
Chapter 11
Frontiers in Modeling Discrete Choice
Experiments: A Benefit Transfer
Perspective
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Abstract Given increasing survey costs, transferring model estimates obtained
from one location and survey and applying them to another location is becoming
increasingly appealing. The transfer of previously estimated model outputs to new
application contexts has the potential to reduce the need for new large-scale data
collection in the new application context as well as reduce the effort required to
develop new models. As such, significant savings in cost and time can be achieved.
Nevertheless, advantages in time and cost savings may be outweighed due to biases
introduced if the transferred model does not adequately represent the behavior of
individuals in the new application context. This chapter explores what benefits
transfer means within the context of discrete choice experiments and outlines the
challenges and possible improvements that could be made.

Keywords Benefits transfer � Discrete choice models � Discrete choice experi-
ments � Challenges

11.1 Introduction

There is strong demand for benefit transfer (BT) in evaluating environmental
policies because the number of benefit-cost assessments that need to be performed
is large relative to the number of original benefit estimation studies. This is true
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despite the existence of many studies estimating various types of environmental
benefits. The Environmental Values Resource Inventory (EVRI) database, main-
tained by Environment Canada in conjunction with several other countries
including Australia, France, the United Kingdom and United States, contains over
3000 benefit estimates, and many more exist in the literature.1 The demand for
benefit transfer is obviously driven by the cost and time required to perform high-
quality original benefit assessments. A BT exercise typically tries to infer the value
of environmental policies whose outputs differ from those of a policy that was the
subject of a formal assessment, either with respect to (a) the population of interest,
(b) the time period of interest, and/or (c) one or more attributes of the policy valued
in the original study(s).2

A major source of valuing information used in BT exercises comes from discrete
choice experiments (DCEs).3 This paper addresses a narrow question related to
DCEs and BT; namely, the increasing use of more advanced statistical approaches
to model DCE data, which have focused on incorporating various aspects of con-
sumer heterogeneity. Estimates from studies using DCEs are used in several distinct
ways in a BT context, so it is useful to start with a brief overview of that literature.

The seminal formulation of the issues involved in undertaking a BT exercise
were put forth in a 1992 symposium in Water Resources Research (Brookshire and
Neill 1992). The recent Johnston and Rosenberger (2010) review and chapters in
this handbook examine many key issues involved in benefit transfer.4 Over time a
key distinction has evolved in the literature dealing with “value transfer” from a
study [e.g., mean willingness to pay (WTP) for a particular policy], or “function
transfer” from a study (Loomis 1992).5 The function transfer approach has bifur-
cated into two distinct branches: one that uses a utility/valuation function estimated
from a single or small number of related DCE studies (often in conjunction with
other information such as demographic characteristics of the new location) to

1https://www.evri.ca/.
2We use the word “policy” rather than “good” throughout to emphasize that most environmental
goods are provided via some type of policy action. Differences in details of how a policy is
implemented, including the perceived effectiveness of the government, can be important in car-
rying out a BT exercise.
3Louviere et al. (2000) provide the standard DCE treatment. Adamowicz et al. (1994) and Carson
et al. (1990) provide initial DCE examples in the environmental literature. A recent review article
focusing on environmental applications of DCE is Hoyos (2010). Carson and Louviere (2011)
provide a common nomenclature for stated preference survey questions with an emphasis on
environmental applications to try to clear up confusion over how various terms (including “DCE”)
are used.
4Other overviews include Boyle et al. (2010), Navrud and Ready (2007) and Rosenberger and
Loomis (2003). Rolfe and Bennett (2006) look at using DCEs in a benefit-transfer context.
5In both cases, the issue arises as to whether one study or multiple studies should be used for
benefit transfer. Adjustments are often made to account for factors that differ between the original
estimate and the new situation, and they sometimes also are made with the valuation function
when changes to the variable values that appear in the valuation function are not thought to
adequately capture differences between original and new situations.
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provide an estimate for the new policy; and a second that combines a sizeable
number of estimates from disparate individual studies, often based on very different
methodologies via a formal statistical meta-analysis approach.

In our view, transferring values for a policy directly or using those values in a
meta-analysis look similar; that is, any modeling approach that produces higher
quality estimates for the original policy should result in higher quality BT transfer
estimates. It is far less obvious that estimation of a more advanced choice model
capable of more flexibly estimating consumer heterogeneity will produce higher
quality outputs that are more reliable when being inferred (i.e. transferred) to a
different context. In part, this is due to the well-recognized statistical issue that
highly parameterized models often fit in-sample data quite well, but produce lower
quality out-of-sample estimates than simpler models. An example where consumer
heterogeneity was modeled in an initial study and then transferred to a new situation
that indicated the more complex model was more successful in transferring BT to
the new situation is provided by Colombo et al. (2007). The generalizability of this
result and how much it depends on the specific aspects of consumer heterogeneity
modeled remain open research questions.

DCEs are being used more frequently in empirical environmental valuation
applications; so they provide many of the more current benefit estimates and
functions used in BT exercises. Further, DCEs that explicitly value policy attributes
can substantially expand the range of policies that can be valued relative to con-
tingent valuation (CV) surveys that typically value only one scenario. The latter
property greatly expands the range of what attribute-based DCEs can be used to do
in a BT, but not necessarily their accuracy. For example, Kaul et al. (2011) show in
their meta-analysis of BT exercises that CV studies focused on valuing single
policies produced lower average transfer errors than those derived from more
complex attribute based DCEs.6 Thus, it may be better to think of a DCE with a
substantial number of attributes and levels as more of a direct competitor to a meta-
analysis where all of the estimates come from a single valuation technique focused
on one type of policy. Like most meta-analyses, the emphasis is not on valuing one
policy scenario but rather a substantial range of policy scenarios.

Morrison et al. (2002) provided a pioneering empirical example of using a DCE
for BT. They implemented DCEs in three surveys involving two Australian wet-
lands (Gwydir and Macquarie), and interviewed in two different locations (Moree, a
rural area, and Sydney). The Sydney population was interviewed separately about
both wetlands, so that it was possible to look at benefit transfers to different

6The policies being valued in a BT exercise are not the same, so one should not draw strong
conclusions about the relative performance of different techniques as the “source” of differences in
BT exercises. More direct comparisons clearly are needed to make a more informed judgment. In
general, however, what likely occurs is a tradeoff: the analyst can construct a model with more
parameters involving policy attributes that allows for predictions (without ad hoc adjustments) to a
broad range of policy changes, but at some cost to the accuracy of those predictions. This may be
due to fitting a larger number of parameters, greater reliance on functional form assumptions, and/or
less comprehensive depiction of individual attributes and their levels, given the same survey length.
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locations and different populations. Respondents were asked to answer five choice
sets that each had three alternatives [the first was a status quo (SQ) alternative].
Morrison et al. (2002) fit a conditional logit model with alternative specific con-
stants for the two hypothetical alternatives and included various interactions of
respondent demographics with the choice of a non-status quo alternative. They
compared implicit prices estimated from the three surveys as well a set of nine
randomly chosen policies for which compensating surplus was calculated from a
BT perspective, using the mean levels of the demographic variables at the target
site. Tests suggested that many of the implicit prices did not differ statistically
across the surveys, but there were some clear exceptions. They found that the
average mean difference in model estimates was 32 % across the nine policy
transfer scenarios, consistent with good quality transfers in the literature. Transfers
for different wetlands using the same population involved less error than transfers
for the same wetland using different populations.

