Section 3. Simple Regression - Omitted Variable Bias

- 1. Sampling Properties of OLS estimators
- 2. What's a Covariance?
- 3. More sampling properties of OLS estimators
- 4. Standard Errors of OLS estimators
- 5. Confidence intervals
- 6. CLT demonstration
- 7. Omitted Variables and Omitted Variable Bias (prelude to Section 4)

1. Sampling Properties of OLS estimators

Review:

- Unbiased: $E(b_0) = \beta_0$, $E(b_1) = \beta_1$
- Consistent: $plim(b_0) = \beta_0$, $plim(b_1) = \beta_1$

New:

Asymptotically Normal by the CLT

Derivation

$$b_{1} = \frac{2(x; -\bar{x})(x; -\bar{y})}{2(x; -\bar{x})^{2}}$$

$$= \frac{2(x; -\bar{x})}{2(x; -\bar{x})} \times \frac{2(x; -\bar{$$

$$= \frac{1}{2(x_i-\bar{x})x_i} \left[2(x_i-\bar{x})\beta_{o+} \beta_i 2(x_i-\bar{x}) x_i + 2(x_i-\bar{x}) u_i \right]$$

$$= O + \beta_1 + \frac{2(x_i - \overline{x})u_i}{2(x_i - \overline{x})x_i}$$

$$E(h|x) = E(\beta_1 + \frac{z(x_1 - \bar{x})u_1}{z(x_1 - \bar{x})x_2}|x) = \beta_1 + \frac{1}{z(x_1 - \bar{x})x_2} \left[zE(x_1 - \bar{x})u_1|x\right]$$

$$\Rightarrow E(b_1) = \beta_1$$

$$= \beta_1 + 0 = \beta_1 \quad \text{For All Possible}$$
Convergent © 2003 by Pearson Education. Inc.

Copyright © 2003 by Pearson Education, Inc.

$$\pm 1) \quad \angle(X:-\overline{X}) = \angle X:-\angle \frac{\angle X:}{N}$$

$$= 2 \times i - y. \frac{2 \times i}{N} = 0$$

$$(x.-x)C, Cis a constant$$

$$\frac{\pi}{2} \left(\frac{\chi}{x} - \frac{\chi}{x} \right) C, \quad \text{Cis a constant} \\
= \left(\frac{\chi}{x} - \frac{\chi}{x} \right) C - \left(\frac{\chi}{x} - \frac{\chi}{x} \right) C \tau \dots \left(\frac{\chi}{x} - \frac{\chi}{x} \right) C$$

#3)
$$E(Z|X) = A$$
 FOR ALL X
 $\Rightarrow E(z) = A$

$$b_1 = \beta_1 + \frac{2(x_i - \overline{x})u_i}{2(x_i - \overline{x})^2}$$

$$plinb_{1} = plin \left(\frac{3}{5} \right) + plin \left(\frac{2(x; -x)u}{2(x; -x)^{2}/N} \right)$$

$$= \frac{3}{5} + \frac{(x(x; -x)^{2}/N)}{(x(x) \times 1)} = 0$$

$$(or(x,u) = E(x-E(x))(u-E(u))$$

$$= E(E(x-E(x))(u-E(u))(x) = 0$$

$$L\cdot L\cdot N$$

$$E(z) = M_z \Rightarrow p(m(z) = M_z$$

$$E\left[\frac{4x\cdot -x}{(N-2)}u:\frac{(N-2)}{N}\right] = \frac{N^2}{N}$$

$$E\left[\frac{4(x\cdot -x)^2(N-1)}{(N-1)}\right]$$

$$= V(x)\left(\frac{N-1}{N}\right)$$

$$= V(x)\left(\frac{N-1}{N}\right)$$

$$= 1$$

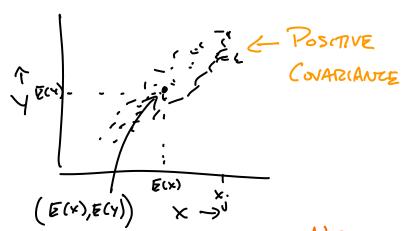
$$\rho \lim_{n \to \infty} \left(\frac{n-2}{n} \right) = 1$$

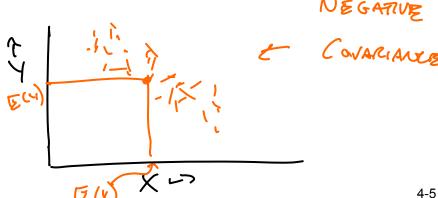
2. What's a Covariance?

