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DESCRIPTION AND PURPOSE 

Purpose 

Given a matrix of independent variables, X, and a. dependent variable, Y, 

this algorithm will calculate a specified, 8th, regression quantile in an efficient 

manner making it possible to estimate regression quantiles for problems with a 

large number of observations and/or coefficients. 

Theory 

Koenker and Basset (1978) defined the 9th regression quantile as the solution 

to the following linear programming problem: 

"' "' 
MINE e u; + E (1 - e) 11; 

.,c i=l isl 

n 

Y; = E(b,-c,)X,, + u; - 11; 

{1) 

(2) 

for all i, and b",c,,u,,v, ~ o. Least absolute deviation (LAD) regression is the impor­

tant special case where 8 = 1/2. 

Applications 

The algorithm may be used to estimate the regression quantile estimator pro­

posed by Koenker and Basset (1978). This estimator is used to construct linear 

regression analogues to L-estimators in the univariate case. It has been used by 

Koenker and Basset to construct a robust test for heteroscedasticity (Koenker and 

Basset, 1982a), to calculate the standard errors for least absolute deviation regres­

sion coefficients (Koenker and Basset, 1982b), and to estimate empirical quantiles 

(Basset and Koenker, 1982}. The regression quantile estimator is also required as 
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a preliminary estimator when estimating trimmed least squares in the manner 

proposed by Ruppert and Carroll (1980). 

Numerical Method 

The algorithm proposed here is a modification of that given by Barrodale 

and Roberts (1973; 1974) for solving the LAD problem. Because that algorithm is 

well documented and now widely implemented in statistical packages (SAS (1980], 

S [Becker and Chambers, 1984]}, we will only briefly note those features which 

enable the large reductions in· computation time over the standard linear pro­

gramming solution to the LAD problem before. considering the modifications 

necessary to solve the more general regression quantile problem. 

The Barrodale and Roberts algorithm differs from the standard simplex algo­

rithm in two main ways. First, it divides the problem into two stages. In the 

first stage, only the b1 and c1 vectors are allowed to enter the basis, thus greatly 

reducing the number of vectors which must be searched over, especially since the 

number of observations is generally substantially larger than the number of 

coefficients to be estimated. This stage ends when n of the 61 or ct vectors have 

entered the basis. The second stage achieves similar savings by not allowing any 

of the b,. or c,. vectors in the basis to leave as the algorithm searches over the 

u, and v, vectors. This stage ends when all of the marginal costs are nonpositive. 

The second major difference between the simplex method and the Barrodale 

and Roberts algorithm is that Barrodale and Roberts realized that in the LAD 

case the non-negativity constraints on 61 and ct could be largely ignored since it 

was possible to switch back and forth between 61 and c1 and u, and 11,, This allows 

many intermediate solutions to be bypassed, greatly reducing the number of itera­

tions necessary to solve the problem. 
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To modify the Barrodale and Roberts algorithm to solve the regression quan­

tile problem, the objective function must be changed to recognize that u; are now 

weighted by 20 while the 11, ', have a weight of 2(1 - 0). Note that when O = 1/2, 

the problem is reduced to that of minimizing the sum of absolute deviations, 

E ( u; + 11,) with weights on each observation of one. When the u,( 111) vector is 

interchanged with the corresponding 11,(u,), the sign on the pivot row is changed 

and the cost associated with the u,( v,) vector is replaced with that of the v,( u,) vec­

tor (i.e., replace o with (1 - O), or vice versa). To do this the correct weights must 

be attached to the vectors which are in the basis . If Y, is positive, then u, will be 

in the initial basis and the correct weight is 211. If Y; is negative theri "; will be in 

the initial basis and the correct weight is 2(1 - IJ). From that point on the algo­

rithm remains unchanged since the sum of the marginal costs of u, a.nd "• remains 

-2 and the new marginal costs when u, a.nd "' are interchanged in the basis can still 

be calculated by subtracting twice the pivot row from the old marginal costs. 
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STRUCTURE 

SUBROUTINE Ll Q (M,N ,M2,N2,A,B,TOLER,X,E,S,THETA) 

Formal parameters 
M Integer 
N Integer 
M2 Integer 
N2 Integer 
A Real array 

input: number of equations 
input: number of unknowns (m :E; n) 
input: set equal to M + 2 
input: set equal to N + 2 

input: two dimensional array of size 
(M2,N2). On entry, the coefficients 
of the matrix X must be stored in the 
first M rows and N columns of A 

B Real array input: one dimensional array of size M. On 
entry, B must contain the right hand 
side of the equations 

TOLER 
X 

Real input: a small positive tolerance 
Real array output: one dimensional array of size N. On 

exit, this array contains the solution 
to the regression quantile problem 

E Real array output: one dimensional array of size M. On 

S Integer 
THETA Real 
A(M+l,N+l) 

