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1. INTRODUCTION
Teacher performance pay is quickly gaining momentum in the United States.
In fact, some districts, and even entire states, are already implementing perfor-
mance pay programs for teachers that involve sizable public expenditures. For
example, the Texas Governor’s Educator Excellence Award Programs (GEEAP)
allot a large fraction of their combined $330 million annual budget to directly
reward classroom teachers based on performance (Podgursky and Springer
2007).

The aspect of teacher performance that has received the most attention
from policy makers of late, and is perhaps the most contentious, is value
added to students’ test scores. While the literature overwhelmingly indicates
that there are important differences in teacher quality measured by value
added, there is little consensus on the best approach for estimating value
added. Furthermore, there is ample evidence that value-added measures of
teacher quality are noisy, which creates some concern about the feasibility
of using value added for large-scale teacher evaluation.1 In addition to these
unresolved issues, value-added estimates may be sensitive to the quantitative
properties of the testing instruments upon which they are based.

This article evaluates the sensitivity of value added to a particularly rel-
evant testing instrument property—the severity of test score ceiling effects.
We refer to a “ceiling effect” as the tendency for gains in a student’s test
score to be smaller if the student’s initial score is toward the top end of
the distribution, simply because the student has little room for improvement
given the difficulty level of the test. Ceiling effects will be most pronounced
in minimum-competency or proficiency-based tests, which are being used in-
creasingly across the United States. For example, twenty-two states nationwide
use high school exit exams that are typically pitched at a middle school or lower
high school level.2 Furthermore, because federal No Child Left Behind (NCLB)
legislation focuses largely on proficiency, mainstream proficiency-based test-
ing is also becoming increasingly common.

The increased focus on proficiency in education coincides with the grow-
ing interest from researchers and policy makers in value added as a tool for
measuring teacher performance. The impending collision of ceiling-affected
testing instruments with value-added-based teacher evaluations motivates our
analysis. Do ceiling effects influence value-added estimation? If so, how im-
portant are ceiling effects, and how severe must they be to significantly alter
value-added results?

1. See, for example, Aaronson, Barrow, and Sander (2007), Hanushek et al. (2005), Koedel and Betts
(2007), and Rockoff (2004). In addition, Rothstein (forthcoming) shows that value-added estimates
may be biased by student-teacher sorting.

2. The nationwide count applies to 2006 and was calculated based on information in Warren (2007).
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We answer these questions using a testing instrument where there is
no evidence of a test score ceiling. Starting with our no-ceiling baseline, we
simulate test score ceilings that vary in severity and evaluate their effects on
teacher value added. Our findings are generally encouraging—over a wide
range of test score ceiling severity we find that value-added estimates are
roughly impervious to ceiling effects. However, ceiling conditions approaching
the severity of those found in minimum-competency testing environments
noticeably alter value-added results.

2. TEST SCORE CEILINGS: INTRODUCTION AND MEASUREMENT
Test score ceilings structurally restrict students’ test score gains as test score
levels rise. Because a test score ceiling directly influences the tool by which
value added is measured, it is intuitive that it will influence results. For ex-
ample, consider a testing instrument where a large fraction of the student
population is at or near the maximum possible score. Teachers teaching these
students will have little opportunity to add value to test scores. Furthermore,
they are likely to use advanced curricula that focus at least partly on material
that goes beyond the scope of the test, making their evaluations based on the
test uninformative.

In practice it might be quite important whether a district uses a norm-
referenced or a criterion-referenced test for the purpose of evaluating teaching
effectiveness. A norm-referenced test is a standardized test that is meant to es-
timate where a student ranks against the test score distribution of the reference
group, typically the national student population. Such a test, if well designed,
should exhibit few ceiling effects because it must include questions with a
range of difficulty so that distinctions can be made among students through-
out the test score distribution. Such tests have been in use for many decades.

More recently, partly as a consequence of NCLB, many states are using
testing systems designed to measure student understanding of the content
standards set by the state’s Department of Education. We speculate that these
criterion-referenced tests are more likely to exhibit ceiling effects, particularly
when a state exam is intended, either explicitly or implicitly, to serve as a
minimum-competency test. For example, in Mississippi the state-level test
appears to be aimed at a fairly low level. In 2006–7, 90 percent of fourth-
grade students scored at or above the “proficient” level in reading on the state-
level Mississippi Curriculum Test (MCT). However, just 19 percent of these
students scored at or above the proficient level on the National Assessment of
Education Progress (NAEP).3

3. From USDOE (2008). Cullen and Loeb (2004) illustrate another source of ceiling effects that
is directly associated with NCLB—reporting requirements that require states to document the

56



Cory Koedel and Julian Betts

One way to evaluate the impact of ceiling effects on teacher value added
would be to find a population of students that had been tested in several con-
secutive years using two testing systems—one that lacked a ceiling effect and
another that suffered from a ceiling effect. However, it is likely that the differ-
ent tests in such a scenario would also differ in terms of content, confounding
the ceiling effect. A second approach is to use a test that can be demonstrated
not to suffer from ceiling effects and then to simulate test score ceiling ef-
fects using that instrument. This creates a counterfactual of what would have
happened had the test been right censored. We adopt this approach by using
Stanford 9 math test scores for fourth-grade students in the San Diego Unified
School District. The Stanford 9 is a nationally norm-referenced test. For the
population we study, we find no evidence of a ceiling effect (see below). It
thus provides a way of comparing measures of teacher value added with and
without a test score ceiling.

The first step in our analysis is to provide a reliable measure of test score
ceiling severity. An intuitive approach would be to evaluate the strength of
the negative relationship between test score levels and subsequent test score
gains. However, this approach is problematic because a negative relationship
will exist due to regression to the mean even in the absence of a test score
ceiling. Furthermore, in cases in which a test score ceiling does exist, there is
no obvious way to dissect the negative relationship between test score levels
and test score gains to isolate the ceiling effect. As an alternative, we propose
that the distribution of students’ test scores can be used to measure test score
ceiling severity. Specifically, we can use the degree of negative skewness in
the test score distribution as originally suggested by Roberts (1978). We define
skewness as the sample analog of E (x−E (x))3

[E (x−E (x))2]3/2 ≡ μ3

σ 3 , where μ3 is the third mo-
ment about the mean and σ is the standard deviation. Under the assumption
that underlying student achievement in the population is symmetrically dis-
tributed, skewness provides an intuitive and straightforward measure of test
score ceiling severity. In section 8 below, we provide suggestive (although not
exhaustive) evidence that skewness is a robust measure of ceiling severity.

