are currently working
on improving the speed of the LAD smooth (which is -
the fastest of the TLS smooths) to the point where it
would be possible to optimize over the window size in
the manner of Friedman and Stuetzle’s (1982)
super-smoother while retaining at the same time
some desirable robustness properties.




Teble Error Distribution: Normal
MEAN SQUARE ERROR - DEVIAT[ON FROM TRUE LINE

: = . LOWESS LOWTESS _ 800
le=_0.1 (1=_0.2 le=_l-).5 true y
=1 d=1 =1 . mme——— lowtess (d=2)
Normal 81.81 | 82.32 | 86.85 | 108.05 800 veeo. lowess *
Contaminated Normal | 44.88 | 48.30 | 44.80 { 50.31 B
Double Exponential 50.53 54,88 | 48.32 47.68
Table II
MEAN SQUARE ERROR - DEVIATION FROM TRUE QUADRATIC 400
LOWESS LOWTESS
a=0,1 | «=0.2 | &=0.1 | a=0.2 v
d=1 d=1 d=2 d=2 200
Normal 71288 70880 { 78359 | 70503 | 78449
Contaminated Normal 47538 49331 52479 | 4B2B7 | 50477
Double Exponential 81952 54055 | 54941 | 80028 | 81837
Table [II 0
MEAN SQUARE ERROR - DEVIATION FROM TRUE COSINE ) - -
| *
LOWESS LOWTESS *
®
a=0.1 | ®=0.2 | @=0.1 | a=0.2 -200 L ! L 1 L !
d=1 | d=1 | d=2 | d=2 0 20 40 80 80 100
Normal 7,188 7,394 8,718 7.114 8.282
Contaminated Normel | 7.120 | 8.510 | 7.273 | 6.449 | 7.258 ' x
Double Exponential 7.259 | 8.587 | 7.420 | 6.705 | 7.538 Fig. 2
Error Distribution: Contaminated Normal - Error Distribution: Double Exponential
40 2 x
-~ *
®
30 + ) ' ' 1
-
®
20 0
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®
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) e lowtess (d=0’
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X X
Fig. 1 Fig. 3
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