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A.  CALCULUS REVIEW1 

Derivatives, Partial Derivatives and the Chain Rule 

You should already know what a derivative is. We’ll use the expressions ƒ(x) or dƒ(x)/dx for the 

derivative of the function ƒ(x). To indicate the derivative of ƒ(x) evaluated at the point x = x*, we’ll 

use the expressions ƒ(x*) or dƒ(x*)/dx. 

When we have a function of more than one variable, we can consider its derivatives with respect 

to each of the variables, that is, each of its partial derivatives. We use the expressions: 
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   and    ƒ1(x1,x2) 

interchangeably to denote the partial derivative of ƒ(x1,x2) with respect to its first argument (that 

is, with respect to x1). To calculate this, just hold x2 fixed (treat it as a constant) so that ƒ(x1,x2) 

may be thought of as a function of x1 alone, and differentiate it with respect to x1. The notation for 

partial derivatives with respect to x2 (or in the general case, with respect to xi) is analogous. 

For example, if ƒ(x1,x2) = x1
2x2 + 3x1, we have: 
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  =  ƒ2(x1,x2)  =  x1
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The normal vector of a function ƒ(x1,...,xn) at the point (x1,...,xn) is just the vector (i.e., ordered 

list) of its n partial derivatives at that point, that is, the vector: 
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Normal vectors play a key role in the conditions for unconstrained and constrained optimization. 

 

The chain rule gives the derivative for a “function of a function.” Thus if ƒ(x)  g(h(x)) we have 

 ƒ(x)   =   g(h(x))  h(x) 

The chain rule also applies to taking partial derivatives. For example, if ƒ(x1,x2)  g(h(x1,x2)) then 
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Similarly, if ƒ(x1,x2)  g(h(x1,x2),k(x1,x2)) then: 
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The second derivative of the function ƒ(x) is written: 

 ƒ(x)   or   
2

2

ƒ( )d x

dx
 

 

1 If the material in this section is not already familiar to you, you probably won’t be able to pass this course. 
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and it is obtained by differentiating the function ƒ(x) twice with respect to x (if you want to 

calculate the value of the second derivative at a particular point x*, don’t substitute in x* until after 

you’ve differentiated twice). 

A second partial derivative of a function of several variables is analogous, i.e., we write: 

 ƒii(x1,...,xn)   or   

2
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ƒ( ,..., )n

i

x x

x




 

to denote differentiating twice with respect to xi.  

 

We get a cross partial derivative when we differentiate first with respect to xi and then with 

respect to some other variable xj. We will denote this with the expressions: 

 ƒij(x1,...,xn)   or   
2

1ƒ( ,..., )n

i j

x x

x x



 
 

Here’s a strange and wonderful result: if we had differentiated in the opposite order, that is, first 

with respect to xj and then with respect to xi, we would have gotten the same result. In other words, 

ƒji(x1,...,xn)  ƒij(x1,...,xn) or equivalently 2ƒ(x1,...,xn)/xixj  2ƒ(x1,...,xn)/xjxi. 

 

 

Approximation Formulas for Small Changes in Functions (Total Differentials) 

If ƒ(x) is differentiable, we can approximate the effect of a small change in x by: 

 ƒ   =   ƒ(x+x) – ƒ(x)      ƒ(x)x  

where x is the change in x. From calculus, we know that as x becomes smaller and smaller, this 

approximation becomes extremely good. We sometimes write this general idea more formally by 

expressing the total differential of ƒ(x), namely: 

 dƒ   =   ƒ(x)dx 

but it is still just shorthand for saying “We can approximate the change in ƒ(x) by the formula  

ƒ  ƒ(x)x, and this approximation becomes extremely good for very small values of  x.” 

 

When ƒ() is a “function of a function,” i.e., it takes the form ƒ(x)  g(h(x)), the chain rule lets us 

write the above approximation formula and above total differential formula as 

 
( ( )))

( ( )) ( ( )) ( ) thus ( ( )) ( ( )) ( )
dg h x

g h x x g h x h x x dg h x g h x h x dx
dx

      =   =    

For a function ƒ(x1,...,xn) that depends upon several variables, the approximation formula is: 

 ƒ  =   ƒ(x1+x1,...,xn+xn) – ƒ(x1,...,xn)      1 1
1

1

ƒ( ,..., ) ƒ( ,..., )
...n n

n

n

x x x x
x x

x x

 
  + +  

 
 

Once again, this approximation formula becomes extremely good for very small values of 

x1,…,xn. As before, we sometimes write this idea more formally (and succinctly) by expressing 

the total differential of ƒ(x), namely: 
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=  + + 

 
 

or in equivalent notation:     dƒ   =   ƒ1(x1,...,xn)dx1 +  + ƒn(x1,...,xn)dxn 

B.  ELASTICITY 

Let the variable y depend upon the variable x according to some function, i.e.: 

 y   =   ƒ(x) 

How responsive is y to changes in x? One measure of responsiveness would be to plot the function 

ƒ() and look at its slope. If we did this, our measure of responsiveness would be: 

 
absolute change in 

slope of ( )   =   ( )
absolute change in 

y y dy
f x f x

x x dx


=  =


 

Elasticity is a different measure of responsiveness than slope. Rather than looking at the ratio of 

the absolute change in y to the absolute change in x, elasticity is a measure of the proportionate 

(or percentage) change in y to the proportionate (or percentage) change in x. Formally, if y = ƒ(x), 

then the elasticity of y with respect to x, written Ey,x, is given by: 

 
( )
( )

,

proportionate change in 
   =   

proportionate change in 
y x

y
yy y x

E
xx x y

x


  

= =        
 

If we consider very small changes in x (and hence in y), y/x becomes dy/dx = ƒ(x), so we get 

that the elasticity of y with respect to x is given by: 

 
( )
( )

,    =   ( )y x

y
y y x dy x x

E f x
x x y dx y y

x


        

=    =                  
 

Note that if ƒ(x) is an increasing function the elasticity will be positive, and if ƒ(x) is a decreasing 

function, it will be negative. 