Figure 1 displays the frequency distributions of students’ lagged (grade
3) and current (grade 4) math test scores from our data, gathered from the
San Diego Unified School District. As mentioned above, there is no evidence
of a test score ceiling. In fact, the test score distributions from our sam-
ple are skewed mildly positively. The figure shows kernel-density plots of the
distributions of actual scores contrasted with normally distributed overlays.

percentage of students who are “proficient.” Their figure 12c provides a graphical representation
of the mechanical relationship between underlying proficiency levels and growth in proficiency.
Clearly, if value added were estimated based on simple pass-fail measures of student achievement,
as emphasized by NCLB, ceiling effects would be severe.
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Figure 1. Frequency Distributions of Lagged and Current Math Test Scores from Our Data Contrasted
with Normal Distribution Overlays

The skewness in the lagged and current score distributions in our data are 0.25
and 0.17, respectively. Notice that although both these distributions are skewed
slightly positively, they both closely mirror their normally distributed analogs.

In our test score ceiling simulations, what is the relevant range of skewness
to consider? We answer this question using two large-scale, state-level tests: the
Texas Assessment of Academic Skills (TAAS) and the Florida Comprehensive
Assessment Test (FCAT).4 The TAAS was administered in Texas from 1991

to 2003 and prior to 1991 was known as the Texas Educational Assessment
of Minimum Skills. The minimum-competency-based design of the TAAS
makes it a useful test upon which to base our most severe test score ceiling
simulations. The FCAT was first administered in 1998 in Florida and continues
to serve as the state-level standardized test there.

We simulate test score ceiling conditions based on the skewness in the test
score distributions of the math portions of the TAAS and FCAT from 2002 and
2007, respectively. Figure 2 shows kernel-density plots of third- and fourth-
grade mathematics scores on the TAAS compared with normally distributed
overlays based on 2002 test scores (statewide). The skewness in these score
distributions is large and negative, at −1.60 and −2.08, respectively. Similarly,
the top panel of figure 3 shows kernel density plots of third- and fourth-grade
mathematics scores on the 2007 FCAT (statewide). The skewness in these
score distributions is also negative but much milder, at −0.46 and −0.55.
Finally, the bottom panel of figure 3 shows the distributions of scores for
ninth- and tenth-grade students on the FCAT in 2007 where the skewness

4. Statewide distributions of test scores for the TAAS were provided online by the Texas Education
Agency (www.tea.state.tx.us). FCAT scores were provided by the Florida Department of Education.
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˜̃Left:  Kernel-density plot of third-grade test score distribution – skewness     –1.60  
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percent of the range of test scores. 

Figure 2. Frequency Distributions of Third- and Fourth-Grade Math Scores from the TAAS in 2002
Contrasted with Normal Distribution Overlays
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Figure 3. Frequency Distributions of Third-, Fourth-, Ninth-, and Tenth-Grade Math Scores from the
FCAT in 2007 Contrasted with Normal Distribution Overlays
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in the test score distributions becomes increasingly negative. The ninth- and
tenth-grade score distributions from the FCAT have skewness of −0.94 and
−1.99, respectively.5

Starting with our no-ceiling baseline, we create counterfactual testing envi-
ronments where students’ scores are impeded by test score ceilings of varying
severity. Our most severe ceiling simulation is designed to mimic the testing
conditions from the fourth-grade TAAS. For simplicity, we simulate what we
will refer to as “hard” test score ceilings, where students’ scores are restricted
at a specific maximum score. An alternative would be to simulate “soft” test
score ceilings that restrict student performance throughout the test score dis-
tribution. For example, students’ scores might taper off as they approach a
maximum score. Soft test score ceilings appear to characterize more accu-
rately the true distributions of test scores in figures 2 and 3. However, there
are literally an infinite number of possible soft-ceiling structures that could
generate the observed skewness in the TAAS and FCAT distributions, mak-
ing such an analysis infeasible. Instead, we focus on hard test score ceilings
and compare the results we obtain from our simulations with a set of results
generated using one possible soft-ceiling structure. This analysis is detailed
in section 8 and suggests that similarly skewed test score distributions have
similar implications for value-added results, regardless of whether a hard or
soft ceiling generates the ceiling effect.

Finally, we distinguish two mechanisms by which test score ceiling effects
will influence value-added estimation. First, most straightforwardly, ceiling
effects represent lost information about student learning. The more severe the
test score ceiling, the greater the amount of lost information. Second, ceiling
effects will result in model misspecification. A test score ceiling is a data
censor, and as such the typical value-added approach is improperly specified
in the presence of a ceiling. In practice this is a nontrivial problem because
the underlying data-censoring structure will be unknown. Furthermore, the
censoring problem is even more complicated in the value-added framework
than in the typical dependent-variable censoring problem because lagged test
scores will also be censored. In the general value-added approach (where
current test scores are regressed on lagged test scores), this means that there
will be censoring of an independent variable in addition to the censoring of
the dependent variable. Converting to gain scores does not circumvent the
problem because censoring will be ill defined—censored gain scores will have

5. Students in Florida must pass the math portion of the tenth-grade FCAT to receive a high school
diploma. It is possible that the exam is aimed at a lower level because of this. In addition, students
are allowed to take the test more than once. The distribution of tenth-grade FCAT scores reported in
figure 3 is for all tests taken in 2007 (provided by the Florida Department of Education), which will
include retaken exams. The retaken exams could either positively or negatively skew the distribution.
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zero or near-zero gains, but non-censored scores can also have zero, near-zero,
or even negative gains.

The current state of the data-censoring literature in econometrics and
statistics is such that there is no solution to the data-censoring problem in
this context. Therefore, distortionary test score ceiling effects can be thought
of as the product of both of these problems—lost information and model
misspecification. For this reason, our primary results are from standard value-
added models estimated by least squares. In section 9, we further consider
the data-censoring problem and provide some evidence on the extent to which
model misspecification alone drives our ceiling effect results.

3. BACKGROUND
Only a fraction of the recent studies measuring teacher value added has con-
sidered the potential importance of test score ceiling effects. Furthermore,
none have explicitly evaluated the direct implications of ceiling effects for
value-added results. Hanushek et al. (2005) provide the most provocative
documentation of ceiling effects in the recent value-added literature. These
authors estimate value added using the TAAS, where scale scores are such
that a gain of zero implies “typical” progress. They divide the exam into ten
equal test score intervals and assign each student to one of ten bins based on
his or her period (t − 1) test score level. There is a strong negative relationship
between students’ period (t − 1) test score levels and period t gains, which is
suggestive of a ceiling effect (although mean reversion could also explain the
documented relationship). More importantly, approximately two-thirds of the
students in their sample are assigned to a bin where the average test score gain
is negative. Where typical progress is purported to correspond to a gain of zero,
and in the absence of a ceiling effect, mean reversion in both directions would
suggest that approximately equal shares of students should experience posi-
tive and negative gains. That such a large fraction of students shows negative
gains suggests that ceiling effects are an important concern. Hanushek et al.’s
analysis is one of only a few that carefully consider test score ceiling effects,
although a direct analysis of ceiling effects is beyond the scope of their study.

