Chapter 11: probs \#1, \#3, and \#4, p. 298
Problem set 4: due week of Feb 20-24 Chapter 12: probs \#1 a-b-c-d, \#2, \#3, pp. 320-321

Future problem sets

- Chapter 13: probs \#1, \#2 a-b-c-d, \#3, \#5, pp. 347348
- Chapter 14: probs \#1, \#2, \#3, \#6, pp. 369-370
- Chapter 15: probs \#1, \#3, \#5 a-b, \#6, pp. 393-394

Chapter 12: Economics of Information

A. The value of information

We said something has economic value if people are willing to pay for it

People pay for information- how can we think about its value?

Option 2: auction on ebay, sell to price specified by secondhighest bidder

Say highest bid is $\$ 900$, second-highest is \$800

broker: someone who gets paid a commission for bringing a buyer and seller together

- stocks and bonds
- real estate

Free rider problem:
Once information is known, it may be possible to use or disseminate without paying for it

Example: obtain detailed information for computer salesperson, then buy online

Chapter 12: Economics of Information

In other cases, the existence of the freerider problem would lead us to expect that too little information is supplied by the private market

Sales person:
May help provide you with information about which product is best for you

Examples:

- computers
- sports equipment
- hardware

A. The value of information
B. Valuation with incomplete information: risk neutrality

Suppose you were looking at a certain business prospect.
If you invest in it, 80% of the time it will pay off \$1,000.
20% of the time, it will pay off nothing.
How much is it worth to you?

You don't know how any single investment like this would turn out.

But the laws of probability allow you to be extremely confident that if you made 100 separate investments just like this, the fraction that came out well would be somewhere between 0.68 and 0.92 .

| If you had n separate investments, you could be
 very confident that the fraction of successes would
 be bigger than $p 0$ but less than $p 1$ |
| :---: | :---: | :---: |
| n $p 0$
 $p 1$
 100 0.68
 0.92
 1,000 0.76
 10,000 0.79
 $1,000,000$ 0.799 | | |
| :---: |

Law of Large Numbers:

As n gets bigger, $p 0$ and $p 1$ get closer and closer to 0.80

If you made a large number of such investments, the fraction paying $\$ 300$ would be close to 0.2 , the fraction paying $\$ 600$ close to 0.5 , and the fraction paying $\$ 1,000$ close to 0.3 .

In this case, you might value a typical investment at:
$(0.2 \times \$ 300)+(0.5 \times \$ 600)+(0.3 \times \$ 1,000)$
$=\$ 60+\$ 300+\$ 300$
$=\$ 660$

Interpretation: if you observed a large number of realizations of the random variable, the average value you observed would be close to the expected value.

Example: if the project would pay $\$ 1,000$ with probability 0.8 and $\$ 0$ with probability 0.2 , if you value it at $\$ 800$, we say that you are risk neutral.

If you value it at less than $\$ 800$, we say that you are risk averse.

Chapter 12: Economics of Information

A. The value of information
B. Valuation with incomplete information: risk neutrality
C. Asymmetric information

Suppose you can't determine whether a car is a "lemon" just by looking at it.
Let's say the value of a good used car to you is $\$ 10,000$.
But the value of a lemon to you is only \$6,000.
Question: how much are you willing to pay to buy a used car?

If:

- 90% of the used cars for sale are good (worth $\$ 10,000$)
- 10% are lemons (worth $\$ 6,000$)
- you are risk neutral
then:
you'd be willing to pay
$(0.9 \times \$ 10,000)+(0.1 \times \$ 6,000)$
$=\$ 9,600$
for a used car

Calculations of buyer

Calculations of seller

- Seller (unlike the buyer) knows whether she has a lemon
- Buyer offers \$9,600
- If car is good, it's worth $\$ 10,000$, seller wouldn't want to part with it for \$9,600
- If car is lemon, great idea to sell it

Resulting equilibrium:
only lemons are sold on the used car market

Key feature that produced this phenomenon: asymmetric information

Seller knows quality of car, buyer does not

Markets can fail to function efficiently under asymmetric information

- Problem: potential seller of a used car needs some way to convince buyer that the car is not a lemon
- In game theory, we saw that the key to resolving credibility problem was some kind of commitment mechanism
- Under asymmetric information, the market's solution to the problem can be costly signaling
- Suppose the seller of a used car issues a warranty
- If the car needs repair, seller will pay for it
- If it's a good car, seller probably won't need to pay for anything
- If it's a lemon, seller will have to pay a good deal
- Only the seller of a good car can afford to offer a warranty
- Whether or not the car is covered by a warranty can be used as a signal by the buyer of whether the car is a lemon
- If the car were a lemon, the signal would be too costly for the seller to make
- Therefore, the signal is credible in equilibrium
- It's not that the buyer necessarily wanted a warranty, just wanted to know it wasn't a lemon