(under fundom
$$\frac{1}{2}(x;-x)(y;-y)$$

sumpling) $(N-2)$

$$b_1 = \frac{2(x; -\bar{x})(x; -\bar{y})}{2(x; -\bar{x})^2}$$





3. Sampling Properties of OLS estimators (cont.)

Large-Sample Distributions of $\hat{\beta}_0$ and $\hat{\beta}_1$

If the least squares assumptions in Key Concept 4.3 hold, then in large samples $\hat{\beta}_0$ and $\hat{\beta}_1$ have a jointly normal sampling distribution. The large-sample normal distribution of $\hat{\beta}_1$ is $N(\beta_1, \sigma_{\hat{\beta}_1}^2)$, where the variance of this distribution, $\sigma_{\hat{\beta}_1}^2$, is

distribution of
$$\beta_1$$
 is $N(\beta_1, \sigma_{\hat{\beta}_1}^2)$, where the variance of this distribution, $\sigma_{\hat{\beta}_1}^2$, is
$$\begin{array}{c}
b_i \stackrel{\leftarrow}{\mathcal{K}} N(\beta_i, \sigma_{\hat{\beta}_1}^2) \\
\downarrow (b_i) = \underbrace{\frac{Z(v_i - \bar{v})^2 e_i^2 / v_i}{\left(\frac{1}{v_i}\right)} \stackrel{\leftarrow}{L_i} \sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{\text{var}[(X_i - \mu_X)u_i]}{[\text{var}(X_i)]_{=i}^2} = V(b_i)
\end{array}$$
(4.14)

The large-sample normal distribution of $\hat{\beta}_0$ is $N(\beta_0, \sigma_{\hat{\beta}_0}^2)$, where the precision

The like
$$\sigma_{\hat{\beta}_0}^2 = \frac{1}{n} \frac{\operatorname{var}(H_i u_i)}{[E(H_i^2)]^2}, \quad \text{whe}$$

$$\sigma_{\hat{\beta}_0}^2 = \frac{1}{n} \frac{\text{var}(H_i u_i)}{[E(H_i^2)]^2}, \quad \text{where } H_i = 1 - \left(\frac{\mu_X}{E(X_i^2)}\right) X_i.$$
 (4.15)

Why asymptotically N(.)?
$$b_i = \frac{\mathcal{E}(x_i - \bar{x})^{Y_i}}{\mathcal{E}(x_i - \bar{x})^2} = \frac{1}{\mathcal{E}(x_i - \bar{x})^2} \mathcal{E}(x_i - \bar{x}) \left[\beta_{i} + \beta_{i} +$$

WHAT'S THE SAMPHING DISTRIBUTION OF 6,?

$$V_i = (Y_i - \overline{Y})u$$
: $E(V_i) = 0 \Leftarrow E(V_i | X) = E((X_i - \overline{Y})u : | X) = (X_i - \overline{Y})E(u : | X) = 0$

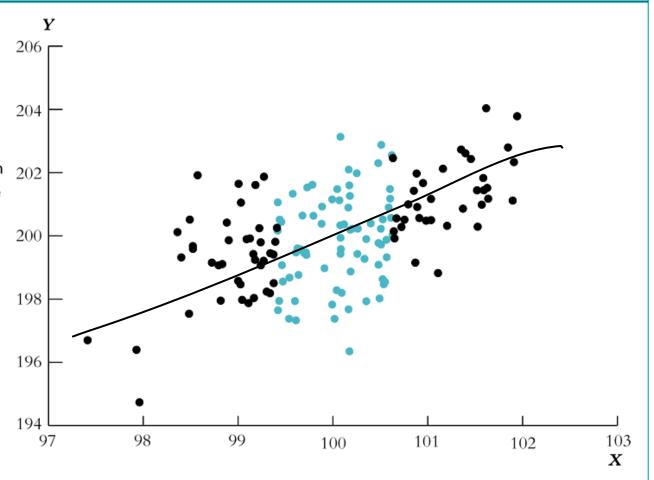
$$V_i$$
 iid? $\sqrt{V(v_i)} = V[(x_i - \overline{x})u_i]$ is finite.

$$b_{i} = \beta_{i} + \frac{2(x_{i} - \bar{x})u_{i}}{2(x_{i} - \bar{x})^{2}}$$

$$= \beta_{i} + \frac{2(x_{i} - \bar{x})^{2}}{2(x_{i} - \bar{x})^{2}} = \beta_{i} + \frac{2v_{i}/n}{2(x_{i} - \bar{x})^{2}/n}$$

FIGURE 4.5 The Variance of $\hat{\beta}_1$ and the Variance of X

The colored dots represent a set of X_i 's with a small variance. The black dots represent a set of X_i 's with a large variance. The regression line can be estimated more accurately with the black dots than with the colored dots.



4. Standard Errors

• CLT:
$$b_1$$
 approx ~ $N(\beta_1, V(b_1))$ $\sqrt[2]{\sqrt{\langle o_1 \rangle}} \sim N(o_1)$

$$b_0 \text{ approx } \sim N(\beta_0, V(b_0)) \underbrace{\bigcirc -\mu_e}_{\sqrt{\hat{V}(a)}} \stackrel{\triangle}{\sim} N(a)$$

- "Standard Errors" are consistent estimators of standard deviations of b_o and b₁. (S&W p. 133, 151,180).
- Soletastatistics chave a standard normal of Non)

 distribution. (((b))