Of the other recent test score–based studies of teacher quality, there is
little mention of ceiling effects. Koedel (2009) and Koedel and Betts (2007)
acknowledge the potential for test score ceiling effects and report informa-
tion on the relationship between students’ gains and lagged test score levels.
Aaronson, Barrow, and Sander (2007) measure value added using two tests
that differ substantially in terms of the distributions of scores, which they thor-
oughly document, but they do not explicitly consider ceiling effects. Rockoff
(2004), who estimates teacher effects outside the value-added framework, re-
ports that 3 to 6 percent of the students in his sample attain the maximum
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Table 1. Controls from Value-Added Models

Student-Level Controls (Xit) School (and Classroom)-Level Controls (Sit)

English-learner (EL) status School fixed effects

Change from EL to English proficient Classroom-level peer performance in year (t − 1)

Expected and unexpected school changer Class size

Parental education Percentage of student body:

Race by race

Gender by EL status

Designated as advanced student by free/reduced price lunch status

Percentage of school year absenta by school changer status

aThe share of days missed by students is sometimes considered endogenous. Fourth-grade stu-
dents, however, are not likely to have much influence over their attendance decisions.

possible score, but he does not go into further detail. Lockwood et al. (2007)
show that teacher effects are quite sensitive to different testing instruments,
but they do not consider the extent to which ceiling effects might be driving
their results. Nye, Konstantopoulos, and Hedges (2004) do not discuss test
score ceiling effects.

4. VALUE-ADDED MODELS
We estimate teacher value added using three different student achievement
specifications. Each specification implies trade-offs in estimation. We focus
on the general value-added model (VAM) in which current test scores are
regressed on lagged test scores. It is somewhat common in the literature to
use a specific form of the VAM, the gain score model, where the coefficient
on the lagged test score is forced to one and the lagged score term is moved
to the left side of the equation. Although we do not present results from gain
score models, our findings are nearly identical using the gain score framework.
Results from the gain score analogs to the specifications below are available
from the authors upon request.

The first model that we consider, and the simplest, is a basic VAM that
allows for the comparison of teacher effects across schools:

Yit = φt + Yi (t−1)φ1 + Xitφ2 + Titθ + εi t . (1)

In equation 1, Yit is the test score for student i in year t, φt is a year-specific in-
tercept, Xit is a vector of fixed and time-varying student-specific characteristics
(see table 1), and Tit is a vector of teacher indicator variables where the entry
for the teacher who teaches student i in year t is set to one. The coefficients of
interest are in the J × 1 vector of teacher effects, θ .
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We refer to equation 1 as the basic model. The most obvious omission
from the model is school-level information, whether in the form of school
fixed effects or time-varying controls. Researchers have generally incorporated
this information because of concerns that students and teachers are sorting
into schools nonrandomly. This sorting, along with the direct effects of school-
level inputs on student achievement (peers, for example), will generate omitted
variables bias in equation 1 in the value-added results for teachers.

While the concern about omitted variables bias is certainly relevant, any
model that includes school-level information will not allow for a true compari-
son of teacher effectiveness across schools. For example, if school fixed effects
are included in equation 1, each teacher’s comparison group will be restricted
to the set of teachers who teach at the same school. Furthermore, even in
the absence of school fixed effects, the inclusion of school-level controls will
restrict teachers’ comparison groups to some extent because teachers may sort
themselves based on school-level characteristics. If this is the case, controls
meant to capture school quality will also partly capture school-level teacher
quality, limiting inference from across-school comparisons of teachers.

For most researchers, concerns about omitted variables bias dominate
concerns about shrinking teacher comparison groups. This leads to the second
model that we consider, the within-schools model, which is more commonly
estimated in the literature and includes time-varying school-level covariates
and school fixed effects.6

Yit = βt + Yi (t−1)β1 + Xitβ2 + Sitβ3 + Titγ + νi t . (2)

In equation 2, Sit is a vector that includes school indicator variables and time-
varying school-level information for the school attended by student i in year t.
The controls in the vector Sit are detailed in table 1. The benefit of including
school-level information is a reduction in omitted variables bias, including
sorting bias generated by students and teachers selecting into specific schools.

Finally, we incorporate student fixed effects into the student achievement
specification. This approach is suggested by Harris and Sass (2006), Koedel
(2009), and Koedel and Betts (2007):

Yit = αi + αt + Yi (t−1)α1 + Xitα2 + Sitα3 + Titδ + uit . (3)

In going from equation 2 to equation 3 we add the student fixed effects, αi . The
inclusion of the student fixed effects also limits the entries in the vector Xit

6. Although teacher effectiveness cannot be compared across schools straightforwardly using value-
added estimates from equation 2, this may be acceptable from a policy perspective. For example,
policy makers may wish to identify the best and worst teachers on a school-by-school basis regardless
of any teacher sorting across schools.

63



TEST SCORE CEILING EFFECTS

to include only time-varying student characteristics. The benefit of the within-
students approach is that teacher effects will not be biased by within-school
student sorting across teachers based on time-invariant student characteristics
(such as ability, parental involvement, etc.). However, again there are trade-
offs. Equation 3 further narrows teachers’ comparison groups to those with
whom they share students. Thus identification comes from comparing test
score gains for individual students when they were in the third and fourth
grades. In addition, the incorporation of the student fixed effects makes the
model considerably noisier.7 Finally, the inclusion of the student fixed effects
restricts the size of the student population that can be considered because a
student record must contain at least three contiguous test scores, instead of
just two, to be included in the analysis.8

Despite these concerns, econometric theory suggests that student fixed
effects will be an effective way to remove within-school sorting bias as
long as students and teachers are sorting based on time-invariant charac-
teristics. We estimate the within-students model by first-differencing equa-
tion 3 and instrumenting for students’ lagged test score gains with their
second-lagged levels. This general approach was developed by Anderson
and Hsiao (1981) and has recently been used by Harris and Sass (2006),
Koedel (2009), and Koedel and Betts (2007) to estimate teacher value
added.9

Two key issues distinguish the within-students model from the other mod-
els that we consider. First, to completely first-difference equation 3 we must
incorporate students’ lagged teacher assignments, which will appear in the
period (t − 1) version of equation 3. That is, we are comparing the effective-
ness of students’ current and previous year teachers. Second, the requirement
that each student record contain three contiguous test scores in the within-
students model not only limits the sample size overall but also restricts the
student population to less-transient students. Because these students tend to be
higher achievers (see, for example, Ingersoll, Scamman, and Eckerling 1989;
Rumberger and Larson 1998), a given test score ceiling will have a stronger
effect on the restricted student sample. This issue will be revisited when we
present our results.