Jiang et al. (2005) and Rolfe and Bennett (2006) provided other early BT tests
using DCEs. These and other earlier benefit transfer applications were based on
conditional and nested logit models and illustrate that there are a number of dif-
ferent comparisons that can be of policy interest, such as the ranking of policy
options in addition to the usual implicit prices and WTP for particular attribute
bundles. Colombo et al. (2007) provided the first BT comparison for a random
parameters mixed logit model (Train 2009), which was used to capture stochastic
heterogeneity in consumer preferences. They conducted two parallel surveys
focusing on two similar policies involving soil erosion policies in two different
regions of southern Spain, using them to predict each other’s results. Like the
Morrison et al. (2002) study, the Colombo et al. (2007) BT exercise should rep-
resent an ideal context for BT. They compared BT errors for 27 policy scenarios,
randomly chosen from the full factorial, using a conditional logit specification and
mixed logit specifications with and without correlated parameters.7

Colombo et al. (2007) found that the mixed logit specification without correlated
errors produced smaller average transfer errors across the 27 transfer scenarios than
the mixed logit model with correlated errors, which, in turn, dominated transfers
from the conditional logit model specification.8 On average the transfer error was
38 % lower using the uncorrelated mixed logit model than the conditional logit
model, but there were cases where the simple conditional logit model dominated.
Surprisingly, we could not find other benefit transfer tests in the literature using
mixed logit or other ways to model consumer heterogeneity. Colombo et al. (2007)
were careful to note that more tests would be required before one could rely on

7The study had six attributes, four of which were assumed normally distributed and two that were
fixed, including cost. Similar to Morrison et al. (2002), demographic variables were interacted with
an ASC and demographics from the target site were used in the transfer.
8Transfer errors in percentage terms were substantially larger on average in Colombo et al. (2007)
than in Morrison et al. (2002), illustrating that a myriad of factors are likely at work beyond the
particular valuation technique or modelling strategy used.
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empirical regularities to determine the relative influence of different approaches to
modelling DCE data on the performance of subsequent BT exercises.9

Many researchers have wanted to move beyond the workhorse conditional logit
model (McFadden 1974) for one of two reasons.10 The first reason is the indepen-
dence of irrelevant alternatives (IIA) property that underlies the conditional logit
model, making it computationally tractable even with modest computer resources.
However, this comes at the cost of imposing strong restrictions on the pattern of
substitution relationships between alternatives. The second is an interest in modeling
different types of consumer heterogeneity. Initially researchers pursued models that
directly relaxed the IIA property like nested logit, which is still quite popular, and
multinomial probit, which for various reasons has never seen substantial applied use.
For the purpose of modeling DCE data, nested logit models were first used in
modeling environmental choice data (e.g., Carson et al. 1990) as a way to deal with
the fact that the SQ alternative often behaves quite differently than other alternatives.

Although the use of nested logit models is still fairly common, recent work has
put much more emphasis on relaxing the assumption that all consumers are identical
except for a draw from the same error distribution. The motivation for this work is
twofold: (1) relaxation of IIA, and (2) development of models that more realistically
capture differences in consumers. There are three distinct ways to incorporate
consumer heterogeneity. The first is to assume that at least some consumers have
different preference parameters. Initially, this was achieved by interacting one or
more attribute parameters with characteristics of consumers, effectively allowing
different types of consumers to have different parameters, which accounts for
systematic sources of heterogeneity. Although this often provides useful insights
into consumer preferences, it does not allow for continuous (or discrete) distribu-
tions of preference parameters, nor does it directly attack the IIA issue.

More recently the random parameters logit [popularly known as a mixed logit
(Train 2009)] has become the most popular approach for modeling consumer
preference heterogeneity. This approach allows for a range of consumer preference
parameters that are assumed to follow some distribution, typically normal or
log-normal. This model effectively assumes that individual consumers follow a
conditional logit model; hence each consumer is assumed to adhere to the IIA
property. The mixed logit model is one way of dealing with IIA violations at the
aggregate level if a violation is driven by the assumption that all consumers have the
same preference parameters. Additionally, it can also deal with IIA at the individual
level via an error-in-variables approach that defines shared stochastic effects through
categorization dummies (e.g., private vs. public modes of transport). These dummies
reflect IIA violations arising from shared unobserved attributes at the alternative
level (see McFadden and Train 2000).

9There have been subsequent BT exercises using mixed logit (e.g., Baskaran et al. 2010), but these
do not seem to have systematically tested the performance of variants of mixed logit versus
conditional logit models.
10Hensher et al. (2005) provide a general overview of the properties of different choice models.
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The second approach is to recognize that consumers may be characterized by
draws from different error distributions, with each distribution having different scale
parameters, reflecting a form of heteroscedasticity. This heteroscedasticity may be
due to several factors including differential ability to choose between alternatives or
differences in the importance of unobserved variables on choice behavior. The latter
leads to scale heterogeneity models. The third approach is to assume that there are
pure types of consumers and that sample members can be represented by these pure
types (or mixtures of them), leading to what are popularly known as latent class
models. It is possible to combine these different types of consumer heterogeneity,
such that one can have models with both preference and scale heterogeneity as well
as latent class models with preference and/or scale heterogeneity. However, as we
discuss later, such models may not be well-identified statistically and can experi-
ence computational difficulties. In the extreme, one can have “individual”-level
models whereby one estimates a model specific to each respondent in a DCE
(Frischknecht et al. 2014).

Initial moves away from conditional logit models, such as nested logit, treated
observations on choices as independent in the sense of observing only one choice
per individual or, if more than one choice was observed, not linking those choices
together. Models currently at the choice modeling research frontier exploit and
often require multiple choice observations from the same individual under different
conditions. This is typically accomplished using DCEs with multiple choice sets,
but in principle revealed preference (RP) data of this type can also be collected
(e.g., Swait et al. 2004). An example of this would be to have individuals record
their fishing trips in a diary format. If one matches this with other data sources on
temporal differences in fishing quality (crowding and other factors), one would have
repeated choice occasions from the same individual under different conditions.
If one has multiple choice occasions per individual, one can examine whether
choice behavior changes across choice sets. The standard framework used assumes
no systematic change across choice sets, which greatly simplifies statistical
identification of key parameters. However, a number of empirical tests suggest that
this assumption does not generally hold and several competing hypotheses have
been put forward that predict specific types of changes.

Much of the work using more advanced choice models is associated with DCEs
because the ability to control choice stimuli can greatly facilitate estimating more
complex models. Consequently, we also discuss the role of experimental design for
estimating advanced choice models. Another recent advance is the ability to collect
extra preference information in each DCE choice set beyond that of the most
preferred alternative. Thus, we also discuss a variant of best-worst preference
elicitation that elicits most and least preferred choices within a set of alternatives
(see for example Louviere et al. 2008; Marley et al. 2008). In addition to obtaining
repeated stated preference (SP) observations, one can combine SP and RP data to
obtain multiple choice occasions for an individual. This naturally raises questions
about differences in “scale” in the two choice contexts (Swait and Louviere 1993),
and ways to capture the differences and/or take them into account.
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In the remainder of the chapter, we provide an overview of different ways to
model consumer heterogeneity with an eye toward using these models in BT
exercises. The starting point for our discussion is to lay out the behavioral and
statistical assumptions underlying the conditional logit model that serves as a ref-
erence model for much applied work. Most of the issues we address later can be
shown to follow from applying the same model to all choices and all individuals.
Then we turn to a discussion of several advanced models currently in use, focusing
on how each relaxes one or more key assumptions of the conditional logit model,
and how they relate to each other. A critical issue in thinking about these models
from a BT perspective is the role that covariates play (usually demographics that
can be observed both at the donor site where the original study was performed and
the target or transfer site). Next, we discuss experimental designs used to collect
choice data and the impact they can have on the types of models that can be
estimated and the precision of the associated parameter estimates. After that dis-
cussion, we consider combining different types of data: e.g., combining data from
multiple DCEs in appropriate ways that can substantially extend the BT beyond that
of the original models.