It is crucial to note that while elasticity and slope are both measures of how responsive y is to 

changes in x, they are different measures. In other words, elasticity is not the same as slope. For 

example, if y is exactly proportional to x, i.e., if we have y = cx, the slope of this curve would be 

c, but its elasticity is given by: 

 ,    =   1y x

dy x x
E c

dx y c x

    
 =  =    

    
 

In other words, whenever y is exactly proportional to x, the elasticity of y with respect to x will be 

one, regardless of the value of the coefficient c. 

Here’s another example to show that elasticity is not the same as slope. The function y = 3 + 4x 

obviously has a constant slope (namely 4). But it does not have a constant elasticity. To see this, 

use the formula again: 
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which is obviously not constant as x varies. 

 

Finally, we note that if a function has a constant elasticity, it must take the form ƒ(x)  cx for 

some constants c > 0 and . We prove this by the calculation: 

 

( 1)

ƒ( ),

ƒ( )
   =   

ƒ( )
x x

d x x c x x
E

dx x c x








−  
 = 


 

Note that  will be positive if the function is increasing, and negative if it is decreasing.  

 

C.  LEVEL CURVES OF FUNCTIONS 

If ƒ(x1,x2) is a function of the two variables x1 and x2, a level curve of  ƒ(x1,x2) is just a locus of 

points in the (x1,x2) plane along which ƒ(x1,x2) takes on some constant value, say the value k. The 

equation of this level curve is therefore given by ƒ(x1,x2) = k. For example, the level curves of a 

consumer’s utility function are just his or her indifference curves (defined by the equation U(x1,x2) 

= u0), and the level curves of a firm’s production function are just the isoquants (defined by the 

equation ƒ(L,K) = Q0). 

 

The slope of a level curve is indicated by the notation: 

 

1 2

2 2

1 1ƒ( , ) ƒ 0

or

x x k

dx dx

dx dx
=  =

 

where the subscripted equations are used to remind us that x1 and x2 must vary in a manner which 

keeps us on the ƒ(x1,x2) = k level curve (i.e., so that ƒ = 0). To calculate this slope, recall the 

vector of changes (x1,x2) will keep us on this level curve if and only if it satisfies the equation: 

 0    =    f         ƒ1(x1,x2)x1  +  ƒ2(x1,x2)x2 

which implies that x1 and x2 will accordingly satisfy: 

 

1 2

2 1 1 2

1 2 1 2ƒ( , )

ƒ ( , )

ƒ ( , )
x x k

x x x

x x x
=


 −


 

so that in the limit we have: 

 

1 2

2 1 1 2

1 2 1 2ƒ( , )

ƒ ( , )

ƒ ( , )
x x k

dx x x

dx x x
=

= −  

This slope gives the rate at which we can “trade off” or “substitute” x2 against x1 so as to leave the 

value of the function ƒ(x1,x2) unchanged. This concept will be of frequent use in this course. 
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ƒ(x1,x2) = k 

x1 

x2 

slope  =   
dx

dx

x x x

x x x
x x k

2

1

1 2 1

1 2 2
1 2ƒ ,

ƒ( , )

ƒ( , )b g=
= −

 

 
 

             
 
An application of this result is that the slope of the indifference curve at a given consumption 

bundle is given by the ratio of the marginal utilities of the two commodities at that bundle. Another 

application is that the slope of an isoquant at a given input bundle is the ratio of the marginal 

products of the two factors at that input bundle. 

In the case of a function ƒ(x1,...,xn) of several variables, we will have a level surface in n–

dimensional space along which the function is constant, that is, defined by the equation ƒ(x1,...,xn) 

= k. In this case the level surface does not have a unique tangent line. However, we can still 

determine the rate at which we can trade off any pair of variables xi and xj so as to keep the value 

of the function constant. By exact analogy with the above derivation, this rate is given by: 

 

1

1

1ƒ( ,..., ) ƒ 0

ƒ ( ,..., )

ƒ ( ,..., )
n

j ni i

j j i nx x k

x xdx dx

dx dx x x
=  =

= = −  

Finally, given any level curve (or level surface) corresponding to the value k, the better-than set 

of that level curve or level surface is the set of all points at which the function yields a higher value 

than k, and the worse-than set is the set of all points at which the function yields a lower value 

than k. 

 

D.  POSSIBLE PROPERTIES OF FUNCTIONS  

Cardinal vs. Ordinal Properties of a Function 

Consider some domain X  
n
. For convenience, we can express each point in X by the boldface 

symbol x = (x1,...,xn), x* = (x*
1,...,x*

n), etc. Every real-valued function ƒ(x) = ƒ(x1,...,xn) over X 

implies (among other things) the following two types of  “information:” 

ordinal information: how the function “ranks” different points in its domain, i.e., the 

ranking ord over points in X, as defined by 

xA  ord   xB              ƒ(xA)    ƒ(xB) 

cardinal information: how the function ranks differences between pairs of points in the 

domain, the ranking crd over all pairs of points in X, as defined by 

{xA, xB}  crd  {xC, xD}              ƒ(xA) – ƒ(xB)      ƒ(xC) – ƒ(xD) 
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It is easy to prove that the rankings ord and crd will always be transitive (can you do this?) and 

we define their associated relations ord,   ~ord,  ord  and  crd,   ~crd,  crd  in the obvious manner. 