7. In fact, a test for the statistical significance of the student fixed effects in equation 3 fails to reject the
null hypothesis of joint insignificance. However, the test is of low power given the large-N, small-T
panel data set structure (typical of most value-added analyses), limiting inference.

8. Equation 3 also introduces a potential endogeneity concern if teacher assignments are correlated
with the time-varying error term component across years. See Rothstein (2008) and Koedel and
Betts (forthcoming).

9. Although all three of these studies use the same basic methodology, Harris and Sass (2006)
estimate their model using generalized method of moments, while Koedel (2009) and Koedel and
Betts (2007) use two-stage least squares. We use two-stage least squares here.
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5. DATA
We evaluate ceiling effects using administrative data from fourth-grade stu-
dents in San Diego (SDUSD) who started the fourth grade between 1998–99
and 2001–2. We chose the fourth grade because it is an elementary-level grade
(so that each student is linked to just one teacher) and because our student
fixed effects model requires at least three contiguous test score records per
student (students are first tested in the second grade). The standardized test
that we use to measure student achievement is the Stanford 9 mathematics
test. The Stanford 9 is designed to be vertically scaled such that a one-point
gain in student performance at any point in the schooling process is meant to
correspond to the same amount of learning. As discussed in section 2, there
is no evidence of a ceiling effect in the test score data.

Students who have fourth-grade test scores and lagged test scores are
included in our analysis. In our student fixed effects models, we also require
students to have second-lagged test scores. For each model, we estimate value
added for teachers who teach at least twenty students across the data panel and
restrict our student sample to the set of students taught by these teachers.10

In the models without student fixed effects, we evaluate test score records for
30,354 students taught by 595 teachers. Our sample size falls to 15,592 students
taught by 389 teachers in the student fixed effects model. The large reduction
in sample size is the result of (1) the requirement of three contiguous test
score records per student instead of just two, which in addition to removing
more transient students also removes one year cohort of students because
we do not have test score data prior to 1997–98 (that is, students in the
fourth grade in 1998–99 can have lagged scores but not second-lagged scores)
and (2) requiring the remaining students to be assigned to one of the 389
fourth-grade teachers who teach at least twenty students with three test score
records or more.11 We include students who repeat the fourth grade because
our objective is to inform policy, and it is unlikely that grade repeaters would
be excluded from teacher evaluations in practice (because of moral hazard
concerns). In our original sample of 30,354 students with current and lagged
test score records, just 199 are grade repeaters.

The degree of student-teacher sorting will influence the magnitude of
test score ceiling effects. At one extreme, random assignment of students to
teachers will mitigate ceiling effects insofar as they determine teacher rankings
regardless of which model from section 4 is used (although ceiling effects may

10. This restriction is imposed because of concerns about sampling variation (see Kane and Staiger
2002). Our results are not sensitive to reasonable adjustments to the twenty-student threshold.

11. Only students who repeated the fourth grade in the latter two years of our panel could possibly have
had more than three test score records. There are thirty-two students with four test score records in
our data set.
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Table 2. Average Within-Teacher Standard Deviations of Students’ Period (t − 1) Test Scores

Within Schools Across District

Random Perfect Random Perfect
Actual assignment sorting assignment sorting

Standard deviations of lagged scores 0.81 0.90 0.32 0.99 <0.01

Notes: The numbers above report the average standard deviation of test scores within the classroom
for various scenarios, each divided by the overall standard deviation of test scores district wide. In
the “perfect sorting” column students are sorted by period (t − 1) test score levels in math, first
within school and in the final column across the district. For the randomized assignments, students
are assigned to teachers based on randomly generated numbers from a uniform distribution. In
the second column, students are not reassigned across schools; in the fourth column, students
are reassigned across schools. The random assignments are repeated 25 times, and estimates
are averaged across all random assignments and all teachers. The estimates from the simulated
random assignments are very stable across simulations.

still lead to an understatement of the importance of teacher quality overall
and increase the noise associated with value-added estimation).12 At the other
extreme, a test score ceiling where there is strong student-teacher sorting
should lead to a large shift in teacher rankings based on value added.13

One benefit of our analysis is that we can use real student-teacher matches
from a real school district, rather than attempting to simulate student-teacher
sorting. This is important because there is no consensus in the literature as to
how students and teachers are actually assigned to one another, making it im-
possible to artificially generate student-teacher matches. However, if parents,
students, teachers, and administrators in San Diego act similarly to parents,
students, teachers, and administrators in other similar school districts, our
results will generalize.14

We document observable student-teacher sorting in our data by comparing
the average realized within-teacher standard deviation of students’ lagged test
scores with analogous measures based on simulated student-teacher matches
that are either randomly generated or perfectly sorted. This approach follows
Aaronson, Barrow, and Sander (2007). Table 2 details our results, which are
presented as ratios of the standard deviation of interest to the total within-grade
standard deviation of the test (calculated based on our student sample). Note

12. If within-teacher student samples are small enough, random assignment will not be sufficient to
entirely mitigate ceiling effects on teacher rankings.

13. In addition to differential student-teacher sorting across districts and schools, there will also be
differential sorting across schooling levels. Ceilings will have larger distortionary effects in higher
grade levels if student-teacher sorting is stronger.

14. The SDUSD is the eighth largest school district in the nation, with considerable student diversity.
The one notable difference between SDUSD and some other districts is that SDUSD has a larger
than average share of English learners. For basic demographic information about the population of
students and teachers at SDUSD see Betts, Zau, and Rice (2003).
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that while there does appear to be some student sorting based on lagged test
score performance, this sorting is relatively mild.

6. TEST SCORE CEILING SIMULATIONS AND BASIC RESULTS
Our ceiling simulations are based on the distribution of students’ test scores
in the fourth grade. For example, one of our simulations imposes a ceiling
where the maximum score is set at the 95th percentile of the fourth-grade
test score distribution. Because the Stanford 9 is vertically scaled, this ceiling
definition spills over to third-grade scores. That is, if a student in the third grade
scores above the 95th percentile in the distribution of fourth-grade scores, her
third-grade score is set at the maximum. Our approach generates negative
skewness in the test score distributions for each grade. The skewness will be
more pronounced in the fourth grade relative to the third grade, and in the
third grade relative to the second grade. After imposing each test score ceiling
on our data, we restandardize students’ test scores within grades to have a
mean of zero and a variance of one.15,16

We create each test score ceiling by imposing a maximum possible score
that we do not allow students’ scores to exceed. We consider test score ceil-
ings where the maximum score ranges from the 97th percentile to the 33rd
percentile of the original distribution of fourth-grade scores. This latter ceiling
generates skewness in the current and lagged test score distributions compa-
rable to skewness from the third- and fourth-grade TAAS exams in 2002, as
well as the ninth- and tenth-grade FCAT exams in 2007.17 For each ceiling
simulation, we report the skewness of the generated test score distributions.

