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DESCRIPTION AND PURPOSE 

Puroo~e 

Given a matrix of independent variables, X, and a dependent variable, Y, 

this algorithm will calculate a specified, Qth, regression quantile in an 

efficient manner making it possible to estimate regression quantiles for prob­

lems with a large number of observations and/or coefficients. 

Theory 

Koenker and Basset (1978) defined the Qth regression quantile as the 

solution to the following linear programming problem: 

m 
MIN 2 
b,c i:1 

n 

m 
Qui+ 2 (1 - Q) vi 

1=1 

Yi= k:1(bk-ck)Xik + ui - vi 

{ 1) 

(2) 

for all i, and bk,ck,ui,vi 2 o. Least absolute deviation (LAD) regression is 

the important special case where Q = 1/2. 
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Applications 

The algorithm may be used to estimate the regression quantile estimator 

proposed by Koenker and Basset (1978). This estimator is used to construct 

linear regression analogues to L-estimators in the univariate case. It has 

been used by Koenker and Basset to construct a robust test for heteroscedasti­

city (Koenker and Basset, 1932a), to calculate the standard errors for least 

absolute deviation regression coefficients (Koenker and Basset, 1982b), and to 

estimate empirical quantiles (Basset and Koenker, 1982). The regression quan­

tile estimator is also required as a preliminary estimator when estimating 

trimmed least squares in the manner proposed by Ruppert and Carroll (1980). 

The algorithm proposed here is a modification of that given by Barrodale 

and Roberts (1973; 1974) for solving the LAD problem. Because that algorithm 

is well documented and now widely implemented in statistical packages (SAS 

[1980], S [Becker and Chambers, 19841), we will only briefly note those 

features which enable the large reductions in computation time over the stan­

dard linear programming solution to the LAD problem before considering the 

modifications necessary to solve the more general regression quantile problem. 

The Barrodale and Roberts algorithm differs from the standard simplex 

algorithm in two main ways. First, it divides the problem into two stages. 

In the first stage, only the bk and ck vectors are allowed to enter the basis, 

thus greatly reducing the number of vectors which must be searched over, espe­

cially since the number of observations is generally substantially larger than 

the number of coefficients to be estimated. This stage ends when n of the 

bk or ck vectors have entered the basis. The second stage achieves similar 
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savings by not allowing any of the bk or ck vectors in the basis to leave as 

the algorithm searches over the u1 and vi vectors. This stage ends when all 

of the marginal costs are nonpositive. 

The second major difference between the simplex method and the Barrodale 

and Roberts algorithm is that Barrodale and Roberts realized that in the LAD 

case the non-negativity constraints on bk and ck could be largely ignored 

since it was possible to switch back and forth between bk and ck and 

ui and vi. This allows many intermediate solutions to be bypassed, greatly 

reducing the number of iterations necessary to solve the problem. 

To modify the Barrodale and Roberts algorithm to solve the regression 

quantile problem, the objective function must be changed to recognize that ui 

are now weighted by 2Q while the vi•s have a weight of 2(1 - Q). Note that 

when Q = 1/2, the problem is reduced to that of minimizing the sum of absolute 

deviations, z (ui + vi) with weights on each observation of one. When the 

ui(vi) vector is interchanged with the corresponding vi(ui), the sign on the 

pivot row is changed and the cost associated with the ui(vi) vector is 

replaced with that of the vi(ui) vector (i.e., replace Q with (1 - Q}, or 

vice versa}. To do this the correct weights must be attached to the vectors 

which are in the basis. If Yi is positive, then ui will be in the initial 

basis and the correct weight is 2Q. If Yi is negative then vi will be in the 

initial basis and the correct weight is 2(1 - Q). From that point on the 

algorithm remains unchanged since the sum of the marginal costs of ui and vi 

remains -2 and the new marginal costs when ui and vi are interchanged in the 

basis can still be calculated by subtracting twice the pivot row from the old 

marginal costs. 
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STRUCTURE 

SUBROUTINE L1Q(M,N,M2,N2,A,B,TOLER,X,E,S,THETA) 

Formal parameters 
M Integer 
N Integer 
M2 Integer 
N2 Integer 
A Real array 

B Real array 

TOLER Real 
X Real array 

E Real array 

input: number of equations 
input: number of unknowns (m .S,. n) 
input: set equal to M + 2 
input: set equal to N + 2 
input: two dimensional array of size 

(M2,N2). On entry, the coefficients 
of the matrix X must be stored in the 
first M rows and N columns of A 

input: one dimensional array of size M. On 
entry, B must contain the right hand 
side of the equations 

input: a small positive tolerance 

s Integer array 

output: one dimensional array of size N. On 
exit, this array contains the solution 
to the regression quantile problem 

output: one dimensional array of size M. On 
exit, this array contains the residuals 

input: array of size Mused for workspace 
input: value of theta in the L1Q problem 

output: minimum sum of the weighted absolute 
THETA Real 
A(M+1,N+1) Real 

A(M+1,N+2) Real 
A(M+2,N+1) Real 

A(M+2,N+2} Real 

B~:trictions 

values of the residuals 
output: rank of the matrix of coefficients 
output: Exit codes with values 

0 - optimal solution which is probably 
nonunique 

1 - unique optimal solution 
2 - calculations terminated prematurely 

due to rounding error 
output: number of simplex iterations performed 

RESTRICTIONS AND TIME 

There are no general restrictions except that the number of observations 

be 2. the rank of the coefficient matrix, with the coefficient matrix full 

rank. It should be noted, however, that the solution, particularly in data 

sets where n is not small relative tom, may not necessarily be unique. The 

Barrodale and Roberts algorithm determines if the solution is unique and 
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returns a code of 1 to indicate this. 