A(M+l,N+2) 
A(M+2,N+l) 

A(M+2,N+2) 

Restrictions 

Real 

Real 
Real 

Real 

exit, this array contains the residuals 
array input: array of size M used for workspace 
input: value of theta in the LlQ problem 

output: minimum sum of the weighted absolute 
values of the residuals 
output: rank of the matrix of coefficients 
output: Exit codes with values 
0 - optim~l solution which is probably 

nonumque 
1 - unique optimal solution 
2 - calculations terminated prematurely 

due to rounding error 
output: number of simplex iterations performed 

RESTRICTIONS AND TIME 

There are no general restrictions except that the number of observations be ~ 

the rank of the coefficient matrix, with the coefficient matrix full rank. It should 

be noted, however, that the solution, particularly in data. sets where n is not small 

relative to m, may not necessarily be unique. The Barrodale and Roberts algo­

rithm determines if the solution is unique and returns a code of 1 to indicate this. 
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Time 

The following time comparisons were established on a VAX 11/750 running 

under the lNIXoperating systanwith fl=.2, 

# of Iterations and C<nyutation TinE (CI'U Seconds) for 4 DATA SEI'S1 

LIND MDIFIID BAmlDAIE AID RU3ERIS OI.S 

s.rACK rms 
SAVI~ 
AUIO 
IDiltN 

titre 
8.4 

23.5 
90.2 
na 

iterations 
38 
78 

195 
na 

titre 
8.3 
8.2 
9.5 

65.3 

iterations 
9 

13 
22 
72 

titre 
8.1 
7.8 

11.8 
37.2 

We used a widely distributed linear programming package, LINDO (Schrage, 

1984), to implement the standard lp algorithm for solving for regression quantiles. 

For both the savings and auto data, LINDO gave the incorrect answer, usually 

stopping an iteration or two from the correct solution. This clearly illustrates the 

problem of using standard linear programming to do regression quantilesi the 

round-off error from numerous iterations can be very serious. This problem can 

be avoided by using a linear programming package such as MPSX (IBM, 1979) 

which has extended precision features but only at the cost of more computational 

time. The Boston problem was too large to run in LINDO without modifications 

to that package. It would have been possible to run this problem using MPSX 

but only at a prohibitive cost. The OLS times are provided as a benchmark since 

most readers are familiar with times for OLS calculations on their own systems. 

1 The .tack l011 regresalon and data are due to K.A. Brownlee and were u■ed by Ruppert and Carroll (1980). Thia data set baa 21 
observation• and i Independent variable• Including the conatant term. The savings data were collected for 50 countries by Arlie 
Sterling and used u an example by Beleley, Welach, and Kuh (1980). Thll data ■et bu 5 Independent varlablee. The auto data is 
from a 1tudy on the characteri1tic1 of automobile•; 7i obaervatlon1 on 10 Independent variables were u1ed here. The Boaton data ia 
from a atudy or air pollution and houaing prices by Harmon and Rubinfeld and wu uaed u au example by Belsley, Welsch and Kuh 
(1980). Thia data aet hu 606 observations and U independent variable■• All of theae data aeh are available a.a pad or the S 
1tati1tical package (Becker and Chambere, 198t). 
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Nppendix: Sections of Original Barrodale and Roberts LAD Code to Be Modified 

subroutine 11 (m,n,m2,n2,a,b,toler ,x,e,s) 

c compute the marginal costs 
do 60 j = 1,nl 
sum= 0.0d0 
do 50 i = 1,m 
sum=sum+a(iJ) 

50 continue 
a(ml,j) = sum 

60 continue 

380 continue 
a(m2,n2) = kount 
a(ml,n2) = nl-kr 
sum= 0.d0 
do 390 i=kl,m 
sum=sum+a(i,nl) 

390 continue 

Changes Necessary for Computing Regression Quantiles 

subroutine llq(m,n,m2,n2,a,b,toler,x,e,s,theta) 
real theta 

c compute the marginal costs 
do 60 j = 1,nl 
sum= 0.0d0 
do 50 i = 1,m 
if(b(i) .le.0.) go to 45 
sum=sum+2. *theta *a(iJ) 
go to 50 

45 sum-sum+2.*(1.-theta)*a(ij) 
50 continue 

a(ml,j) = sum 
60 continue 

380 continue 
a(m2,n2) = kount 
a(ml,n2) = nl-kr 
sum= 0.d0 

c compute weighted sum of residuals 
do 390 i=l,m 
if( e(i) .le.0) go to 385 
sum=sum+theta *e(i) 
go to 390 

385 sum=sum-(1.-theta)*e(i) 
390 continue 