15. An alternative approach would have been to separately set the ceilings in the second, third, and
fourth grades, such that each ceiling is imposed at the 95th percentile of its respective distribution.
However, this approach is inconsistent with the evidence from the TAAS and, more mildly, the
FCAT, where later-grade test score distributions are more skewed. We do, however, evaluate such a
ceiling structure in an omitted analysis and find that altering across-grade differences in skewness
has little bearing on our results. This analysis is available from the authors upon request.

16. Mechanically, the standardization of scores for each grade has no effect on results from the basic
and within-schools models. In the within-students model, using within-grade standardized scores
reduces the distortionary impacts of the test score ceilings, albeit mildly. This occurs because the
first-differenced test scores in the within-students models are scaled by their respective standard
deviations before differencing, and the standard deviation of fourth-grade scores is smaller than the
standard deviation of third-grade scores. This effectively upweights test scores for students in the
current year relative to the lagged year. Because ceilings are defined by skewness in the test score
distribution, a larger share of students have above-average test scores as ceiling severity increases
across years. In our analysis, the relative upweighting of these scores generated by the standard-
ization appears to partially offset the dampening effect of the test score ceiling. For any test score
distortions characterized by increased skewness over time (positive or negative), standardization
should be somewhat helpful, although we note that the standardization question is of little practical
importance here. Results from models of scaled scores analogous to those from standardized scores
models in the within-students analysis are available from the authors upon request. These results
suggest even stronger distortionary ceiling effects.

17. The lagged score distribution is less skewed than the distribution of third-grade scores on the TAAS
and more skewed than the distribution of ninth-grade scores on the FCAT.
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Table 3. Test Score Ceiling Effects on Value-Added Results: Basic Specification

(1)a (2) (3) (4) (5) (6) (7) (8)

Percentile of fourth-grade test score
distribution where ceiling is set

99.96 97 95 90 85 75 50 33

Skewness of period t score
distribution

0.17 −0.02 −0.07 −0.25 −0.37 −0.64 −1.31 −2.00

Skewness of period (t − 1) score
distribution

0.25 0.11 0.07 −0.05 −0.13 −0.32 −0.83 −1.32

Correlation between ceiling-restricted
value-added estimates and
baseline

– 0.99 0.99 0.98 0.97 0.94 0.85 0.77

Estimation error share of variance of
teacher fixed effects

0.11 0.11 0.11 0.11 0.12 0.13 0.17 0.24

Unadjusted effect size of teacher
quality

0.26 0.25 0.25 0.25 0.25 0.25 0.26 0.26

Adjusted effect size of teacher quality 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.23

aColumn 1 shows results from the no-ceiling baseline. A ceiling is not “set” here—0.04 percent of
the student population attains the maximum possible score. The last two rows show the unadjusted
and adjusted estimates of the number of standard deviations by which student achievement is
predicted to change after a one standard deviation increase in teacher quality.

Tables 3, 4, and 5, respectively, show results from the three VAMs discussed
above: the basic, within-schools, and within-students models. When the ceil-
ings are imposed, these models are misspecified because the data are censored.
Therefore the results from the tables document the combined effects of lost
information and model misspecification. Again, because of the complications
associated with properly modeling the data censoring given a real-world test
score ceiling, these results offer the most pragmatic representation of the in-
fluence of ceiling effects. We separately consider the data-censoring problem
in more detail in section 9.

Each column in the tables shows results from a different test score ceiling.
The ceilings increase in severity moving from left to right, and the first column
in each table shows results from our no-ceiling baseline for comparison. The
negative skewness measures reported in rows 2 and 3 of each table (and in
row 4 in table 5) indicate the degree of ceiling severity. The eighth column
of the tables shows results from our most severely skewed simulation, which
we refer to as the minimum-competency equivalent ceiling. For each ceiling
simulation we report three measures of interest in addition to the skewness
measures: (1) the correlation between teachers’ ceiling-affected value added
estimates and estimates from the baseline model without ceiling effects, (2)
the estimation error share of the variance of the teacher effects, and (3) the
adjusted and unadjusted effect sizes, by which we mean the predicted change
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Table 4. Test Score Ceiling Effects on Value-Added Results: Within-Schools Specification

(1)a (2) (3) (4) (5) (6) (7) (8)

Percentile of fourth-grade test score
distribution where ceiling is set

99.96 97 95 90 85 75 50 33

Skewness of period t score
distribution

0.17 −0.02 −0.07 −0.25 −0.37 −0.64 −1.31 −2.00

Skewness of period (t − 1) score
distribution

0.25 0.11 0.07 −0.05 −0.13 −0.32 −0.83 −1.32

Correlation between ceiling-restricted
value-added estimates and
baseline

– 0.99 0.99 0.97 0.96 0.93 0.84 0.73

Estimation error share of variance of
teacher fixed effects

0.24 0.24 0.24 0.25 0.26 0.28 0.35 0.44

Unadjusted effect size of teacher
quality

0.28 0.27 0.27 0.27 0.27 0.27 0.29 0.30

Adjusted effect size of teacher quality 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.22

aColumn 1 shows results from the no-ceiling baseline. A ceiling is not “set” here—0.04 percent of
the student population attains the maximum possible score. The last two rows show the unadjusted
and adjusted estimates of the number of standard deviations by which student achievement is
predicted to change after a one standard deviation increase in teacher quality.