11.2 Behavioral and Statistical Framework Underlying
the Conditional Logit Model

The foundational framework for econometric analyses of choosing one among
J objects or alternatives in a choice set S is the utility-maximizing consumer. For
each discrete object j ∈ S, say, a recreation site, the consumer n forms a judgment/
evaluation/utility measure:

Unsj ¼ UðXnsj; Znjbnsj; hnjÞ: ð11:1Þ

where Xnsj is a vector of quality attributes for the alternative including the price to
“consume” it, Zn is a vector of socio-demographic characteristics (e.g., income, age,
gender) and other consumer specific information (e.g., attitudes) describing the
individual, βnsj is a deep vector of preference parameters associated with Xnsj and θnj
is a vector of parameters associated with Zn. Parameter vectors βnsj and θnj may be
constrained in various ways, such as being made generic across alternatives and
fixed across respondents. Utility function (1) arises from a Lancasterian framework
(Lancaster 1966), whereby consumers define preferences on the basis of benefits
(termed “characteristics” by Lancaster) generated by the attributes of the good in
question.11 Our representation of the utility function above directly connects

11The Lancasterian model collapses downward to the standard framework used in most micro-
economic theory if all goods are represented by only an alternative specific constant (ASC) and
price.
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attributes and prices to the overall judgment, and is therefore a simplified repre-
sentation. In the final act of the decision process, the decision maker is assumed to
select alternative i* ∈ S such that Unsi* ≥ Unsj for all j ≠ i*. Note that this
description is deterministic in nature.

The process description we made above is based on some critical assumptions,
some of which we mention below.

1. The decision maker is aware of and uses all relevant information in making her
judgment about the attractiveness of an alternative.

2. Further, relevant information is available for all alternatives.
3. The decision maker is exhaustive in her evaluations, not only in terms of

information use, but also in terms of “looking at” all alternatives in S. This is
done irrespective of the number of alternatives in S and of the cost of performing
evaluations.

4. Selection of the preferred alternative is done by ranking all alternatives
according to their utility, and choosing the highest valued alternative.

Although making these assumptions explicit may be unfamiliar and seem
unnecessary, we do this to remind the reader that the underlying behavioral decision
process adopted in extant models of choice, particularly all those to be examined in
this paper, depicts decision makers as fully rational, all-knowing, inexhaustible
utility maximizers. No matter how sophisticated the econometric approaches
employed in the models we discuss, these (and other, very important) assumptions
are [always] present.

Bringing the analyst into the mix requires us to introduce the possibility that the
analyst does not have the full knowledge set available to the decision maker, and so
we must allow for a stochasticcomponent to utility. We rewrite Eq. 11.1 below to
reflect this:

Unsj ¼ VðXnsj; Znjbnsj; hnjÞ þ ensjðlnÞ ð11:2Þ

where V(∙) is the deterministic component of utility (i.e., that part of total utility
known to the decision maker that an analyst can specify), whereas εnsj(μn) is the
stochastic utility that accounts for the difference between the decision maker’s total
utility and the deterministic component known to the analyst and μn is a deep
parameter of the stochastic utility. It is perhaps more enlightening to rewrite
Eq. 11.2 as follows to emphasize what actually gives rise to stochastic utility in
random utility theory:

ensjðlnÞ ¼ Unsj � VðXnsj; Znjbnsj; hnjÞ: ð11:3Þ

It is in this sense that we can say that “analyst ignorance” about the underlying
total utility gives rise to stochastic utility, and hence, to probabilistic (as opposed to
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deterministic) choice. The analyst’s key relationship between the observed choice
of alternative i∈M and the total utility construct Eq. 11.2 is this expression:

Pnsi ¼ PfUnsi �Unsjg for all i 6¼ j; i; j 2 S; ð11:4Þ

where Pi is the probability that i∈S is chosen, all other quantities as previously
defined.

The crucial step in operationalizing expression Eq. 11.4 into different models of
choice involves the stochastic specification of the vector ε = (εns1(μn), … ,εnsj(μn)).
As is well known, the workhorse Multinomial Logit (MNL) model (Ben-Akiva and
Lerman 1985)

Pi ¼ expðlnVðXnsi; Znjbnsi; hniÞÞ
.X

j2S expðlnVðXnsj; Znjbnsj; hnjÞÞ ð11:5Þ

results if we assume that the elements of ε are independent and identically dis-
tributed (IID) Type I Extreme Value random variables, that is,

ensjðlnÞ�F wð Þ ¼ expð�expð�lnwÞÞ; �1\w\1; l� 0; 8j 2 S: ð11:6Þ

Ben-Akiva and Lerman (1985) and Hensher et al. (2005) also provide detailed
discussions associated with the derivation of Eq. 11.5. It is important to consider
two critical properties of model Eq. 11.5:

1. A confound exists between the deterministic (V) and stochastic utility compo-
nents (parameter μn) because of the inseparable and multiplicative nature
between the two parts: these always show up in the form μnV.

2. As a result of the IID assumption, the MNL model has the Independence of
Irrelevant Alternatives (IIA) property. This implies that the odds of choosing
one alternative over another are influenced only by their own utilities, but not
influenced by the utilities of other alternatives. This property can lead to
counterintuitive implications about behavior in empirical contexts. To make the
IIA assumption and its implications explicit, consider taking the ratio of the
probabilities for two competing alternatives (often referred to as the odds ratio):

Pnsi

Pnsh
¼

expðlnV Xnsi; Znjbnsi; hnið Þ.P
j2S expðlnV Xnsj; Znjbnsj; hnj

� �� �
expðlnV Xnsh; Znjbnsh; hnhð Þ.P

j2S expðlnV Xnsj; Znjbnsj; hnj
� � :

¼ expðlnV Xnsi; Znjbnsi; hnið Þ
expðlnV Xnsh; Znjbnsh; hnhð Þ

ð11:7Þ
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As can be seen from Eq. 11.7, only the utility expressions of the two competing
alternatives being considered actually matter; the utility functions of all other
alternatives present in S drop out. Models such as the MNL force this property for
all pairs of alternatives; however, issues arise when decision makers are more or
less likely to substitute alternative i or h with another alternative j∈S, and hence the
ratio of the probabilities are not independent of the presence or absence of other
alternatives as implied by Eq. 11.7. In the following sections, we examine models
that relax these characteristics, but in this section we discuss them from the per-
spective of BT.

To take these in order, let us first consider the consequences of the confound
between the scalar μn ≥ 0 and the deterministic utility V. As first pointed out by
Ben-Akiva and Lerman (1985), for a given set of observations and context, they are
inseparable. Between contexts c1 and c2 (say, original measurement and transfer
application contexts) two sources of differences can occur: scalars μc1 and μc2 (we
drop subscript n here as it is common practice to assume that differences between μ
are due to context effects rather than differences between consumers) differ, and/or
Vjc1 and Vjc2 differ. That is, in a benefits transfer exercise one may not “transfer”
successfully because (a) stochasticutility distributions differ between contexts, (b)
systematic utility functions differ, or (c) both stochastic and systematic utilities
differ. Swait and Louviere (1993) proposed a basic statistical test to determine if
μc1 = μc2 conditional on the assumption that Vjc1 = Vjc2 for all j; if systematic utility
functions differ between contexts, benefits transfer is a moot question. If both
components differ between contexts, the confound between stochastic and sys-
tematic utilities implies that there is no way to determine why preferences do not
transfer. This discussion makes it clear that at a basic level the deck is stacked
against BT.

