Econ 172A, Fall 2007: Final Examination Answers

Grading Notes

1.

I propose to give two points for each correct route, one point for each
correct cost, and six points for a justification. Students who use the correct
method but make mistakes due to a careless error (for example, an error
in addition), should not be punished repeatedly. (So perhaps the formula
above is too mechanical.)

I would give no credit unless the answer is a spanning tree. Give six points
for the correct tree and two more for the cost (subtract one for an obvious
addition error) and four more for a coherent explanation of what they did.

Give 5 points if the student formulates the problem as a max flow problem
and 3 more points if he or she does so correctly. The only way I know
how to show that the original problem is not feasible is to show that the
maximum flow does not meet demand. If they can come up with a cut
that proves this they get 15 more points. Seven points for the second
part of the problem. The second part of the problem has many correct
answers and students should be able to get these points even if they do not
recognize the problem as a maximum flow problem. Students who begin
the algorithm correctly but stop too early or make conceptual mistakes
should earn a part of the fifteen points. I am not sure how to allocate
partial credit.

They need to come up with a lower bound (—oo is ok) (3 points) and an
upper bound (here they must solve a relaxed problem somehow (6 points).
They must pick some variable to branch on, identify the possible values
that the variable can take (4 points), solve the associated problem (they
are so simple that they can solve them either in relaxed form or in integers)
(5 points), interpret the results (by proving new bounds) (5 points), and
identify a solution (3 points).

They must provide an example, an argument about what happens under
the greedy algorithm, and they should exhibit the solution to the problem
and show that it is different from what the greedy algorithm provides.
Give three points for any valid knapsack example. Five more points for
stating what the greedy algorithm does or solving the problem. Seven
more points for completing the argument. This way, a student who writes
down a knapsack problem and solves it gets 8 points even if the problem
does not have the desired property.

Straightforward.



Iteration 1 2 3 4 5 6 7 8

1 0* 294 00 227  206** 335 0 0

2 0* 294 00 227 206* 335 417 633

1 3 0* 294 o0 227* 206* 335  280** 633
’ 4 0* 294** o0 227 206* 335 280* 633
5 0*  294* 724 227* 206*  318**  280* 633
6 0*  294* 721 227 206* 318* 280*  HTTH*

7 0* 294 685" 227* 206  318*  280*  577*

The array gives the minimum costs for all of the routes. Working back-
wards we have:

2. Start with 26, then 56, then 45, 47, 15, 68, and finally 38. Total cost:
24 4+ 187 + 111 + 53 + 206 + 259 + 108 = 948.

3. This is a network flow problem. Add a source that directs the given
supplies to the three warehouses and a sink to which the given demands
from the four markets go.

If you apply the max flow on this network you derive the maximum flow
to be 130. The associated minimum cut consists of {s, Wy, Wa, My, My}
and {Ws, My, Ms,n} (where W; is the ith warehouse and M; is the jth
market,.

If you add capacity on any of the edges that connect the first set in the cut
to the second set, then you can increase the maximum flow. For example,
you can increase the capacity from W; to M; by 20 (actually 10 is enough).
Here is one way to meet the demand (given the increased capacity).

Market
Warehouse | 1 2 3 4
1 20 0 0 20
2 0 20 10 0
3 0 0 60 0




4. This is an assignment problem. Reduce the costs so that the minimum in
each row is zero:

A B C D
1115 0 0 5
210 50 20 30
313 5 0 15
410 65 50 70

Reduce the costs so that the minimum in each column is zero:

A B C D
1715 0 0 O
210 50 20 25
3135 5 0 10
410 65 45 70

Notice that there is no zero-cost assignment. So I need to reduce costs. 1
crossed out columns A and C and row 1 to get rid of 0s. The minimum
uncrossed number is 5. I subtract this from everything, then add it back
to all rows and columns with lines (to preserve non-negativity). I obtain:

A B C D
1720 0 5 O
210 45 20 20
313 0 0 5
410 60 45 65

There is still no zero-cost assignment.This time I cross out rows 1 and 3
and column A. The minimum uncrossed number is 20. I subtract this
from everything, then add it back to all rows and columns with lines (to
preserve non-negativity). I obtain:

A B C D
1140 0 5 O
210 25 0 O
315 0 0 5
410 40 25 45

Now I have a solution: 4 and A are matched, 1 and B, 2-D, 3-C or 1-D,
2-C, 3-D, and 4-A. The distance is 275.

5. If you solve the relaxed problem (the given problem without the integer
constraints) you get (x1,z2) = (1.5,2.5) and associated value 10.5. This
gives an upper bound for the given problem (with integer constraints)
equal to 10. An obvious lower bound is 0, since (z1,z2) = (0, 0) is feasible.

Start by assigning a value to zo. By the first constraint, xo = 0,1,2 or 3.
If x5 = 3, the problem is feasible and has the solution (0,3). Since this



is in integers, the lower bound of the problem becomes 9 and this part of
the tree is fathomed. If zo = 2, then the tightest constraint is x; < 5/3.
Hence this branch of the problem can give a value no greater than 9. If
z9 = 1, then the solution to the problem is to set ;1 = 2, leading to a
value of 7. Finally, when x5 = 0 the highest value of the objective function
is 2. Hence the maximum value of the problem is 9 and the solution is
attained when (x1,z2) = (0, 3).

. Let the weights be 2, 2, 3 and the values be 4, 4, and 7. If C' = 4, then
the algorithm requires you to take the item first. But then you can take
nothing else and you get value 7. You would do better to take the first
and second items and get value 8.

. For each of the statements below indicate whether the statement is always
TRUE, by writing “TRUE” otherwise write “FALSE.” No justification is
required.

The next three parts refer to a network in which there are N nodes and
in which ¢(i, j) is the cost of going from node i to node j and all pairs of
nodes are connected. Assume that co > ¢(¢,7) > 0 and that the costs are
distinet (e(i,5) = ¢(@’, §') if and only if ¢ = ¢’ and j = j').

(a) The cheapest edge (that is, the edge in which ¢(,7) is smallest) is
always part of the minimum spanning tree.
TRUE. The algorithm starts with this edge. Any tree without this
edge could be made cheaper by including the cheapest edge.

(b) The most expensive edge (that is, the edge in which ¢(i, ) is the
largest) is never part of the minimum spanning tree.
TRUE. The algorithm would never select this edge. Any tree with
this edge could be made cheaper by replacing it.

(c) If the collection of the N — 1 cheapest edges contains no cycles, then
it is a minimum spanning tree.
TRUE. The algorithm would select these edges first as long as they
create no cycles. (And N — 1 edges for a MST.)

The next two parts refer to a network in which there is a source s
and a sink n and in which ¢(4, j) > 0 is the capacity of the edge going
from Node i to Node j. Denote a flow by (x;;), where, for each pair
of Nodes i and j, x;; is the amount that flows from Node ¢ to Node

J.
(d) There always exists a maximal flow (z;;) in which either x;; = 0 or
Tji = 0.

TRUE. If you have a flow in which both z;; and z;; are positive,
then you can “reverse” the flow to get (if x;; > z; for example, a
new flow with y;; = x;; — z;; and y;; = 0.



(e) Let (S,N) be a minimum capacity cut in which s € S and n €
N. Suppose that one forms a new network by deleting the edge
connecting Node ¢ and Node j where ¢ € S and j € N. The capacity
of the maximum flow in the new network is exactly ¢(i, j) less than
the capacity of the maximum flow in the original network.

TRUE. The minimum capacity cut in the new network must be ¢(i, )
less than the minimum capacity cut in the old network.