Table 5. Test Score Ceiling Effects on Value-Added Results: Within-Students Specification

(1)a (2) (3) (4) (5) (6) (7) (8)

Percentile of fourth-grade test score
distribution where ceiling is set

99.96 97 95 90 85 75 50 33

Skewness of period t score
distribution

0.17 −0.10 −0.16 −0.36 −0.49 −0.79 −1.58 −2.39

Skewness of period (t − 1) score
distribution

0.25 0.07 0.02 −0.13 −0.22 −0.43 −1.03 −1.62

Skewness of period (t − 2) score
distribution

0.15 0.12 0.11 0.07 0.04 −0.04 −0.32 −0.63

Correlation between ceiling-restricted
value-added estimates and
baseline

– 0.99 0.99 0.97 0.96 0.92 0.80 0.72

Estimation error share of variance of
teacher fixed effects

0.33 0.33 0.33 0.34 0.34 0.37 0.45 0.51

Unadjusted effect size of teacher
quality

0.29 0.29 0.29 0.29 0.29 0.30 0.32 0.35

Adjusted effect size of teacher quality 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.25

aColumn 1 shows results from the no-ceiling baseline. A ceiling is not “set” here—0.04 percent of
the student population attains the maximum possible score. The last two rows show the unadjusted
and adjusted estimates of the number of standard deviations by which student achievement is
predicted to change after a one standard deviation increase in teacher quality.
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in student achievement, as a proportion of one standard deviation of test
scores, resulting from a one standard deviation increase in teacher quality.
The correlations between the ceiling-affected and baseline estimates provide
a quick gauge of the distortionary impacts of the ceilings. Teacher effect sizes
are commonly used in the literature to evaluate the importance of differences
in teacher quality. The unadjusted effect size is just the square root of the raw
variance in teacher effects, while the adjusted measure accounts for estimation
error in the individual teacher effect estimates. These estimates are reported
as ratios of the standard deviation of the teacher effect distribution to the
standard deviation of the censored test score distribution for each ceiling
simulation. This metric has a straightforward interpretation. For example,
the southwest-most entry in table 3, if taken at face value, suggests that a
one standard deviation improvement in teacher quality corresponds to a 0.24
standard deviation improvement in test scores. The estimation error shares of
the teacher effect variances and the corresponding adjusted variance measures
are estimated following Koedel (2009), who separates the variance of the
estimated teacher effects into signal and noise components.18

The three tables show that teachers’ value-added estimates are roughly
impervious to test score ceiling effects over a wide range of ceiling severity
in each model. This can be seen by looking at the correlations between the
teacher effects estimated using the actual test score data and those estimated
after the ceilings are imposed. Notice that even the ceiling that affects students’
test scores starting at the 75th percentile is largely inconsequential (skewness
≈−0.64), as evidenced by the fairly high correlation between teachers’ baseline
value-added estimates and their value-added estimates from this ceiling sim-
ulation. So, for example, policy makers should feel comfortable using FCAT
scores from the third and fourth grades, where the skewness in the test score
distributions are around −0.5, to measure teacher value added at least insofar
as ceiling effects are a concern. However, value-added results begin to respond
to ceiling effects as the ceilings continue to increase in severity. For instance,
when the ceiling begins at the 50th percentile of the fourth-grade test score
distribution, the correlation between the teacher effect estimates from the ac-
tual data and the data with the ceiling imposed ranges from about 0.85 for
the basic and within-schools models to 0.80 for the within-students model.
The correlations drop further when we impose the ceiling at the 33rd per-
centile, with the lowest correlation being 0.72 in the within-students model.

18. For the within-students model we also report the skewness in the second-lagged test score distri-
bution. In the between- and within-schools models we cluster standard errors at the student level.
Because only grade repeaters have more than one record, the clustered standard errors are essen-
tially typical robust standard errors. Our within-students model is estimated using robust standard
errors.
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As ceiling conditions approach those found in minimum-competency testing
environments, value-added results are non-negligibly altered.

Two other observations from tables 3, 4, and 5 are worthy of mention. First,
the estimation error share of the variance of teacher effects increases as ceiling
severity increases, which surely explains part of the pattern in correlations
discussed above. Second, there is a negligible change in the adjusted variance
of teacher quality regardless of ceiling severity, which may initially seem coun-
terintuitive. However, note that the test score ceilings are reducing the raw
variance of test scores overall and that the teacher effect variance measures are
scaled by this underlying variance. That is, although the standard deviation
of the teacher effect distribution is reduced when a ceiling is imposed, the
standard deviation of the distribution of test scores is also reduced. In fact, our
analysis likely understates test score ceiling effects on the measurable variance
of teacher quality because it removes variability in test scores more precisely
than would be observed in a real-world ceiling.19

Finally, note that the test score ceilings induce more skewness in the test
score distributions from the within-students sample (table 5) relative to the
larger student sample used in the basic and within-schools models (tables
3 and 4). As mentioned in section 4, this is because the restricted student
sample used for the within-students model is disproportionately affected by
the test score ceiling (that is, the set of students who have three contiguous
test scores is higher achieving, on average, than the set of students who have
just two test scores). Interestingly, the influence of each test score ceiling on
value added is similar across the three models despite the fact that each ceiling
is more strongly felt by students in the within-students model. It appears that
the stronger skewness in the test score distributions for the restricted student
sample is roughly offset by the benefit of looking within students, where ceiling
effects will be partially controlled for by the first-differencing procedure.

7. IMPLICATIONS OF MINIMUM-COMPETENCY TESTING
FOR VALUE-ADDED ANALYSIS

We further evaluate the sensitivity of teacher value added to the imposition of
our most severe test score ceiling, designed to replicate minimum-competency

19. Our simulations allow students to demonstrate that they are far above the cutoff, and then we
restrict their scores ex post. This removes additional variability in test scores that would be found
near the highest possible score in a real-world test score ceiling. For example, we might observe
a student scoring at the 80th percentile of the actual distribution of test scores and restrict her
score to the 50th percentile such that she obtains the maximum possible score in our simulation.
However, with a real-world ceiling where she would have to answer every question correctly to score
at the maximum, she might bubble in a wrong answer by accident, read a question incorrectly, etc.
This would add to the underlying variability in test scores but of course would not be explained by
teacher effects.
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Table 6. Transition Matrices Documenting the Stability of Teachers’ Value-Added Rankings, by Quintile,
before and after the Minimum-Competency Equivalent Ceiling Is Imposed

Basic Model

Ceiling-affected quintile assignments

1 2 3 4 5 (best)

Baseline 1 76 17 6 1 0
Quintile 2 22 43 25 10 0
Assignments 3 2 33 34 23 8

4 0 7 20 36 38
5 (best) 0 2 14 30 54

Within-Schools Model

Ceiling-affected quintile assignments

1 2 3 4 5 (best)

1 71 17 8 3 0
Baseline 2 24 39 24 11 3
Quintile 3 4 29 33 21 13
Assignments 4 1 13 19 39 28

5 (best) 0 2 16 26 56

Within-Students Model

Ceiling-affected quintile assignments

1 2 3 4 5 (best)

Baseline 1 58 24 13 4 1

Quintile 2 35 35 23 6 1

Assignments 3 5 21 31 28 15
4 3 12 17 37 32
5 (best) 0 9 17 25 49

Note: Cells report percentage of teachers in each quintile set.

testing conditions, using transition matrices to compare teacher rankings
before and after the test score ceiling transformation. The transition matrices
provide an alternative documentation of the correlations reported in the final
columns of tables 3, 4, and 5.