With respect to the IIA property of the MNL model, this is often thought to be
too strong a theoretical restriction to hold in general. On the one hand, it should be
noted that whether or not IIA is a reasonable assumption to impose on observed
choices is an empirical issue. Additionally, IIA is an individual-level property that
may or may not hold in aggregate choice data, whether or not it is reasonable to
hold for any particular individual. A certain dataset may contain choices that dis-
play IIA-like behavior. On the other hand, choice model forms exist (e.g., nested
logit, multinomial probit; see Swait 2006) that allow for flexibility in representing
interdependence in substitution patterns. To make our discussion with respect to
benefits transfer more concrete, consider this nested logit formulation:

Pnsi ¼ expðl1VnsiÞ
�P

j2CðiÞ expðl1VnsjÞ
� �

expðlICðiÞ Þ
.PH

h¼1 expðlIhÞ
� �

; 8i 2 S;

ð11:8aÞ

Ih ¼ 1
l1

ln
X
j2Ch

expðl1VnsjÞ
 !

ð11:8bÞ
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where the set S is subdivided into H nests/clusters Ch (C(i) is the cluster to which
alternative i ∈ S belongs), which are collectively exhaustive and have no elements
in common, μ1 ≥ 0 is a scalar to be explained, Ih is a nest-specific inclusive value
measure that is known to be the expectation of the maximum utility of the alter-
natives in Ch, and all other quantities are previously defined. This model arises if
one assumes that the ε’s are correlated within clusters Ch and uncorrelated between
clusters instead of assuming that the stochastic utilities are IID Type I Extreme
Value distributed. Specifically, the joint cumulative distribution function of the ε is
given by

FðeÞ ¼ expð�Gðexpð�ens1Þ; . . .; expð�ensJÞÞ; �1\e\1; ð11:9aÞ

Gðwns1; . . .;wnsJÞ ¼
XH
h¼1

X
j2Ch

wl1
nsj

 !l=l1

;wnsj � 0; j ¼ 1; . . .; J: ð11:9bÞ

This stochastic assumption allows us to specify the correlation between sto-
chastic components as follows (Swait 2006):

qih ¼ 1� l=l1

� �2
if CðhÞ ¼ CðiÞ

0 if CðhÞ 6¼ CðiÞ

(
i; h 2 S: ð11:10Þ

Conceptually, this stochastic definition of the behavior of the ε’s results in a
covariance matrix for these random variables that is homoscedastic (equal diagonal
terms, since μ applies to all alternatives), with non-zero covariances for all alter-
native pairs sharing cluster membership and zero off-diagonal terms for all pairs not
sharing clusters. A model like multivariate probit has a more general covariance
matrix,12 but it will conceptually arrive at the same point of making choice prob-
abilities exhibit a type of non-IIA responses. It is obvious that the nested logit
model can capture non-IIA behavior if we form the odds ratio for alternatives h and
i using Eq. 11.8a, which we find to depend upon whether or not the pair of
alternatives share a cluster:

Pi

Ph
¼ expðl1ViÞ

expðl1VhÞ �
1 if CðhÞ ¼ CðiÞ

expðlICðiÞ Þ
expðlICðhÞ Þ

if CðhÞ 6¼ CðiÞ

( )
i; h 2 S ð11:11Þ

Thus, this straightforward extension to the MNL model allows one to avoid the
IIA property empirically, but imposes preference homogeneity within clusters.

Now, let us consider the implication of this more general model with respect to
BT. Clearly, if the structure of an IIA violation, i.e. the nests (or stochastic utility
correlation structure) in measurement and transfer application contexts differ

12Bunch (1991) provides identification restrictions.
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significantly between contexts, it may not be possible to successfully transfer
between them. This effect is over and above that arising from the basic confound
between stochastic and systematic utilities within each context. Even if the
systematic utilities are identical across contexts, if the clustering structure is too
dissimilar (e.g., it is place- or time-specific) or the quantity (μ/μ1) is small
(i.e. correlation is high, imposing pairwise requirements on stochastic utility for
transfer to occur), BT may induce large errors, which may well be a key underlying
difficulty with BT exercises that not seem to be clearly appreciated.13

11.3 Advanced Choice Models Available for Use
with DCE Data

In this section, we move from a consideration of the nature of the underlying utility
function to econometric issues that must be resolved for BT by examining how the
estimates to be transferred arise. Of course, these are linked, but here we emphasize
issues related to modeling data collected from samples of the population of interest
where various sources of heterogeneity are considered. We focus on the general
case, the likelihood function of discrete choice models, rather than examine all
possible models that can be estimated.

Typically, the parameters b associated with each utility function Vnsi are
unknown and must be estimated from data. Let ynsi equal one if i is the chosen
alternative in choice situation s shown to respondent n, and zero otherwise. In other
words, y represents the outcomes of a discrete choice experiment. The parameters
can be estimated by maximizing the likelihood function L,

L ¼
YN
n¼1

Y
s2Sn

Y
j2Jns

Pnsið Þynsi ; ð11:12Þ

where N denotes the total number of respondents and Sn is the set of choice
situations faced by respondent n and Pnsi, is a choice probability. This choice
probability is expressed as equation Eq. 11.5 for the conditional logit or MNL
model and equation Eq. 11.8a for the nested logit model.

The log-likelihood functions of more advanced models can also be derived with
a simple substitution of the appropriate choice probability for the model being
estimated in Eq. 11.12. For example, in the mixed logit model, the parameters to be
estimated are structural parameters representing the population moments of some
underlying (multivariate) distribution (e.g., the mean(s) and standard deviation(s) of

13Note that transferring values via a meta-analysis does cannot solve this problem. The same good
can be worth different amounts in different contexts where the difference between the contexts is
not observed. The best that a meta-analysis can do in this instance is to average over a small
number of values for the same good derived in different contexts.
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a (multivariate) normal distribution). To estimate the parameters of the mixed logit
model using simulated maximum likelihood involves taking draws from the random
parameter distribution(s), calculating the expected or average logit choice proba-
bility over the simulation draws, and substituting this into equation Eq. 11.12.
However, the underlying likelihood function is the same.

Rather than maximize the likelihood function, it is more common to maximize
the log of the likelihood function because the product of a series of probabilities
typically produces extremely small values that most computing software cannot
adequately handle. Taking the logs of the probabilities produces large negative
values, which when multiplied, produce even larger negative values. Consequently,
the log-likelihood function of the model, shown below, is typically preferred:

LL ¼ ln
YN
n¼1

Y
s2Sn

Y
j2Jns

Pnsið Þynsi
" #

: ð11:13Þ

If one assumes that the choice observations are independent over both respondents
and choice situations and one uses the mathematical properties ln n1n2ð Þ ¼
lnðn1Þ þ lnðn2Þ and lnðn1Þynsi ¼ ynsi lnðn1Þ; and applies the same mathematical rules
to choice tasks, s, and alternatives J, one can rewrite equation Eq. 11.13 in the more
commonly recognized form:

LL ¼
XN
n¼1

X
s2Sn

X
j2Jns

ynsi ln Pnsið Þ: ð11:14Þ

It is possible for some advanced models, such as the mixed logit model, to relax the
assumption that responses are independent within a respondent. In this case, the
log-likelihood function of the model becomes:

LL ¼
XN
n¼1

ln E
Y
s2Sn

Y
j2Jns

Pnsið Þynsi
 ! !