Note that a pair of functions ƒ() and g() over X will have the same ordinal information as each 

other if and only if they are linked by some increasing transformation of the form 

           g(x)      (ƒ(x))              for some strictly increasing function () 

Similarly, a pair of functions ƒ() and g() will have the same cardinal information as each other 

if and only if they are linked by some increasing affine transformation of the form 

           g(x)      a ƒ(x) + b              for some constants a, b with a > 0 

Although it is important to recall that every function has both cardinal and ordinal information, we 

typically refer to a function as ordinal if only its ordinal information is relevant. An example is a 

standard utility function U(x1,...,xn) over nonstochastic commodity bundles (x1,...,xn), whose 

ordinal information is precisely the consumer’s preference relation over such bundles. We refer to 

a function as cardinal if its cardinal information is relevant. An example of a cardinal function is 

a consumer’s von Neumann-Morgenstern utility function which (under the expected utility 

hypothesis) represents their attitudes toward risk (if you have not yet seen this concept, don’t 

worry.) The cardinal information of a function includes its ordinal information, since 

  x* ord  x        ƒ(x*)    ƒ(x)        ƒ(x*) – ƒ(x)    ƒ(x) – ƒ(x)        {x*, x} crd {x, x} 

But don’t think that a function’s cardinal information (the ranking crd) exhausts the information 

of the function. For example, knowing all the cardinal information of a production function still 

leaves you with no idea of how much output it yields from any input bundle! (I.e., production 

functions are more than just cardinal functions.) 

Scale Properties of a Function 

The function ƒ(x1,...,xn) exhibits constant returns to scale or is homogeneous of degree one, if 

 ƒ(x1,...,xn)      ƒ(x1,...,xn) for all x1,...,xn and all  > 0 

i.e. if multiplying all arguments by  implies the value of the function is also multiplied by . 

A function ƒ(x1,...,xn) is said to exhibit scale invariance or is homogeneous of degree zero if 

 ƒ(x1,...,xn)        ƒ(x1,...,xn)      for all x1,...,xn and all  > 0 

i.e., if multiplying all arguments by  leads to no change in the value of the function.  

Say that ƒ(x1,...,xn) is homogeneous of degree one, so that we have ƒ(x1, ...,xn)  ƒ(x1,...,xn). 

Differentiating this identity with respect to  yields: 

 1 11
ƒ ( ,..., ) ƒ( ,..., )

n

i n i ni
x x x x x 

=
         for all x1,...,xn and  > 0 

setting  = 1 then gives: 

 1 11
ƒ ( ,..., ) ƒ( ,..., )

n

i n i ni
x x x x x

=
   for all x1,...,xn 

which is called Euler’s theorem, and which will turn out to have very important implications for 

the distribution of income among factors of production. 

Here’s another useful result: if a function is homogeneous of degree 1, then its partial derivatives 

are all homogeneous of degree 0. To see this, take the identity ƒ(x1,...,xn)  ƒ(x1,...,xn) and this 

time differentiate with respect to xi, to get: 
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 ƒi(x1,...,xn)      ƒi(x1,...,xn) for all x1,...,xn and  > 0 

or equivalently: 

 ƒi(x1,...,xn)      ƒi(x1,...,xn) for all x1,...,xn and  > 0 

which establishes our result. In other words, if a production function exhibits constant returns to 

scale, the marginal products of all the factors will be scale invariant.  

More generally, a function ƒ(x1,...,xn) is homogeneous of degree n if 

 ƒ(x1,...,xn)      nƒ(x1,...,xn) for all x1,...,xn and all  > 0 

i.e., if multiplying all arguments by  implies that the value of the function is multiplied by n. 

Another way to think of this property is that ƒ(x1,...,xn) has a constant “scale elasticity” of n. To 

check your understanding of arguments involving homogeneous functions, see if you can prove 

the following generalization of the previous paragraph’s result: 

“If ƒ(x1,...,xn) is homogeneous of degree k, then its partials are all homogeneous of degree k – 1.” 

Concave and Convex Functions 

A real-valued function ƒ(x) = ƒ(x1,...,xn) over a convex domain X  
n
 is said to be concave if 

 ƒ( x + (1–)  x*)       ƒ(x) + (1–) ƒ(x*)          for all x, x*, and all   (0,1) 

and convex if 

 ƒ( x + (1–)  x*)       ƒ(x) + (1–) ƒ(x*)          for all x, x*, and all   (0,1) 

ƒ(x) is strictly concave/convex if the relevant inequality holds strictly for all x, x* and .2 

If ƒ(x) is a concave/convex function of a single variable x, the above conditions imply that the 

chord linking any two points on its graph will lie everywhere on or below/above it. If ƒ(x) is twice 

differentiable, then it will be concave/convex if and only if its second derivative ƒ(x) is 

everywhere nonpositive/nonnegative. However, the link with second derivatives is not so exact for 

strict concavity/convexity: the function ƒ(x) = x4 is twice differentiable and strictly convex over 

the entire real line, event though its second derivative ƒ(x) is not positive at x = 0. 

