Problem Set \#2
 Due Tuesday, February 5
 Please hand in answers on this sheet and staple the output (.log) file to it.

1. Hypothesis Testing: The file cps 06 .dta contains information about wages and education for 82,228 observations from the Current Population Survey of 2006. It is available on the course website. In those data $\mu_{y}=E(Y)=2.786$. Linear regression describes the relationship between \log wages (y) and years of education (x) where the intercept of the regression line is β_{0}, the slope is β_{1} and $\mu_{\mathrm{y}}=\mathrm{E}(\mathrm{Y})=2.786$.

$$
\begin{gathered}
y=\beta_{0}+\beta_{1} x+\epsilon \\
\text { with } \beta_{0}=1.376, \beta_{1}=0.1030, \operatorname{Cov}(x, \epsilon)=0 .
\end{gathered}
$$

Treat these data as a population.
a) Use Stata to reproduce these three population "parameters." (Attach the output.)
b) Generate a sample of 40 observations from the population as in the Stata log file attached below. We are interested in the sampling variance of the least squares estimates of β_{0} and β_{1}.
(In Stata, generating a random sample using the "bsample" command requires setting a "seed" value. Choose the seed to be some arbitrary large positive, odd number. Don't use the same number as any of your classmates. Identical seed values will be interpreted in the worst possible way and marks will be deducted.)

Calculate OLS estimates of $\mu_{\mathrm{y}} \beta_{0}$ and β_{1} using your 40 observation sample. Report your sample estimates here.
c) Now pretend that you don't know anything about the population except for the information in the sample. Test the null hypothesis that $\beta_{1}=0.1030$ using the data you have in your 40 observation sample, using a two-tailed test and $\alpha=0.05$.

Did you reject the null hypothesis? Yes / No
What was the probability of that happening?
d) Assuming that 100 of your classmates draw their own independent random samples and answer question (b) correctly. What's the probability that all 100 of them reject/accept as you did?
e) Did you use a normal distribution in your test in (c). Explain.

How can you justify using a normal distribution when the distributions of y and x are not normal?
e) Are these data experimental? Yes / No

Why (not)?

2. Least Squares.

You have a sample of N observations $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots \mathrm{Y}_{\mathrm{N}}$
You are interested in finding a number A which has the smallest average distance from the observations, where the measure of distance is the "error" term $\mathrm{e}_{\mathrm{i}}=\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{A}\right)$.

What's the formula for the (minimand)A which minimizes the average of $\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{A}\right)^{2}$ over N observations?

Prove your claim.

Example Program in Stata

```
. log using cps_example
            log: C:\work\120B\cps example.smcl
    log type: smcl
    opened on: 22 Jan 2007, 20:25:11
. * Example progam which treats the CPS from 2006 as a population
. use cps06
. desc
Contains data from cps06.dta
    obs: 82,228
    vars: 7 22 Jan 2007 19:51
    size: 1,151,192 (94.5% of memory free)
-----------------------------------------------------------------------------------------
variable name storage display value \begin{tabular}{c} 
type format
\end{tabular} label variable label
age byte \(\% 19.0 \mathrm{~g}\) agelbl Age
educ byte \(\% 38.0 \mathrm{~g}\) educ99lbl Educational attainment, 1990
fullpart byte \%9.0g fullpartlbl
    Worked full or part time last
                                year
\begin{tabular}{lll} 
black & byte & \(\circ 9.0 g\) \\
\\
asian & byte & \(\% 9.0 g\) \\
hwage1 & float & \(\circ 9.0 g\) \\
gender & byte & \(\% 9.0 g\)
\end{tabular}
gender byte %9.0g female==1
Sorted by:
. summ
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline age & 82228 & 43.38813 & 11.19701 & 25 & 85 \\
\hline educ & 82228 & 13.68711 & 2.818516 & 0 & 21 \\
\hline fullpart & 82228 & 1.130381 & . 3367246 & 1 & 2 \\
\hline black & 82228 & . 1036995 & . 3048721 & 0 & 1 \\
\hline asian & 82228 & . 0469426 & . 2115173 & 0 & 1 \\
\hline hwage1 & 82228 & 21.51597 & 28.03584 & . 0003698 & 2777.778 \\
\hline gender & 82228 & . 477684 & . 4995048 & 0 & 1 \\
\hline
\end{tabular}
```

```
. * create a new variable - the logarithm of hourly wages:
. generate lhwage=log(hwage1)
. summ lhwage
```



```
. * Calculate a simple linear regression of log hourly wage on education
. regress lhwage educ, robust
```

Regression with robust standard errors Number of obs $=82228$
F (1, 82226) =12512.02
Prob > F $=0.0000$
R-squared $=0.1520$
Root MSE $=.686$

	Robust			P> \| ${ }^{\text {l }}$ \|	[95\% Conf. Interval]	
1hwage	Coef.	Std. Err.	t			
educ	. 103048	. 0009212	111.86	0.000	. 1012423	. 1048536
cons	1.37597	. 0126578	108.71	0.000	1.351161	1.400779

. * So each year of education predicts an hourly wage increase of about 10.3% in > 2006 .
. * Now treat the full CPS as a population and draw a sample from it.
. * i.e., y = beta_0 + beta_1 x + epsilon
. * we will sample from that population and estimate the population parameters b
> eta_0=1.376 and beta_1=0.103
. set seed 098709870198768761
. bsample 50
. summ

Variable	Obs	Mean	Std. Dev.	Min	Max
age	50	42.06	10.66447	25	67
educ	50	13.7	2.358225	8	18
fullpart	50	1.08	. 2740475	1	2
black	50	. 12	. 3282607	0	1
asian	50	. 08	. 2740475	0	1
hwage1	50	19.59099	12.06503	3.125	62.5
gender	50	. 54	. 5034574	0	1
lhwage	50	2.822957	. 5557725	1.139434	4.135167

```
. * Note that the bsample command threw out all the data except for 50 randomly
> chosen observations
. * With those 50 we can estimate parameters beta_0 and beta_1
•
. regress lhwage educ, robust
Regression with robust standard errors Number of obs = 50
F( 1, 48) = 11.43
Prob > F = 0.0014
R-squared = 0.2129
Root MSE = .49818
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{lhwage} & \multicolumn{4}{|c|}{Robust} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{[95\% Conf. Interval]}} \\
\hline & Coef. & Std. Err. & t & \(P>|t|\) & & \\
\hline educ & . 1087445 & . 0321676 & 3.38 & 0.001 & . 0440672 & .1734218 \\
\hline cons & 1.333158 & . 4618206 & 2.89 & 0.006 & . 4046051 & 2.26171 \\
\hline
\end{tabular}
```

```
. * Our estimates in this 50 obs. sample are 1.33 for beta_0 and 0.11 for beta_1 .
```

. * Our estimates in this 50 obs. sample are 1.33 for beta_0 and 0.11 for beta_1 .
. * You can try this on your own to check that every seed value gives a differen
. * You can try this on your own to check that every seed value gives a differen
> t sample, and different estimates.

```
> t sample, and different estimates.
```