; ð11:15Þ

where E
Q
s2Sn

Q
j2Jns

Pnsið Þynsi
 !

¼ E P�ð Þ ¼ Rb P�
nðbÞf ðbjhÞdb, P* is the probability of

the chosen alternative, and f ðbjhÞ is the multivariate probability density function of
b; given the structural parameters h.

This chapter deliberately examines discrete choice models from the perspective
of the log-likelihood function for two primary reasons. First, it is important to
understand that the basics of the estimation process are fundamentally the same for
all discrete choice models, and are independent of any particular assumed model
specification. The reason for this is that if one views the log-likelihood function as
described above, the logic can be extended to any discrete choice model by
substituting the specific probability for the model of interest. In turn, this allows for
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a more general discussion of the relevant issues without getting bogged down in
discussions of the specifics of all model forms. Second, a focus on the log-likeli-
hood makes it clear that, regardless of model type, the estimation process involves
nothing more than trying to find the parameter estimates (whether random or fixed)
that maximize the probabilities over choice tasks for the alternatives observed to
have been chosen in the data. The reason for the latter statement is that only the
chosen alternative matters in the log likelihood function (i.e., if ynsi = 0, the function
is zero) and mathematically as Pnsi → 1, the log of Pnsi → 0, suggesting that as the
log likelihood function approaches zero, the estimated parameters best predict the
chosen alternatives.14

The latter point is particularly important, and so deserves more attention. As
suggested by Eq. 11.4, the choice probabilities associated with any choice model
are a function of the utilities specified by the analyst, which in turn are potentially a
function of the design attributes, Xnsi, including the price to “consume” the alter-
native, socio-demographic characteristics of respondents, potential attitudes
respondents have about the object(s) of interest, the decision context associated
with the choice made, and the parameters to be estimated, β. The vast majority of
DCE studies typically consider the design attributes, but generally do not consider
socio-demographic characteristics. Even fewer consider attitudes and/or decision
context(s).

Even if one tries to consider all possible decision influences, there are many
possible ways that one can enter them into a final model specification. For example,
one could enter socio-demographic variables linearly into the alternative specific
constants (ASCs) of one or more utility functions (e.g., with the SQ alternative)
and/or one can interact them with one or more of the design attributes. For more
advanced models like latent class models, socio-demographic characteristics may
enter the model as part of a class assignment model (Swait 1994), whereas in the
case of nested logit one can extend Eq. (11.8b) to specify the inclusive value
measure as a function of exogenous variables outside of any contained in Vnsi:
Similar specification possibilities arise if one has attitudinal and/or decision context
measures.

Thus, how one specifies the utility function of the model matters greatly from an
estimation perspective, whether one is interested in BT or not. Unfortunately, the
degree to which this matters is an empirical issue, which may vary from context to
context. At a simple level, if a salient variable is omitted from the analysis,
covariances between parameter estimates can adversely affect the parameter out-
comes for those variables that entered the utility function. Unfortunately, one can
learn about this only by specifically and systematically testing this effect by
including all available variables into the model in all possible ways. Further, if
interactions exist and are not incorporated into the model specification, then one
runs a risk of introducing endogeneity bias into the estimation process.

14It should be noted though that the probabilities depend on all of the alternatives.
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To elaborate, discrete choice models of all types assume that Vnsi and εnsi(μ) are
orthogonal to one another. If one omits a salient interaction term involving one or
more variables in the model specification, the observed component and the error
term of the model become correlated. For example, if one estimates the parameters
of a model where price should enter as both a main effect and an interaction in the
model, but price only enters as a main effect, the price variable is associated with
both the observed component and error term. In such cases, the parameters of the
affected variables captured in the modeled component of utility will likely be
biased, and in the immediately preceding price example, the price parameter will
be biased. Naturally in such cases, all implicit prices also will be biased, and the
amount of endogeneity bias can differ for different parameters, depending on where
the problem resides in the utility function. Such problems are not limited to DCEs,
and they are not limited by data collected in surveys. For example, if different
respondents make different assumptions about a decision context and/or treat
ambiguous attributes differently, or respondent attitudes are related to the true
decision process but not observed, endogeneity bias may arise and require
sophisticated methods to detect and deal with it.

The preceding discussion raises a very important, fundamental question for BT.
That is, before one considers transferring outcomes from one location (or data
source) to another, one must know if what is being transferred is correct (i.e.,
unbiased), regardless of the specific model type estimated. More specifically, one
cannot ask what model type will provide the best outcomes for BT unless the
estimates for all model types compared are based on the best representations (most
correct approximations) of the underlying decision processes. To do otherwise is to
merely compare the robustness of various model forms to violations similar to those
discussed above. In all likelihood, the latter exercise merely poses an empirical
question, the answer to which will depend on the type and degree of violation
experienced.

Additionally, from a BT perspective the preceding discussion illustrates other
broader issues that one faces when trying to transfer estimates obtained from one
location (or data source) to another. For example, if data are available on all
relevant decision variables in two different sites (data sources)—whether the data
represent DCE design attributes, socio-demographic characteristics, attitudes or
information about decision contexts—the first question one should ask is whether
the same set of decision variables should enter the utility specifications of models
that would be independently estimated from the two data sets. If the answer to the
first question is “yes,” one should then ask if they enter the utility functions of both
models in exactly the same way. The latter differs slightly from the issue raised in
the preceding paragraph because one is asking not only if the utility specification
for the estimation site (data source) is correct, but also if it best represents the
specification at the transfer site (data source). If the two utility specifications differ,
then one needs to consider the particular effects or calculations being transferred,
and whether such differences are likely to matter.

For example, if implicit prices are being transferred, problems can arise if there
are interactions between design attributes and other exogenous variables and/or if
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different data transformations should be applied to variables entering the model. To
illustrate this problem, consider the implicit price for the following utility specifi-
cation (xc the price, xk a quality attribute):

V ¼ � � � þ b1xk þ b2xkxc þ b3x
2
c þ � � � ð11:16Þ

The marginal implicit price for a one unit increase in xk becomes

WTPk ¼ �Dxc
Dxk

¼ �
d
dxk

b1xk þ b2xkxc þ b3x
2
c

� �
d
dxc

b1xk þ b2xkxc þ b3x2c
� � ¼ � b1 þ b2xc

b2xk þ 2b3xc
: ð11:17Þ

Note that the value of the exogenous variable xk does not drop out of the
calculation; so, for the case of BT, one needs to know the value of the exogenous
variable at the transfer site (data source) in addition to the parameters being
transferred. An additional issue can arise in cases where one requires utility spec-
ifications that are highly non-linear in the attributes. In this case, one or more
attributes in the estimation model may be irrelevant to the transfer site (data source);
hence, one must carefully attend to what precisely is being transferred. Moreover,
leaving aside the issue of models that allow for consumer heterogeneity in the
parameter estimates, one also may need to consider the issue of heterogeneity
(or range) in the Xs associated with BT. Given the seriousness of these issues and
the uncertainty likely to be associated with any particular BT application, one may
be tempted to rely on simple models, such as simple linear in the parameter and
linear in the attribute utility specifications. Unfortunately, however, our earlier
discussion on potential biases that can occur when one misspecifies the true deci-
sion process highlights the fact that there clearly are potential risks in doing this.