Finally, ƒ(x) = ƒ(x1,...,xn) is affine if it takes the form ƒ(x1,...,xn)  
n
i=1 aixi + b for some constants 

a1,...,an, b. Affine functions are simultaneously weakly concave and weakly convex. 

Quasiconcave and Quasiconvex Functions 

A real-valued function ƒ(x) = ƒ(x1,...,xn) over a convex domain X  
n
 is quasiconcave if 

ƒ( x + (1–)  x*)    ƒ(x)         for all x, x* such that ƒ(x*) = ƒ(x), and all   (0,1) 

and quasiconvex if 

ƒ( x + (1–)  x*)    ƒ(x)         for all x, x* such that ƒ(x*) = ƒ(x), and all   (0,1) 

We use the terms strictly quasiconcave/quasiconvex if the relevant inequality always holds strictly. 

There are a couple other equivalent definitions of these concepts. Perhaps the most intuitive is 

ƒ(x) = ƒ(x1,...,xn) is quasiconcave      for every x*, the set {x |ƒ(x)  ƒ(x*) is a convex set } 

  ƒ(x) = ƒ(x1,...,xn) is quasiconvex      for every x*, the set {x |ƒ(x)  ƒ(x*) is a convex set } 

 

2 Functions that are concaveconvex, but not strictly so, are sometimes termed weakly concaveweakly convex. 
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Alternatively,  ƒ(x) = ƒ(x1,...,xn) is  

quasiconcave      for all x, x*,  ƒ(x + (1–)x*)  min [ƒ(x*),ƒ(x)]  for all (0,1) 

  quasiconvex      for all x, x*,  ƒ(x + (1–)x*)  max [ƒ(x*),ƒ(x)]  for all (0,1) 

The fundamental difference between concavity/convexity and quasiconcavity/quasiconvexity is: 

Quasiconcavity/quasiconvexity are ordinal concepts, in that they solely pertain to properties 

of a function’s implied ranking  ord : 

quasiconcave      for all x*, the set {x | x ord x* is a convex set } 

  quasiconvex      for all x*, the set {x | x ord x* is a convex set } 

Thus if a function is quasiconcave/quasiconvex, so is every increasing transformation of it. 

Concavity/convexity are cardinal concepts, in that they solely pertain to properties of the 

implied ranking crd. On the assumption that the function is continuous, they can be shown 

to be equivalent to the condition that whenever ƒ(x*)  ƒ(x), then ƒ(x*) – ƒ(½x*+½x) / 

ƒ(½x*+½x) – ƒ(x).  This property can be expressed in terms of the ranking crd as: 

concave      if  {x*, x} crd {x, x}  then  {x*, ½x*+½x} crd  {½x*+½x, x} 

   convex      if  {x*, x} crd {x, x}  then  {x*, ½x*+½x} crd  {½x*+½x, x} 

Thus, if a function is concave/convex, so is every increasing affine transformation of it. 

Note that every concave/convex function is necessarily quasiconcave/quasiconvex, but not vice 

versa: think about the function ƒ(x1,x2)  x1x2 over X = {(x1,x2)| x1  0, x2  0}.  

E.  DETERMINANTS, SYSTEMS OF LINEAR EQUATIONS & CRAMER’S RULE 

The Determinant of a Matrix 

In order to solve systems of linear equations we need to define the determinant |A| of a square 

matrix A. If A is a 1 × 1 matrix, that is, if A = [a11], we define |A| = a11. 

In the 2 × 2 case:               if   A  =  
11 12

21 22

a a

a a

 
 
 

      we define     |A|   =   a11a22 – a12a21 

that is, the product along the downward sloping diagonal (a11a22), minus the product along the 

upward sloping diagonal (a12a21). 

In the 3 × 3 case: 

if                     A  =  

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
  

      then first form       

11 12 13 11 12

21 22 23 21 22

31 32 33 31 32

a a a a a

a a a a a

a a a a a

 
 
 
  

    

(i.e., recopy the first two columns). Then we define: 

|A|    =    a11a22a33  +  a12a23a31  +  a13a21a32  –  a13a22a31  –  a11a23a32  –  a12a21a33 

in other words, add the products of all three downward sloping diagonals and subtract the products 

of all three upward sloping diagonals.  

Unfortunately, this technique doesn’t work for 4×4 or bigger matrices, so to hell with them. 
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Systems of Linear Equations and Cramer’s Rule 

The general form of a system of n linear equations in the n unknown variables x1,...,xn is:  

 a11x1 + a12x2 +  + a1nxn  =  c1 

 a21x1 + a22x2 +  + a2nxn  =  c2 

 

 an1x1 + an2x2 +  + annxn  =  cn 

 

for some matrix of coefficients A  =  

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 

  and vector of constants C = 

1

2

n

c

c

c

 
 
 
 
 
 

. 

Note that the first subscript in the coefficient aij refers to its row and the second subscript refers to 

its column (thus, aij is the coefficient of xj in the i’th equation). 