~ 

The following time comparisons were established on a VAX 11/750 running 

under the UNIX operating system. 

I of Iterations and Computation Time (CPU Seconds) for 4 DATA SETS (Q = 0.2) 1 

LINDO MODIFIED BARRODALE AND ROBERTS OLS 

time iterations time iterations time 

STACK LOSS 8.4 38 8.3 9 8. 1 

SAVINGS 23.5 78 8.2 13 7.8 

AUTO 90.2 195 9.5 22 11.8 

BOSTON na na 65.3 72 37.2 

We used a widely distributed linear programming package, LINDO (Schrage, 

1984), to implement the standard lp algorithm for solving for regression quan­

tiles. For both the savings and auto data, LINDO gave the incorrect answer, 

usually stopping an iteration or two from the correct solution. This clearly 

illustrates the problem of using standard linear programming to do regression 

quantiles; the round-off error from numerous iterations can be very serious. 

1 The stack loss regression and data are due to K.A. Brownlee and were used 
by Ruppert and Carroll (1980). This data set has 21 observations and 4 in­
dependent variables including the constant term. The savings data were col­
lected for 50 countries by Arlie Sterling and used as an example by Belsley, 
Welsch, and Kuh (1980). This data set has 5 independent variables. The auto 
data is from a study on the characteristics of automobiles; 74 observations on 
10 independent variables were used here. The Boston data is from a study of 
air pollution and housing prices by Harrison and Rubinfeld and was used as an 
example by Belsley, Welsch and Kuh (1980). This data set has 506 observations 
and 14 independent variables. All of these data sets are available as part of 
the S statistical package (Becker and Chambers, 1984). 
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This problem can be avoided by using a linear programming package such as MPSX 

(IBM, 1979) which has extended precision features but only at the cost of more 

computational time. The Boston problem was too large to run in LINDO without 

modifications to that package. It would have been possible to run this prob­

lem using MPSX but only at a prohibitive cost. The OLS times are provided as 

a benchmark since most readers are familiar with times for OLS calculations on 

their own systems. 
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Sections of Original Barrodale and Roberts LAD Code to Be Modified 

subroutine 11(m,n,m2,n2,a,b,toler,x,e,s) 

c compute the marginal costs 
do 60 j = 1,n1 
sum= O.OdO 
do 50 i = 1 ,m 
sum: sum+a( i, j) 

50 continue 
a(m1,j) = sum 

60 continue 

380 continue 
a(m2,n2) = kount 
a(m1,n2) = n1-kr 
sum= O.dO 
do 390 i:kl,m 
sum=sum+a(i,n1) 

390 continue 

Changes Necessary for Computing Regression Quantiles 

subroutine 11q(m,n,m2,n2,a,b,toler,x,e,s,theta) 
real theta 

c compute the marginal costs 
do 60 j = 1,n1 
sum= O.OdO 
do 50 i = 1 ,m 
if(b{i).le.O.) go to 45 
sum:sum+2.*theta*a(i,j) 
go to 50 

45 sum=sum+2.•(1.-theta)*a(i,j) 
50 continue 

a{m1,j) = sum 
50 continue 

380 continue 
a(m2,n2) = kount 
a(m1,n2) = n1-kr 
sum: O.dO 

c compute weighted sum of residuals 
do 390 1=1,m 
if(e(i).le.O) go to 385 
sum=sum+theta*e(i) 
go to 390 

385 sum=sum-(1.-theta)*e(i) 
390 continue 



FAST REGRESSION QUANTILES ALGORITHM 

c 11qregression quantiles 
subroutine l1q(m,n,m2,n2,a,b,toler,x,e,s,theta) 

c barrodale and roberts, cacm (june 1974) pp 319-320 
c algorithm 478 
c modified for regression quantiles 

double precision sum 
real min,max,a(m2,n2),x(n),e(m),b(m) 
integer out,s(m) 
logical stage,test 

c big must be set equal to any very large real constant 
data big/1.e38/ 

c initialization 
ml = m+l 
n1 = n+l 
do 10 j = 1, n 
a(m2,j) = j 
x(j) = O. 

10 continue 
do 40 i = 1 ,m 
a ( i , n2 ) = n+ i 
a(i,n1) = b(i) 
if (b(i).ge.O.) go to 30 
do 20 j = 1,n2 
a(i,j) = -a(i,j) 

20 continue 
30 e(i) = O. 
40 continue 
c compute the marginal costs 

do 50 j = 1,nl 
sum= O.OdO 
do 50 i = 1 ,m 
if(b(i).le.O.) go to 45 
sum:sum+2.*theta*a{i,j) 
go to 50 

45 sum=sum+2.*(1.-theta)*a(i,j) 
50 continue 

a(m1,j) = sum 
50 continue 
c stage 1 
c determine the vector to enter the basis 

stage= .true. 
kount = o 
kr = 1 
kl= 1 

70 max= -1. 
do 80 j = kr,n 
if (abs(a(m2,j)).gt.n} go to 80 
d;,; ab:s(a(m1,j)) 
if (d.le.max) go to 80 