Putting all the above aside, let us now consider a model specification in which
both preferences, represented as vector β, and scale, represented by a scalar un, are
assumed to vary over the sampled population, such that V = unβ. It is possible to
rewrite V = αn = unβ, where the elements in αn must be correlated as each term in β
is multiplied by a common scalar un. When viewed in this light, the confound
between scale and preference suggests that what is being modeled is also a form of
correlation. If one or more parameters in αn are fixed, or if all parameters are
assumed to be randomly distributed but uncorrelated, then an analyst is making the
[implicit assumption] that scale is homogenous across the sample. If one treats all
parameters as random and correlated (via, say, a Cholesky decomposition of the
parameter covariance matrix) in the mixed logit model, that model also allows for
random scale. The question then becomes what is being transferred in BT exercises
when one uses these advanced models.

Ideally, the model from the estimation site should capture both scale and pref-
erence heterogeneity, which implies allowing for correlated random parameters.
Yet, one now must transfer not only mean estimates but also the entire covariance
structure of random parameter terms, and assume that all these terms are similar to
those at the transfer site, an important assumption that may not hold empirically.
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To further complicate the BT issue, up to this point we have been deliberately
vague about the specifics of how to appropriately model attitudinal data for discrete
choice models. Typically, attitudinal data is collected using multi-attribute likert
scales or some other similar type of approach. One often observes researchers
entering such consumer-reported value(s) as an independent variable in the utility
specification, but such an approach can be problematic. As is well known, con-
sumers use rating scales differently, such that a rating of (say) two means different
things to different consumers (see for example Lee et al. 2007). Thus, this is a type
of measurement error in which the true underlying attitudes are measured by some
latent unobserved value. More recently, Rungie et al. (2011) provide comprehen-
sive statistical theory to integrate structural equation models and choice models,
providing a theoretically appropriate way to incorporate latent variables in the latter.
Despite these advances in incorporating latent constructs, such as attitudes in
models, new issues arise for BT, as analysts now must transfer parameter estimates
for the design attributes and parameters for the latent attitudinal variables. The
latent variables now must be imputed for the transfer site somehow. In turn, this
suggests that our earlier discussion on endogeneity also applies.

We end this particular discussion with an interesting and likely case-specific
question; namely, what if the best models for two separate sites (data sources) are
not the same. That is, what would be the likely outcome of a BT exercise if the
model that best represented the decision processes at the estimation site has one
particular model form (e.g., a mixed logit model), while the model that best fits the
true decision processes at the transfer site (data source) is another model form (e.g.,
conditional or nested logit)? This would seem to be an important future research
question that begs several other questions that, in turn, suggest that researchers need
to consider other possible models, decision processes and even the prospect that
different people use different decision processes.15

11.4 Experimental Design and Collection of SP Data
for Estimating Choice Models

Thus far our discussion of models for choice data has been quite limited in the sense
that data satisfying the conditions necessary for estimating such models have been
assumed to be available. Data from DCEs typically come from stated preference
surveys due to greater flexibility in controlling the stimuli seen by individuals,
which in turn minimize certain statistical issues in estimating the desired model and

15It is important to note that none of these issues are avoided by using estimated WTP from DCEs
for particular goods as inputs to the meta-analyses rather than making the transfer based directly on
the utility function estimated using DCE data. That is because all the specification issues discussed
as well as issues involving scale, can have substantial influence on WTP estimates from both the
original study and estimates derived for BT exercises.
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provide rigorous tests of particular hypotheses.16 Typically, SP data result from
some formal statistical design process, but there are exceptions. For example, some
researchers still use random draws from the total possible sets of choice sets to
construct SP surveys. To the extent that the number of draws is sufficiently large
this will approximate the population of choice sets, but as is the case with any
random sampling procedure, there can be serious departures from representative-
ness in small samples and the statistical identification of particular parameters may
be tenuous (Carson et al. 2009).

SP data collection processes for DCEs can be specifically designed to maximize
the power of tests of particular hypotheses and/or minimize estimation errors
associated with specific parameters of particular models. Of course, there is no free
lunch because SP studies face issues of external validity, due in no small part to
incentive compatibility issues, hypothetical situations and a wide array of design-
related and/or induced effects on outcomes.

11.4.1 Single Binary Discrete Choice CV Experiments

Contingent valuation (CV) methods have been used for over five decades, with a
recent book citing thousands of studies (Carson 2012). This chapter views the
standard single binary discrete choice (SBC) question recommended by Arrow et al.
(1993) and used in many high profile CV studies (e.g., Carson et al. 2003) as the
simplest special case of a DCE, whereby the choice options are limited to an SQ
alternative and a substantive policy alternative. One attribute, typically the payment
cost, is randomly varied. Payment costs are chosen to help identify the shape of the
underlying distribution of WTP and minimize the confidence interval around key
statistics like mean or median WTP. Generally speaking, there is no need for the
values of the payment vehicle to be chosen randomly from a range. The number of
payment amounts (often referred to as bid values) and their values depend critically
on three factors: (a) the distributional assumption made about WTP, (b) prior
information assumed about the value of the parameters of that distribution, and (c) the
statistic(s) of interest. In the extreme case where a two-parameter distribution for
WTP has been assumed and the values of the distribution’s parameters are known
with certainty, the typical result is that only two bid values should be used.
Assumptions of more flexible WTP distributions or allowing for considerable
uncertainty over parameter values generally results in more bid values being optimal,
but optimal designs typically result in the use of four to eight bid values.

The SBC format allows one to trace out the WTP distribution in the population
of interest if a parametric assumption about the WTP distribution is made (Cameron

16RP data also can be collected with DCEs in a laboratory setting, field tests or other contexts, such
as internet websites selling products where it is possible to control and randomly vary stimuli seen
by individuals. In this section, we assume that a DCE is used to collect SP data as that is by far the
most common application.
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1988; Cameron and James 1987) or one uses a nonparametric step-function to
approximate it (Carson and Steinberg 1990; Haab and McConnell 2002). The SBC
format with appropriate auxiliary conditions has desirable incentive properties
(Carson and Groves 2007), but these properties arise mainly because the SBC
format collects so little information from each respondent. For all practical
purposes, preference parameters of individual respondents are unidentified beyond
the interval in which their WTP lies, although some parameters related to obser-
vable individual characteristics (e.g., being an environmentalist) can be estimated at
the average of members of the group. Technically, it is possible to estimate the
difference in the population’s WTP for two policies that differ by two levels of a
single attribute by asking two statistically equivalent subsamples SBC questions
that differ only on that dimension. This is known as an external scope test (Arrow
et al. 1993), but it quickly gets prohibitively expensive when extended to multiple
samples. The desire to value change in multiple attributes that individually have
multiple levels pushes one in the direction of asking respondents to make choices in
more than one choice set. Moving to DCEs with multiple choice sets also greatly
facilitates more detailed modelling of consumer heterogeneity.

11.4.2 DCE with Multiple Choice Sets

DCEs were pioneered by Louviere and Hensher (1983) and Louviere and
Woodworth (1983). DCEs evolved by drawing on work from several sources,
including conjoint measurement (Luce and Tukey 1964), information integration
theory (e.g., Anderson 1970), discrete multivariate analysis of contingency (cros-
stab) tables (e.g., Bishop et al. 1975), probabilistic discrete choice models (e.g.,
McFadden 1974) and the design of statistical experiments for linear models (e.g.,
Box et al. 2005). Basically a DCE is a sparse, incomplete contingency (crosstab)
table. The table is constructed: i.e., it is purposefully designed a priori so that
certain statistical properties are achieved. Typically, these properties include
identification of certain effects associated with a particular statistical specification of
research interest, the precision with which these effects should be estimated, and/or
other properties. Statistical design theory provides theory and construction methods
for achieving these purposes.