We now present Cramer’s Rule for solving systems of linear equations. The solutions x*
1 and x*

2 

to the 2 × 2 linear system: 

a11x1 + a12x2   =   c1 

 a21x1 + a22x2   =   c2 

are simply: 

 

1 12 11 1

2 22 21 2* *

1 2

11 12 11 12

21 22 21 22

and

c a a c

c a a c
x x

a a a a

a a a a

= =  

The solutions x*
1, x*

2 and x*
3 to the 3 × 3 system: 

 a11x1 + a12x2 + a13x3    =    c1 

a21x1 + a22x2 + a23x3    =    c2 

 a31x1 + a32x2 + a33x3    =    c3 

are:     

1 12 13 11 1 13 11 12 1

2 22 23 21 2 23 21 22 2

3 32 33 31 3 33 31 32 3

1 2 3

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

c a a a c a a a c

c a a a c a a a c

c a a a c a a a c
x x x

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

  = = =  

Note that in both the 2 × 2 and the 3 × 3 case we have that x*
i is obtained as the ratio of two 

determinants. The denominator is always the determinant of the coefficient matrix A. The 

numerator is the determinant of a matrix which is just like the coefficient matrix, except that the 

j’th column has been replaced by the vector of right hand side constants. 
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F.  SOLVING OPTIMIZATION PROBLEMS 

The General Structure of Optimization Problems 

Economics is full of optimization (maximization or minimization) problems: the maximization of 

utility, the minimization of expenditure, the minimization of cost, the maximization of profits, etc. 

Understanding these will be a lot easier if we consider what is systematic about such problems. 

Each optimization problem has an objective function ƒ(x1,...,xn;1,...,m) which we are trying to 

either maximize or minimize (in our examples, we’ll always be maximizing). This function 

depends upon both the control variables x1,...,xn which we (or the economic agent) are able to set, 

as well as some parameters 1,...,m, which are given as part of the problem. Thus a general 

unconstrained maximization problem takes the form: 

 
1 ,...,
max

nx x
 ƒ(x1,...,xn;1,...,m). 

Although we will often have many parameters 1,...,m in a given problem, for simplicity we shall 

assume from now on that there is only a single parameter . All of our results will apply to the 

many-parameter case, however. 

We represent the solutions to this problem, which obviously depend upon the values of the 

parameter(s), by the n solution functions: 

 

1 1

2 2

( )

( )

( )n n

x x

x x

x x







 

 

 

=

=

=

 

It is often useful to ask “how well have we done?” or in other words, “how high can we get 

ƒ(x1,...,xn;), given the value of the parameter ?” This is obviously determined by substituting in 

the optimal solutions back into the objective function, to obtain: 

 
1 1( ) ƒ( ,..., ; ) ƒ( ( ),..., ( ); )n nx x x x           

and () is called the optimal value function. 

Sometimes we will be optimizing subject to a constraint on the control variables (such as the 

budget constraint of the consumer). Since this constraint may also depend upon one or more 

parameters, our problem becomes: 

 
1 ,...,
max

nx x
 ƒ(x1,...,xn;) 

subject to     g(x1,...,xn;) = 0 

In this case we still define the solution functions and optimal value function in the same way – we 

just have to remember to take into account the constraint. Although it is possible that there could 

be more than one constraint in a given problem, we will only consider problems with a single 

constraint. For example, if we were looking at the profit maximization problem, the control 

variables would be the quantities of inputs and outputs chosen by the firm, the parameters would 

be the current input and output prices, the constraint would be the production function, and the 

optimal value function would be the firm’s “profit function,” i.e., the highest attainable level of 

profits given current input and output prices. 
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In economics we are interested both in how the optimal values of the control variables and the 

optimal attainable value vary with the parameters. In other words, we will be interested in 

differentiating both the solution functions and the optimal value function with respect to the 

parameters. Before we can do this, however, we need to know how to solve unconstrained or 

constrained optimization problems. 

 

First Order Conditions for Unconstrained Optimization Problems  

The first order conditions for the unconstrained optimization problem: 

 
1 ,...,
max

nx x
 ƒ(x1,...,xn) 

are simply that each of the partial derivatives of the objective function be zero at the solution values 

(x*
1,...,x*

n), i.e. that: 

 ƒ1(x*
1,...,x*

n)  =  0 

 

 ƒn(x*
1,...,x*

n)  =  0 

The intuition is that if you want to be at a “mountain top” (a maximum) or the “bottom of a bowl” 

(a minimum) it must be the case that no small change in any control variable be able to move you 

up or down. That means that the partial derivatives of ƒ(x1,...,xn) with respect to each of the xi’s 

must be zero. 

 

Second Order Conditions for Unconstrained Optimization Problems  

If our optimization problem is a maximization problem, the second order condition for this solution 

to be a local maximum is that ƒ(x1, ...,xn) be a weakly concave function of (x1,...,xn) (i.e., a mountain 

top) in the locality of this point. Thus, if there is only one control variable, the second order 

condition is that  ƒ (x*) < 0 at the optimum value of the control variable x. If there are two control 

variables, it turns out that the conditions are: 

 ƒ11(x*
1,x*

2)   <   0        ƒ22(x*
1,x*

2)   <   0 

and 
11 1 2 12 1 2

* * * *

21 1 2 22 1 2

ƒ ( , ) ƒ ( , )
0

ƒ ( , ) ƒ ( , )

x x x x

x x x x

   

  

When we have a minimization problem, the second order condition for this solution to be a local 

minimum is that ƒ(x1,...,xn) be a weakly convex function of (x1,...,xn) (i.e., the bottom of a bowl) in 

the locality of this point. Thus, if there is only one control variable x, the second order condition 

is that ƒ (x*) > 0. If there are two control variables, the conditions are: 

 ƒ11(x*
1,x*

2)   >   0        ƒ22(x*
1,x*

2)   >   0 

and 
11 1 2 12 1 2

* * * *

21 1 2 22 1 2

ƒ ( , ) ƒ ( , )
0

ƒ ( , ) ƒ ( , )

x x x x

x x x x
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(yes, this last determinant really is supposed to be positive). 