To construct the transition matrices, we estimate each model before and
after the ceiling is imposed. In each case, we keep the vector of estimated
teacher effects and rank them from 1 to J, 1 being the lowest and J being the
highest. We divide teachers into quintiles based on their value-added rankings,
where quintile 5 teachers are those with the highest value added. The transition
matrices compare the stability of these quintile assignments before and after
the ceiling is imposed. This type of analysis is particularly relevant in the
context of teacher accountability. For example, an accountability system might
reward the top 20 percent of teachers and sanction the bottom 20 percent as
measured by value added. Our results are reported in table 6 for each of the
value-added specifications described in section 4.

72



Cory Koedel and Julian Betts

The vertical dimension of the transition matrices represents teachers’ quin-
tile rankings without the ceiling and the horizontal dimension teachers’ rank-
ings after the ceiling is imposed. Each cell in table 6 indicates the percentage
of teachers who fall into a given quintile set, where a quintile set is defined by
the pair of quintile rankings for a given teacher with and without the ceiling
(e. g., the set [1,4] would indicate a quintile ranking of 1 in the no-ceiling case
and a quintile ranking of 4 after the ceiling is imposed). If ceiling effects did
not influence value-added rankings, the diagonal entries in table 6 would all
equal 100 percent and the off-diagonal entries would all equal zero.

The transition matrices show that ceiling effects alone can significantly
influence value-added rankings. For example, across the three models, just
49–56 percent of the teachers who are identified as being in the top 20 percent
of the value-added distribution based on students’ actual test scores are also
identified as being in this group once test scores are transformed. Furthermore,
14–17 percent of these teachers are pushed below the 60th percentile of the
distribution of teacher effects.

In an omitted analysis (available upon request), we also consider whether
certain types of teachers are helped or harmed in terms of their value-added
rankings by minimum-competency testing. The mechanism through which
we might expect an effect is student-teacher sorting within and across schools.
For example, if teachers with master’s degrees teach a disproportionate share
of high-achieving students, their value-added rankings will be more adversely
affected by test score ceiling effects. Not surprisingly, we find that more
qualified teachers, teachers with higher salaries, and teachers who teach at
more advantaged schools are harmed by test score ceiling effects in value-
added rankings (the latter result related to the socioeconomic advantage of
students across schools, of course, is applicable only in the basic value-added
model).

8. ROBUSTNESS OF THE NEGATIVE SKEWNESS MEASURE
In this section we evaluate the robustness of the negative skewness measure by
evaluating whether differentially constructed test score ceilings that produce
similar negative skewness have similar implications for value-added results.
In particular, we construct a set of soft test score ceilings that are designed
to replicate the negative skewness in some of the hard-ceiling simulations
and look to see if the soft-ceiling design has different implications for value-
added results. We stress that our analysis here is far from exhaustive—for any
given level of negative skewness in a test score distribution, there are literally
an infinite number of soft test score ceiling structures that could generate
the skewness. We focus on just one possibility here, creating soft test score
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Table 7. Soft-Ceiling Simulations Designed to Mimic Hard Ceilings at the 75th, 50th, and 33rd Percentiles
of the Distribution of Fourth-Grade Test Scores

Soft Ceiling 1 Soft Ceiling 2 Soft Ceiling 3

Description: Mimics the hard Mimics the hard Mimics the hard
ceiling set at the 75th ceiling set at the 50th ceiling set at the 33rd
percentile of the percentile of the percentile of the
fourth-grade test fourth-grade test fourth-grade test
score distribution score distribution score distribution

X1: 1 1 1

X2: 1 1 0.60

X3: 1 0.90 0.40

X4: 1 0.70 0.20

X5: 0.90 0.30 0.10

X6: 0.70 0.10 0.10

X7: 0.50 0.10 0

X8: 0.30 0 0

X9: 0.10 0 0

ceilings using a spline such that for a student with uncensored test score
Yi :

Ỹi = Yi , Yi ≤ S1

Ỹi = S1 + X1(Yi − S1), S1 < Yi ≤ S2

Ỹi = S1 + X1(S2 − S1) + X2(Yi − S2), S2 < Yi ≤ S3
...
Ỹi = S1 + X1(S2 − S1) + X2(Yi − S2) + . . . + Xn(Yi − Sn), Yi > Sn−1

(4)

In equation 4, Ỹi is the transformed score for student i, Sn > Sn−1 > . . . > S1

where the Sj , j = 1, . . . , n represent the test score levels at which the n knots
appear, and 1 ≥ X1 ≥ X2 ≥ . . . Xn−1 ≥ Xn, meaning that the test score ceiling
is nondecreasing in severity as students’ test scores rise. Specifically, we define
Sn as the score at the nth decile of the fourth-grade test score distribution for
these simulations. For student i, whose score falls between S2 and S3, her
transformed score can be written (where Yi is her observed test score):

Ỹi = S1 + X1(S2 − S1) + X2(Yi − S2). (5)

We generate three soft test score ceilings using this basic structure. These
ceilings are designed to produce skewnesss in the distributions of test scores
comparable to those from our hard-ceiling simulations imposed at the 75th,
50th, and 33rd percentiles. Table 7 displays the Xn vectors for each of these
three ceilings.
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Table 8 displays the effects of the three soft ceilings on value-added esti-
mates from each of the three models discussed in section 4. The results are
comparable to those in columns 6, 7, and 8 in tables 3, 4, and 5. Although
the effects of the soft ceilings are slightly more mild than those from their
hard-ceiling counterparts, the results suggest that similarly skewed test score
distributions have similar implications for value-added estimation.

9. THE MODEL MISSPECIFICATION PROBLEM
Finally, we explicitly consider the model-misspecification problem, which has
partly driven our results thus far. A least-squares approach (and variants
thereof), which is typically used in the value-added literature, will be misspeci-
fied when there is a test score ceiling because the ceiling acts as a data censor.
When ceiling effects are severe, the misspecification problem will be amplified.