There are two basic types of DCE designs, namely generic and alternative-
specific. Generic designs (GDs) are used when the choice options are unlabeled
(e.g., Option A, Option B, etc.), and alternative-specific designs (ASDs) are used
when the choice options are labeled (e.g., Manly Beach or Bondi Beach). Most of
the advances in optimum design theory work for DCEs in the past decade has
focused on GDs. Little work is available for ASDs outside of the transportation
literature (although see Rose and Bliemer 2009). As noted below, the vast majority
of DCE applications have used GDs; however, in many (but not all) cases, the
researchers should have used ASDs.
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A GD can be seen as a way to construct choice sets offering options described by
a generic set of attributes and associated levels; such designs can be used to con-
struct pairs, triples, etc., of options. Typically, environmental applications of DCEs
present a status quo option and two or more competing options. So, the design
problem is to select the “best” way to configure the choice sets to satisfy certain
statistical criteria of interest. Typically, the criteria are identification (ensuring that
all parameters of an assumed statistical model of interest can be estimated) and
precision (the estimated parameters are minimum variance estimates). There can be
other criteria, such as trying to maximize the fit of the model in- and/or out-of-
sample. The onus is on the designer to insure that ALL relevant attributes are
included (to avoid omitted variable bias), and that the levels are appropriate (ranges
not too large or too small, qualitative levels correct and relevant). Louviere and
Woodworth (1983) and Louviere et al. (2000) discuss these designs for cases where
a constant option is present in each choice set (e.g., status quo).

Alternative-specific designs are not frequently seen in environmental applications,
andmay pose issues for BT. That is, to the extent that themodeling results fromASDs
are specific to particular labeled options, the model parameter estimates and/or cal-
culations based on them may not transfer to sites not included in the estimation set.
The references cited in the preceding paragraph also discuss ASDs. Basically, such
designs can be constructed by using designs for linear models as long as there is a
constant option in each choice set, such as not choosing any of the options. The
advantages of the design construction methods discussed in the cited references are
that they allow one to estimate more general models and test violations of IIA.

Since 2000 there has been a rapidly growing literature in the design of DCEs. This
literature has gone in three different directions. The first was an effort to examine the
statistical properties of designs used in DCEs. This included efforts to improve the
efficiency of different types of logit models, including the conditional logit (e.g.,
Bunch et al. 1996), the nested logit (Bliemer et al. 2009) and the mixed logit model
(Bliemer and Rose 2010; Sándor and Wedel 2002), under various assumptions about
the unknown parameters of the utility function, and also to study the implications of
more complex models from a design perspective. The second was how to collect
more information about preference in each choice set faced by respondents. The third
was to ask whether particular designs used in DCEs influenced the choice behavior
observed (see for example Bliemer and Rose 2011; Louviere et al. 2008).

Although orthogonal designs have been the traditional mainstay for DCEs and
will continue to be so for many years to come, a number of researchers have begun
to query the appropriateness of orthogonal designs for use in DCEs. Generally, the
argument against the use of orthogonal designs is that the property of orthogonality
may run counter to many of the desirable properties of the econometric models
typically used to analyze DCE data (i.e., logit and probit models). Instead of merely
looking at the correlation between the attribute levels, as with orthogonal designs,
the latest theories related to the construction of experimental designs for DCEs seek
to find designs that are statistically as efficient as possible in terms of predicted
standard errors of the parameter estimates. Essentially, these designs try to maxi-
mize the information available from each choice situation and minimize the
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standard errors of the estimated parameters. Unlike linear models, the asymptotic
variance-covariance (AVC) matrix of discrete choice models is derived by taking
the negative inverse of the expected second derivatives of the log-likelihood
function of the model (see for example McFadden 1974). Given that the log-
likelihood function is itself a function of the choice probabilities which are in turn a
function of the parameter estimates, it is necessary for the analyst to provide priors
to determine the statistical efficiency of a design before the design used in the field.

Different researchers have made use of different prior parameters over the years,
with the two main types being the use of locally optimal priors (fixed parameters;
e.g., Huber and Zwerina 1996) or Bayesian priors (distributions of potential prior
parameter estimates; e.g., Sándor and Wedel 2001). Within the literature dealing
with locally optimal priors, there also exist several different research streams,
including those that assume non-zero parameter values (e.g., Carlsson and
Martinsson 2002) and those that assume that the parameters values are all zero (e.g.,
Street and Burgess 2007). It is interesting to note that for this latter design class, the
choice probabilities will be 1/J. In this case, the logit model will approximate a
linear model and an orthogonal design will be optimal. The inverse case is also true;
an orthogonal design is akin to assuming that the parameters will be zero.

Marley et al. (2008) suggested that previous work in Best-worst Scaling (e.g.,
Marley and Louviere 2005) could be extended to DCEs as a way to collect extra
choice information about the choice options in each choice set. Specifically, they
proposed using the order information from best and worst (most preferred and least
preferred) choices in each choice set to expand the available data to additional sets of
implied choices. Expanding (or exploding) the choices is based on Luce and Suppes
(1965), and was applied to Random Utility Theory (RUT)-based choice models by
Beggs et al. (1981) and Chapman and Staelin (1982) and others. Louviere et al.
(2008) show how to use the extra order information to estimate models for single
individuals. More recently, Louviere (2014) discusses the underlying ideas in much
more detail, explicitly linking them to earlier work in DCEs, and Frischkneicht et al.
(2014) discuss new ways to estimate models for single individuals that ensure
accurate parameter recovery and convergence. Thus, we now have theory and
methods for modeling single individuals using DCEs.

About five years ago, researchers in the Centre for the Study of Choice
(CenSoC) in Australia noticed what seemed to be an unusually high number of
experimental participants who exhibited deterministic choices, typically always
choosing one level of one particular attribute (e.g., “always choose lowest price”) in
Street and Burgess (2007) designs. Further investigation led to the discovery that
this was a widespread phenomenon. This led them to design 64 different DCEs to
rigorously test differences in implied preferences between types of designs for
DCEs, numbers of attributes, numbers of choice sets, and numbers of attribute
levels. Results are emerging as we write this, but we can say that there is evidence
for relatively high proportions of deterministic choices (30–40 %) in Street and
Burgess (2007) and Statistical Analysis System (SAS) designs (Kuhfeld 2010), but
virtually no evidence of this in the Balanced Incomplete Block Design (BIBD)
approach proposed by Louviere et al. (2008) or in randomly constructed sets of
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choice sets. There also are systematic differences in attribute effects for five and
eight attributes, with these effects frequently associated with quantitative attributes
such as payment vehicles. Unfortunately, there is a growing trend for researchers
not to test the results of DCE models against RP data, which is why this phe-
nomenon may have gone undetected for some time. A clear and compelling
research agenda emerging from these results is that not only models but types of
designs need to be tested against RP data so that we can begin to understand which
design strategies will produce the most accurate and reliable results for which
purposes and contexts.