 

First Order Conditions for Constrained Optimization Problems  (VERY important) 

The first order conditions for the two-variable constrained optimization problem: 

 
1 2,

max
x x

 ƒ(x1,x2) 

 subject to      g(x1,x2) = c 

are easy to see from the following diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

The point (x*
1,x*

2)  in the diagram is clearly not an unconstrained maximum, since increasing both 

x1 and x2 would move you to a higher level curve for ƒ(x1,x2). However, this change is not “legal” 

since it does not satisfy the constraint – it would move you off of the level curve g(x1,x2) = c. In 

order to stay on the level curve, we must jointly change x1 and x2 in a manner which preserves the 

value of g(x1,x2). That is, we can only tradeoff x1 against x2 at the “legal” rate: 

 

1 2

2 2 1 1 2

1 1 2 1 2( , ) 0

( , )

( , )
g x x c g

dx dx g x x

dx dx g x x
=  =

= = −  

The condition for maximizing ƒ(x1,x2) subject to g(x1,x2) = c is that no tradeoff between x1 and x2 

at this “legal” rate be able to raise the value of ƒ(x1,x2). This is the same as saying that the level 

curve of the constraint function be tangent to the level curve of the objective function. In other 

words, the tradeoff rate which preserves the value of g(x1,x2) (the “legal” rate) must be the same 

as the tradeoff rate that preserves the value of  ƒ(x1,x2). We thus have the condition: 

 2 2

1 10 ƒ 0g

dx dx

dx dx
 =  =

=  

which implies that: 

 1 1 2 1 1 2

2 1 2 2 1 2

( , ) ( , )

( , ) ( , )

g x x f x x

g x x f x x
− = −  

which is in turn equivalent to: 

ƒ1(x1,x2)  =  g1(x1,x2) 

 ƒ2(x1,x2)  =  g2(x1,x2) 

for some scalar .  

(x*
1,x*

2) 

level curves of ƒ(x1,x2) 

0 x1 

x2 

g(x1,x2) = c 
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To summarize, we have that the first order conditions for the constrained maximization problem: 

 
1 2

1 2
,

max ƒ( , )
x x

x x  

 subject to      g(x1,x2) = c 

are that the solutions (x*
1,x*

2) satisfy the equations 

ƒ1(x*
1,x*

2) = g1(x*
1,x*

2) 

ƒ2(x*
1,x*

2) = g2(x*
1,x*

2) 

g(x*
1,x*

2) = c       

for some scalar . An easy way to remember these conditions is simply that the normal vector to 

ƒ(x1,x2) at the optimal point (x*
1,x*

2) must be a scalar multiple of the normal vector to g(x1,x2) at the 

optimal point (x*
1,x*

2), i.e. that: 

 ( ƒ1(x*
1,x*

2) , ƒ2(x*
1,x*

2) )   =     ( g1(x*
1,x*

2) , g2(x*
1,x*

2)) 

and also that the constraint g(x*
1,x*

2) = c be satisfied. 

This same principle extends to the case of several variables. In other words, the conditions for 

(x*
1,...,x*

n) to be a solution to the constrained maximization problem: 

 
1 ,...,
max

nx x
 ƒ(x1,...,xn) 

 subject to     g(x1,...,xn) = c 

is that no legal tradeoff between any pair of variables xi and xj be able to affect the value of the 

objective function. In other words, the tradeoff rate between xi and xj that preserves the value of 

g(x1,...,xn) must be the same as the tradeoff rate between xi and xj that preserves the value of 

ƒ(x1,...,xn). We thus have the condition: 

 

0 ƒ 0

i i

j jg

dx dx

dx dx
 =  =

=  for any i and j 

or in other words, that: 

 
1 1

1 1

( ,..., ) ƒ ( ,..., )

( ,..., ) ƒ ( ,..., )

j n j n

i n i n

g x x x x

g x x x x
− = −  for any i and j 

Again, the only way to ensure that these ratios will be equal for any i and j is to have: 

 ƒ1(x1,...,xn)  =  g1(x1,...,xn) 

ƒ2(x1,...,xn)  =  g2(x1,...,xn) 

        

ƒn(x1,...,xn)  =  gn(x1,...,xn) 

 

To summarize: the first order conditions for the many-variable constrained maximization problem: 

 
1 ,...,
max

nx x
 ƒ(x1,...,xn) 

subject to       g(x1,...,xn) = c 
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are that the solutions (x*
1,...,x*

n) satisfy the equations: 

 ƒ1(x*
1,...,x*

n)  =  g1(x*
1,...,x*

n) 

ƒ2(x*
1,...,x*

n)  =  g2(x*
1,...,x*

n) 

        

ƒn(x*
1,...,x*

n)  =  gn(x*
1,...,x*

n) 

and the constraint: 

g(x*
1,...,x*

n)  =  c                                          

 

Once again, the easy way to remember this is simply that the normal vector of ƒ(x1,...,xn) be a 

scalar multiple of the normal vector of g(x1,...,xn) at the optimal point, i.e.: 

 ( ƒ1(x*
1,...,x*

n) , ... , ƒn(x*
1,...,x*

n) )   =     ( g1(x*
1,...,x*

n) , ... , gn(x*
1,...,x*

n) ) 

and also that the constraint g(x*
1,...,x*

n) = c be satisfied. 