In theory one could estimate a censored-data model, such as a Tobit model,
to correct this misspecification. However, as a practical matter, there are three
complications that arise with respect to resolving the model misspecification
problem in the value-added context where a test score ceiling is detected. First,
the censor points in a real-world test score ceiling will be unknown; in fact,
discontinuous censor points may not even exist. Evidence from Carson and
Sun (2007) suggests that misidentifying the censor points will produce sub-
stantially biased estimates of the model parameters, meaning that “guessing”
at the censor points based on some observed distribution of scores is unlikely
to resolve the problem.20

A second complication of data censoring in the value-added context is that
both current and lagged scores are likely to be censored. In the general VAM,
this means that an independent variable will be censored in addition to the
dependent variable. The gain score framework does not solve this problem
because the censoring in a gain score model is ill defined (censored gains
will be zero or near zero, but noncensored gains can also be zero, near zero,
or even negative). Although dependent-variable data censoring has received
considerable attention in research, there is a much smaller literature that
considers independent-variable data censoring. Austin and Brunner (2003)
and Austin and Hoch (2004) provide maximum likelihood estimation (MLE)
solutions to the independent-variable censoring problem with a known cen-
sor point, but their solutions are sensitive to an assumption about the joint

20. There has been some work in the econometrics literature that looks at data censoring when the
censor points are unknown, but this literature is inapplicable to the case of a test score ceiling because
a key assumption required to overcome the unknown censoring process is that the censoring is
independent of the underlying value of the censored variable (see Chen 2002; Gørgens and Horowitz
1999). This assumption obviously does not apply when the dependent variable, the test score, is
subject to a ceiling effect.
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distribution of the independent variables. Where possible, even these authors
strongly recommend circumventing the censoring problem altogether by ob-
taining uncensored data or, if the sample size permits, restricting the analysis
only to uncensored observations.21

A third complication in the context of teacher value added is that as the data
censoring gets more severe, more and more teachers teach fewer and fewer
students whose scores are not censored. At extreme ceiling severities, some
teachers do not teach any students whose scores are not censored. Clearly, as
a larger fraction of the student population’s scores are censored, inference for
more and more teacher effects becomes unreliable. Thus, where ceiling effects
are mild and the misspecification issue has little bearing on the results, a model
that appropriately treats the censored data could in principle be informative
for most, if not all, of the teacher effects. However, as ceiling effects become
increasingly severe, and therefore the data-censoring correction would be most
useful, the estimates for more and more teachers become uninformative.

Overall, these three issues suggest that a statistical solution to the misspec-
ification problem, although theoretically possible, is unlikely to be successful.
If a severe test score ceiling is detected, the most reasonable solution is to find
a different testing instrument. The results from this analysis can be useful
for determining whether a test score ceiling is sufficiently severe such that an
alternative test should be considered.

Despite these practical difficulties, as a thought experiment it may be
of interest to identify the separate impacts of lost information and model
misspecification on value-added results. In table 9, we briefly evaluate this
question at the level of school effects (for our baseline sample of fourth-
grade students) using a basic Tobit model.22 We focus on school effects to
circumvent the problem that at the teacher level, some teachers teach only
students with censored scores in the most severe ceiling simulations (where
this analysis is most interesting). In all schools, there are at least some students

21. Whereas thus far we have treated ceiling effects as a “problem” for value-added estimation, an
alternative view is that ceiling effects simply signify a shift in the objective function of administrators
toward helping students whose scores are not affected by the ceiling. In such cases, modeling
student achievement only for students whose scores are below the ceiling, if such a ceiling can be
reasonably identified, will be a viable option. However, if school administrators do not want to shift
disproportionate weight to low-achieving students in teachers’ value-added estimates, the ceiling
problem resurfaces.

22. Unlike ordinary least squares (OLS), heteroskedasticity in the case of Tobit implies inconsistency in
the coefficient estimates, and there is substantial heteroskedasticity here. There is some argument
in the literature as to how important this is as a practical matter (see, for example, Arabmazar and
Schmidt 1981; Brown and Moffitt 1983; Hurd 1979), but in our case a Tobit that directly models
the heteroskedasticity in the data performs worse than a simple Tobit. We can only speculate as
to the cause in our context—one possibility is that in the heteroskedastic Tobit, the large number
of (sometimes imprecisely) estimated heteroskedasticity parameters upon which the parameter
estimates of interest are based may be problematic.
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Table 9. Test Score Ceiling Effects on Value-Added Results for School-Level Effects (N = 116): Tobit versus
OLS

(1)a (2) (3) (4) (5) (6) (7) (8)

Percentile of fourth-grade test score 99.96 97 95 90 85 75 50 33
distribution where ceiling is set

Skewness of period t score distribution 0.17 −0.02 −0.07 −0.25 −0.37 −0.64 −1.31 −2.00

Skewness of period (t − 1) score 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
distribution (not censored)

Correlation between ceiling-restricted – 1.00 1.00 0.99 0.98 0.95 0.86 0.78
value-added estimates estimated by
OLS and baseline

Correlation between ceiling-restricted – 1.00 1.00 1.00 0.99 0.99 0.95 0.90
value-added estimates estimated by
Tobit and baseline

aColumn 1 shows results from the no-ceiling baseline.

below the cutoff in all of our simulations. In addition, we avoid the added
complication of independent-variable data censoring by censoring only current
scores (in practice this has a negligible effect on results). Although our partial
censoring approach to estimating school effects is not directly comparable to
the preceding analysis, it provides a straightforward setting in which to evaluate
separately the information loss and model misspecification components of test
score ceiling effects. For brevity, table 9 reports only the correlations of school
effects across models. In our school effect models we control for the student-
level covariates documented in table 1 (that is, we replace the vector of teacher
indicator variables with a vector of school indicator variables in the basic VAM).

Table 9 shows that the Tobit specification improves model performance,
and substantially so. For example, even in the minimum-competency equiva-
lent simulation where a significant amount of test score information is lost,
modeling the censored data dramatically improves performance. Although
the correlation between the baseline school effects and the ceiling-influenced
school effects is still far from one in the most severe ceiling simulation, it is
much improved (going from 0.78 to 0.90). This exercise suggests that the
model misspecification problem is an important contributor to the ceiling
effect distortions documented in our primary analysis.

10. CONCLUDING REMARKS
In the current climate of proficiency-based educational reform, test score ceil-
ings are likely to be increasingly common. We evaluate the extent to which
ceiling effects influence the estimation of teacher value added. There are two
mechanisms by which ceiling effects distort value-added results. First, most
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straightforwardly, a test score ceiling represents lost information about stu-
dent learning. Second, a ceiling generally results in model misspecification.
Although in theory this latter issue can be resolved by properly modeling the
censored data, in practice a statistical solution to the data-censoring problem
is unlikely to be feasible.

Our analysis properly treats the test score ceiling problem as a combina-
tion of these two distortionary influences. Overall, our findings are generally
encouraging—given a wide range of test score ceiling conditions, some of
which might be casually identified as severe, value-added estimates are only
negligibly affected. However, researchers and policy makers should be con-
cerned when working in minimum-competency or proficiency-based testing
environments. We show that ceiling conditions in such environments can
significantly alter value-added assessments for individual teachers.
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