5. Confidence Intervals

Confidence Intervals for β_1

A 95% two-sided confidence interval for β_1 is an interval that contains the true value of β_1 with a 95% probability, that is, it contains the true value of β_1 in 95% of all possible randomly drawn samples. Equivalently, it is also the set of values of β_1 that cannot be rejected by a 5% two-sided hypothesis test. When the sample size is large, it is constructed as

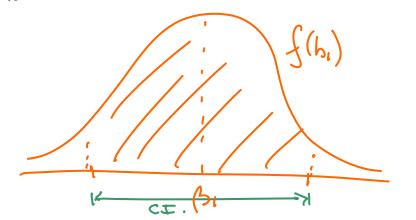
95% confidence interval for $\beta_1 = (\hat{\beta}_1 - 1.96SE(\hat{\beta}_1), \hat{\beta}_1 + 1.96SE(\hat{\beta}_1)).$ (4.27)

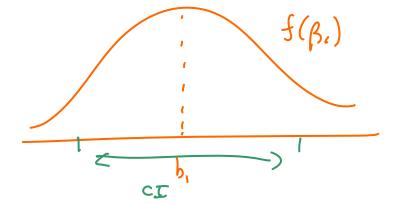
..and the same for $oldsymbol{eta_0}$

Confidence Intervals

Confidence intervals for
$$\beta_0, \beta_1$$

$$P \left(-1.96 \leq \left(\frac{b_1 - \beta_2}{\text{Se}_2(b_2)}\right) \leq 1.96\right) \approx 0.95$$



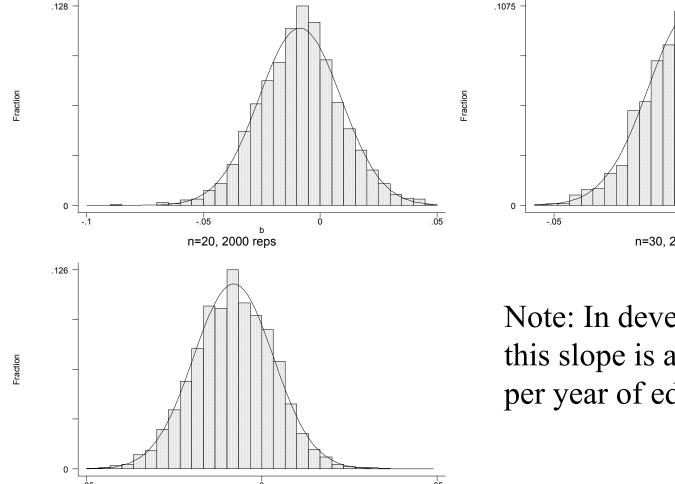


6. CLT demonstrations using Stata

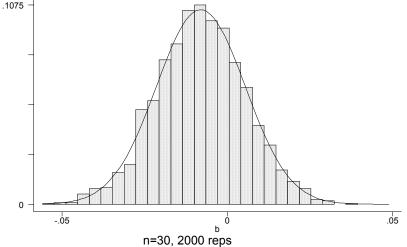
- Stata doesn't mind running a regression a few thousand times,
 - which allows us to observe a sampling distribution for **b**₁ e.g., bootregh00.do

..and the same for ${f b_0}$

CLT in action: sampling distributions for b₁



n=40, 2000 reps



Note: In developing countries this slope is about -0.2 children per year of education. Vg

7. Omitted Variables and Omitted Variable Bias

- What if you left out an important variable?
- Many interesting relationships have more than 2 dimensions
- Multivariate regression:

7a. OLS Multivariate regression

The OLS Estimators, Predicted Values, and Residuals in the Multiple Regression Model

The OLS estimators $\hat{\beta}_0$, $\hat{\beta}_1$, ..., $\hat{\beta}_k$ are the values of b_0 , b_1 , ..., b_k that minimize the sum of squared prediction mistakes $\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{1i} - \cdots - b_k X_{ki})^2$. The OLS predicted values \hat{Y}_i and residuals \hat{u}_i are:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \dots + \hat{\beta}_k X_{ki}, i = 1, \dots, n, \text{ and}$$
 (5.11)

$$\hat{u}_i = Y_i - \hat{Y}_i, i = 1, \dots, n.$$
 (5.12)

The OLS estimators $\hat{\beta}_0$, $\hat{\beta}_1$, ..., $\hat{\beta}_k$ and residual \hat{u}_i are computed from a sample of n observations of $(X_{1i}, \ldots, X_{ki}, Y_i)$, $i = 1, \ldots, n$. These are estimators of the unknown true population coefficients $\beta_0, \beta_1, \ldots, \beta_k$ and error term, u_i .

Look familiar? Same criterion with more variables.

7b. Properties of OLS estimators in Multivariate Regression

- Consistent
- Unbiased
- Approximately N(.) in large samples
- Claim:

7c. Omitted Variable "Bias"

Short regression

$$y = b_0^s + b_1^s x_1 + e^s$$
 (SR)

Long regression

$$y = b_0^{L} + b_1^{L} x_1 + b_2^{L} x_2 + e^{L}$$
 (LR)

Claim:

$$b_1^s = b_1^L + b_2^L b_{21}$$
,

b₂₁ is slope of a regression of x₂ on x₁