 

Lagrangians 

The first order conditions for the above constrained maximization problem are just a system of 

n+1 equations in the n+1 unknowns x1,...,xn and . Personally, I suggest that you get these first 

order conditions the direct way by simply setting the normal vector of ƒ(x1,...,xn) to equal a scalar 

multiple of the normal vector of g(x1,...,xn) (with the scale factor ). However, another way to 

obtain these equations is to construct the Lagrangian function: 

 L(x1,...,xn,)      ƒ(x1,...,xn) + [c – g(x1,...,xn)] 

(where  is called the Lagrangian multiplier). Then, if we calculate the partial derivatives 

L/x1,...,L/xn and L/ and set them all equal to zero, we get the equations: 

 L(x*
1,...,x*

n ,)/x1   =   ƒ1(x*
1,...,x*

n) – g1(x*
1,...,x*

n)   =   0 

                                                                   

 L(x*
1,...,x*

n ,)/xn   =   ƒn(x*
1,...,x*

n) – gn(x*
1,...,x*

n)   =   0 

 L(x*
1,...,x*

n ,)/    =            c  –  g(x*
1,...,x*

n)            =   0   

But these equations are the same as our original n+1 first order conditions. In other words, the 

method of Lagrangians is nothing more than a roundabout way of generating our condition that 

the normal vector of ƒ(x1,...,xn) be  times the normal vector of g(x1,...,xn), and the constraint 

g(x1,...,xn) = c be satisfied. 

See the standard texts for second order conditions for constrained optimization. 
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G.  COMPARATIVE STATICS OF SOLUTION FUNCTIONS:  

IMPLICIT DIFFERENTIATION 

Having arrived at the first order conditions for a constrained or unconstrained optimization 

problem, we can now ask how the optimal values of the control variables change when the 

parameters change (for example, how the optimal quantity of a commodity will be affected by a 

price change or an income change). The easiest way to do this would be to actually solve the first 

order conditions for the solutions, that is, solve for the functions: 

 x*
1 = x*

1()       x*
2 = x*

2()      . . .        x*
n = x*

n() 

then just differentiate these functions with respect to the parameter  to obtain the derivatives: 

 1 2 ( )( ) ( )
. . . ndxdx dx

d d d

 

  

 

 

However, first order conditions are usually much too complicated to solve. Are we up a creek? 

No: there is another approach known as implicit differentiation, which always works. 

 

The idea behind implicit differentiation is very simple. Since the optimal values: 

 x*
1 = x*

1()       x*
2 = x*

2()      . . .        x*
n = x*

n() 

come from the first order conditions, it stands to reason that the derivatives of these optimal values 

will come from the derivatives of the first order conditions, where in each case, we are talking 

about derivatives with respect to the parameter . 

Let’s do it for the simplest of cases. Consider the unconstrained maximization problem: 

 max ( , )
x

x   

with the single control variable x, the single parameter , and where 2(x,)/x2 < 0. We know 

that the solution x* = x*() solves the first order condition: 

 x(x*,)      0 

If we want to find x*/, we would simply differentiate this first order condition with respect to 

the parameter . Before doing this, it’s useful to remind ourselves of exactly which variables will 

be affected by a change in , or in other words, those variables which depend upon . This can be 

done by drawing arrows over these variables, or alternatively, by representing all functional 

dependence explicitly, that is: 

           ( *, ) 0 or alternatively ( *( ), ) 0x xx x    
 

= =  

Differentiating with respect to  yields: 

   
*( )

( *( ), ) ( *( ), ) 0xx x

d x
x x

d





     


 +   

Note that we get one term for each arrow we have drawn on the left (or each appearance of  on 

the right). Rearranging and solving for the derivative x*()/ , we obtain: 
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2

( *( ), )*( ) ( *( ), )

( *( ), ) ( *( ), )

x

xx

x xd x x

d x x x



 

      

      





  
 −  −

 
 

Let’s take another example, this time with two control variables and two parameters. For the 

general unconstrained maximization problem: 

 
1 2,

max
x x

  ƒ(x1,x2; ,) 

the solutions x*
1 = x*

1(,) and x*
2 = x*

2(,) solve the first order conditions: 

 ƒ1(x*
1,x*

2;,) = 0 

 ƒ2(x*
1,x*

2;,) = 0 

If, say, we wanted to find the derivative x*
1/, we would differentiate these first order conditions 

with respect to the parameter . Before doing this, use arrows to identify the variables that will be 

affected by a change in . In this example, they are the solutions x*
1 and x*

2, as well as  itself (the 

parameter  again remains fixed). We thus get: 

 
1 1 2

2 1 2

ƒ ( , ; ; ) 0

ƒ ( , ; ; ) 0

x x

x x

 

 

 
 

 
 

=

=

 

Differentiating these two equations with respect to  gives us: 

 

1 2
11 1 2 12 1 2 13 1 2

1 2
21 1 2 22 1 2 23 1 2

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , ) 0

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , ) 0

x x
x x x x x x

x x
x x x x x x

     
 

     
 

 
     

 
     

 
 +  + =
 

 
 +  + =
 

 

or equivalently: 

 

1 2
11 1 2 12 1 2 13 1 2

1 2
21 1 2 22 1 2 23 1 2

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , )

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , )

x x
x x x x x x

x x
x x x x x x

     
 