Examples of costly signaling

(1) Advertising:

- If product is no good, advertising will ultimately be ineffective
- Advertising may be taken as signal to consumer that product is worth trying

Examples of costly signaling

(3) Education

- Employers want bright, hard-working, reliable employees

Chapter 12: Economics of Information

A. The value of information
B. Valuation with incomplete information: risk neutrality
C. Asymmetric information
D. Resolving asymmetric information with costly signaling
E. Insurance markets

Examples of costly signaling

(2) Saddam's palaces

- Whoever built this has a lot of power
- I better not mess with him

Examples of costly signaling

(4) Animal kingdom

- ostentatious displays signal vigor, nutrition

- Insurance premium is more than the expected value of payout
- E.g., I pay $\$ 500$ for a car insurance policy that has $1 / 100$ chance of paying $\$ 20,000$
- insurance premium = \$500
- expected payout $=\$ 200$

Suppose there are two kinds of drivers:

- safe drivers: probability of accident = 1/200 per year
- risky drivers: probability of accident $=1 / 20$ per year
- payout for accident $=\$ 20,000$

Expected payout for	
safe drivers:	Suppose that $1 / 2$ the
$(1 / 200) \times(\$ 20,000)=$	drivers are safe and
$\$ 100$ per year	$1 / 2$ are risky and an
Expected payout for	insurance company
risky drivers:	issues same policy to
$(1 / 20) \times(\$ 20,000)=$ both types $\$ 1,000$ per year 	

Expected payout for safe drivers: $(1 / 200) \times(\$ 20,000)=$ Insurance company's expected payout is: $\$ 100$ per year Expected payout for risky drivers: $(1 / 20) \times(\$ 20,000)=$ $(1 / 2) \times(\$ 1,000)$ $\$ 1,000$ per year $=\$ 550$ per policy Insurance company could charge $\$ 550$ per policy and still break even 	

Conclusion: if insurance policy costs $\$ 550$, only the risky drivers would buy it
If only risky drivers buy it, insurance company's expected payout is $\$ 2,000$
Insurance will cost $\$ 2,000$ in equilibrium

Expected payout for	Safe drivers are willing safe drivers:
to pay $\$ 200 /$ year	
$(1 / 200) \times(\$ 20,000)=$	premium
$\$ 100$ per year	
Expected payout for	Risky drivers are willing
risky drivers:	to pay $\$ 2,000 /$ year
$(1 / 20) \times(\$ 20,000)=$	premium
$\$ 1,000$ per year	

Definition:

adverse selection refers to the phenomenon where high-risk individuals are more likely to buy insurance than lowrisk individuals, thereby raising insurance payouts and equilibrium premia

One way insurance companies cope with adverse selection:
statistical discrimination
Insurance company uses some aspect of driver that they can identify that correlates with payout rates

Examples:

- driving record
- age
- zip code

\square
Example of moral hazard: Problems with banks and saving and loan institutions in 1980's

Once I have insurance, I no longer personally pay the cost for my risky behavior

If I engage in more risky behavior precisely because I am insured it is called moral hazard

Government insures customer deposits in the bank- customers can then deposit funds in the bank with no personal risk

Banks had made some bad loans, resulting in bank itself having no assets (other than deposits)

Suppose the bank considers the following real estate investment:

- lend $\$ 100$ million
- with probability 0.25 , get repaid with 10% interest
= \$110 million
- with probability 0.75 , get repaid nothing
- Expected payback from loan =
($0.25 \times \$ 110$ million $)+(0.5 \times 0)$
$=\$ 27.5$ million
- Bank obtains $\$ 100$ million from depositors who get 5\% interest
- Why would customers lend $\$ 100$ million and bank spend $\$ 105$ million to earn an expected $\$ 27.5$ million?

Result for government:
with probability 0.75 has to pay depositors $\$ 105$ million

Problem was solved in U.S. by raising bank capital requirements: owners of bank must have substantial personal capital at risk Problem still not solved in Japan