Closely related to the above comments is the fact that (as noted earlier) there
seems to be far too much reliance on generic designs (Louviere et al. 2000, Chap. 4)
in empirical research with DCEs. Indeed, in many cases, the appropriate design
should be an alternative-specific design, but researchers seem to copy one another,
and many researchers, particularly in applied economics (but also in marketing)
routinely use generic designs. Generic designs are appropriate when one wants to
generalize one’s results to a generic class of options. However, researchers often
focus on a specific class of problems, such as visits to particular competing rec-
reational sites and/or particular competing treatments for a special health condition.
Thus, it is fair to say that many researchers should be designing and implementing
alternative-specific DCEs instead of generic DCEs.

Moreover, it is much harder to validate generic DCEs against RP data because
RP data typically are associated with choices of particular competing options, such
as products on store shelves in marketing applications, or transport modes in
transport. Alternative-specific problems necessarily are narrower than generic
problems, with the focus being on a particular set of choice options of interest. This
set can include “any other options” and/or an outside good, but one rarely sees these
included in DCEs. Alternative-specific designs have the decided advantage that
they can simulate the features of real markets to any desired degree of accuracy
required. That is, one can use such designs (literally) to create a variety of choice
contexts such as store shelves or competing recreational opportunities.

Choice models for alternative-specific problems, not surprisingly, may or may
not require alternative-specific utility functions, whereby J-1 of the competing
options has its own utility function with potentially different parameters. The Jth
option must be set equal to some constant for identification purposes. Louviere and
Woodworth (1983) proposed that the latter option be the choice of none of the
competing options, or another constant option like a status quo good. Such models
can be specified as latent class models or random coefficient models, but one rarely
sees this in practice (however, see Swait 1994).

From the standpoint of BT problems, one can clearly see the strong attraction of
generic DCEs. Moreover, applied economics generally has tended to favor models
without ASCs where possible, which contrasts strongly with marketing applications
in which ASCs often are brand labels. Thus, a key question from a BT perspective
is whether a donor site is something that can be characterized as a bundle of generic
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attributes or whether it is unique in ways that influence BT.17 Clearly, this is an
issue that also influences other approaches to BT, like meta-analysis. The DCE
approach illustrates the specific technical nature of assumptions made in using
generic designs and how it can bias transferred valuation estimates.

11.5 Issues in Combining Data from Multiple Sources

It is possible to combine data from multiple sources to improve the performance of
individual models and extend the ability of a particular dataset to make predictions
to additional situations. There has been a long standing interest in combining SP
and RP data (Adamowicz et al. 1994; Ben-Akiva and Morikawa 1990; Cameron
1992). Moving from RP data to SP data was seen as a way to overcome the
limitations that RP data have of dealing only with a narrow range of attribute levels
and potentially having very highly correlated attributes, but it was immediately
obvious that there was useful information in both types of data, so it was natural to
try to combine them. Originally, RP data were seen as the “gold” standard repre-
senting the ideal measure of the behavior one wanted to predict, but this perspective
has become more nuanced over time.

RP data are often collected by government agencies, non-profit organizations
and commercial firms. Examples include trips taken for recreation purposes and
purchases of different types of goods. A key issue to note is that most RP data is
collected in surveys. RP data are subject to the general reporting error issues
involved in collecting information in surveys, plus some special considerations like
memory recall effects. Another source of potential divergence in behavior predicted
by RP and SP data that one must be aware of arises from the nature of samples
taken relative to the population of interest, and one frequently observes quite dif-
ferent selection bias between surveys collecting the two types of data.18

What is by now well-known is that there may be considerable differences in
scale between RP and SP and that there are ways for taking this into account (Swait
and Louviere 1993). The RP and SP choice environments may be characterized by
very noisy levels, even though all or most of the parameter estimates are propor-
tional between the two types of data (Louviere et al. 2000, Chap. 13; Swait et al.
1994).19

Calibration of SP estimates to predict RP choices seems clearly merited if two
conditions hold. The first is that the information available in the RP environment

17Burgess et al. (2012) provide an initial investigation of this question, asking whether different
types of landscape configurations can be adequately represented as a bundle of attributes.
18One way to avoid this issue is to collect both types of data in the same survey, but this may
exacerbate recall issues, particularly if respondents are asked about behavior in the more distant
past.
19Divergence from proportionality, when it occurs, tends to be concentrated in the ASC and cost
parameters.

11 Frontiers in Modeling Discrete Choice Experiments … 231



and the noise that characterizes it represent the context in which one wishes to
predict choice behavior. This may not always be the case, particularly for many
environmental decisions or new products in marketing, where one wants to predict
the behavior of informed consumers.20 The second condition occurs if the incentive
structure of the SP question is inconsistent with truthful preference revelation,
which is most likely to be the case for private and quasi-public goods.21 Although
RP data for pure public goods in the desirable incentive context of a coercive
payment mechanism do not generally exist, RP data sometimes exist with voluntary
payment mechanisms. This presents a difficult situation in which the incentive
structure of the RP context should lead to well-known free-riding behavior. For SP
data, Carson and Groves (2007) show that it is optimal to over-pledge in the survey
to encourage the undertaking of the fundraising effort and then to free-ride on the
actual effort. This discussion suggests that while there can be considerable benefit to
combining RP and SP data, such data-pooling should be done with careful con-
sideration of the processes generating both types of data.

It is also possible to combine SP data sets. While there is little experience with
doing this, the principles are largely the same as combining RP and SP datasets.
There need to be two or more common pairs of choice alternatives across the two
datasets. Differences in scale between the two datasets will have to be controlled for
in a manner similar to RP and SP data. The ability to combine multiple SP data sets
opens the possibility of systematically collecting and merging SP datasets with an
eye toward being able to value an increasing array of environmental goods in a
consistent manner.22

11.6 Conclusions

This chapter represents an initial foray into many questions related to how different
modeling strategies influence BT error rates. We noted that particular attention
should be paid to the role of how observable differences in donor and target sites are
handled in the transfer exercise. This includes determination of relevant population
subgroups that occur across the two sites. In turn, this suggests considerable
potential could be realized by reweighting the data at the donor site to match the

20Participants in DCEs that collect SP data often are given considerably more information than
they are likely to have had in an RP context, where purchase decisions are infrequent or made only
once.
21Carson and Groves (2007) provide a neo-classical framework for examining the incentive
structure of various SP elicitation formats in different contexts. For new products, incentives in a
SP context tend to encourage over-estimation of the propensity to purchase, whereas for existing
products incentives may exist to understate the propensity to purchase.
22For instance, a government agency could adopt a plan to undertake a new SP study valuing
various environmental goods every year where a small number of choice alternatives were
common across years.
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target site on key characteristics and then re-estimating the original model with
reweighted data.23

A general difficulty with most empirical BT tests is that they are designed to
eliminate many messy details involved in transfers actually performed for policy
purposes. From a DCE perspective, a key difficulty is that attributes and levels may
not match well between donor and target sites. It may also be that some demo-
graphic or attitudinal information collected in the survey is unavailable at the target
or that a considerable length of time has passed between the original study and the
BT exercise. No doubt some or all of these factors can impact the quality of the BT.
A key research question is whether quality suffers differentially with different
modeling strategies, which in turn points to the need to develop a more compre-
hensive theoretical and econometric framework for transferring the information
contained in DCEs to help inform policy decisions. In the latter case the use of
DCEs for direct BT is much less developed than the meta-analysis approach, but
clearly has the potential to provide a coherent framework for BT. There is much
conceptual work to be done, and empirical comparisons across donor and target
sites using a range of modelling approaches and outside data are clearly necessary.
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