     
 

 
     

 
     

 
 +  = −
 

 
 +  = −
 

 

This is a set of two linear equations in the two terms x*
1/ and x*

2/, and hence can be solved 

by substitution, or by Cramer’s Rule (see below), to obtain: 

 23 1 2 12 1 2 13 1 2 22 1 21

11 1 2 22 1 2 12 1 2 21 1 2

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , )

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , )

x x x x x x x xx

x x x x x x x x

       

        

       

       

 − 
=

  − 
 

and 

 21 1 2 13 1 2 11 1 2 23 1 22

11 1 2 22 1 2 12 1 2 21 1 2

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , )

ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , ) ƒ ( , ; , )

x x x x x x x xx

x x x x x x x x

       

        

       

       

 − 
=

  − 
 

We could do this same procedure in a constrained maximization problem as well, provided we 

remember to differentiate all n+1 of the first order conditions, including the last one (the constraint 

equation). 
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This procedure will always work in getting the derivatives of the optimal values of the control 

variables with respect to any parameter. To use it, just remember that it consists of three steps: 

STEP 1: Derive the first order condition(s) for the maximization or minimization problem. As 

usual, the exact form of the first order conditions depends on the number of control variables 

in the problem, and on whether it is an unconstrained or constrained optimization problem. 

STEP 2: Differentiate the first order condition(s) with respect to the parameter that is 

changing. Before doing this, it’s always useful to draw arrows over those variables that will 

change as a result of the change in the parameter. These will generally consist of all of the 

control variables, the Lagrangian multiplier  if we are working with a constrained optimization 

problem, and the parameter itself. 

STEP 3: Solve for the desired derivative(s). If there is a single control variable, this consists of 

solving for the single derivative (say) x*/. If there is more than one control variable, this 

will involve solving a system of linear equations for the derivatives x*
1/, x*

2/ etc.  

H.  COMPARATIVE STATICS OF OPTIMAL VALUE FUNCTIONS:  

THE ENVELOPE THEOREM 

The final question we can ask is how the optimal attainable value of the objective function varies 

when we change the parameters. This has a surprising aspect to it. In the unconstrained 

maximization problem: 

 
1 ,...,
max

nx x
  ƒ(x1,...,xn;) 

recall that we get the optimal value function () by substituting the solutions x1(),...,xn() back 

into the objective function, i.e.: 

 ()      ƒ(x1(),...,xn();) 

Thus, we could simply differentiate with respect to  to get: 

 

( )

( )

( )

1 1

1

1

1

ƒ ( ),..., ( ); ( )( )

ƒ ( ),..., ( ); ( )

ƒ ( ),..., ( );

n

n n

n

n

x x dxd

d x d

x x dx

x d

x x

    

 

   



  




= 




+ 




+



 

where the last term is obviously the direct effect of  upon the objective function. The first n terms 

are there because a change in  affects the optimal xi values, which in turn affect the objective 

function. All in all, this derivative is a big mess. 

However, if we recall the first order conditions to this problem, we see that since /x1 = ... = 

/xn = 0 at the optimum, all of these first n terms are zero, so that we just get: 

 1ƒ( ( ),..., ( ); )( ) nx xd

d

   

 


=
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This means that when we evaluate how the optimal value function is affected when we change a 

parameter, we only have to consider that parameter’s direct effect on the objective function, and 

can ignore the indirect effects caused by the resulting changes in the optimal values of the control 

variables. If we keep this in mind, we can save a lot of time. 
 

The envelope theorem also applies to constrained maximization problems. Consider the problem 

 
1 ,...,
max

nx x
 ƒ(x1,...,xn;) 

subject to     g(x1,...,xn;) = c 

Once again, we get the optimal value function by plugging the optimal values of the control 

variables (namely x1(),...,xn()) into the objective function: 

 ()        ƒ(x1(),...,xn();) 

Note that since these values must also satisfy the constraint, we also have: 

 c – g(x1(),...,xn();)      0 

so we can multiply by () and add to the previous equation to get: 

 ()        ƒ(x1(),...,xn();)  +  ()[c – g(x1(),...,xn();)] 

which is the same as if we had plugged the optimal values x1(), ...,xn() and () directly into 

the Lagrangian formula, or in other words: 

 ()      L(x1(),...,xn(),();)        ƒ(x1(),...,xn();)  +  ()[c – g(x1(),...,xn();)]  

Remember, even though it involves  and the constraint, this equation is still the formula for the 

optimal value function (i.e. the highest attainable value of ƒ(x1,...,xn;) subject to the constraint). 

Now if we differentiate the above identity with respect to , we get: 

 

( )

( )

( )

( )

1 1

1

1

1

1

( ),..., ( ), ( ); ( )( )

( ),..., ( ), ( ); ( )

( ),..., ( ), ( ); ( )

( ),..., ( ), ( );

n

n n

n

n

n

x x dxd

d x d

x x dx

x d

x x d

d

x x

      

 

     



      

 

    




= 




+ 




+ 




+



L

L

L

L

 

But once again, since the first order conditions for the constrained maximization problem are that 

L/x1 =  = L/xn = L/ = 0, all but the last of these right hand terms are zero, so we get: 

 1( ( ),..., ( ), ( ); )( ) nx xd

d

     

 


=



L
 

That is, we only have to take into account the direct effect of  on the Lagrangian function, and 

can ignore the indirect effects due to changes in the optimal values of the xi’s and .  A very helpful 

thing to know. 


