TA Office Hours, STATA class

« TEACHING ASSISTANTS
Tiffany Chou:
Michael Bauer:
Leah Nelson:

OH: Monday 7-8PM, Center 119 ;
Wednesday 3:30-5, Seq. 244

** STATA Evening Class **

Jan 14: Monday 7-8PM or Monday 8-9PM,
(Econ 100 computer lab)
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Econometrics 120B
Lesson 2: Review of Probability

Last Class: 2 Themes
Probability

Random Variables

Expected Value

Variance, Covariance
Random Sampling

Sample size matters

Working with Normal Distribution
Central Limit Theorem
Problem Set #1

Next Class: Statistics Review
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Review: Why Econometrics?

1. Why study Econometrics?

2. Who needs data anyway?

3. If you had some, what would you do with it?
Coffee example [Quantifying uncertainty]

GRE example [Correlation and causality]
These two themes will recur throughout the course

4. Types of data:
Experimental vs. nonexperimental data.
Cross-sections, Time-Series, Panels.

5. Syllabus & logistics - econ.ucsd.edu/~elib/120b

Next Class.. Statistics Review




1. Probability - events best
thought of as uncertain

Events:
A — Chargers beat Colts (0-no,1-yes)
B - Chargers win the Super Bowl
C - Iraq war ends by 2010
D — Hilary Clinton wins Democratic nomination
E - Angelina Jolie and Brad Pitt adopt a child in 2008

Joint, marginal and conditional probabilities.

A 0 1
B
0 3 S5 85
1 0 15 15
3 J

. what's P(A=1, B=1)? 0.15

. P(A=1)? _

+  P(B=1|A=1) = P(A=1,B=1)/P(A=1)=? , | § -

. P(A=1|B=1)=? / 7 - / Y}
. P(A=1E=1)=?

ndepeadsmce oF A ANDE
’pCAslIgzl)-v()(A*l =
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2. Random Variables

X is a random variable if for every real number
a there exists a probability P(X<=a).

eg's: X is touchdowns scored by LT in playofts
q — coffee demanded
q(p) - coffee demanded at price p

* Last class the predicted coffee demand, slope
and intercept were random variables,

why? because of sampling variation.
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Distribution (Density) Functions

 For a random variable X the probability
distribution (or density) function of X,
f(X=a) is a formula giving the probability
that X takes the value a.

TABLE 2.1 Probability of Your Computer Crashing M Times

Outcome (number of crashes)

0 1 2 3 4
Probability distribution 0.80 0.10 0.06 0.03 0.01
Cumulative probability distribution .80 0.90 0.96 0.99 1.00
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FIGURE 2.1 Probability Distribution of the Number of Computer Crashes

The height of each bar is the probability that the
computer crashes the indicated number of times.
The height of the first bar is 0.80, so the probabil-
ity of O computer crashes is 80%. The height of the
second bar is 0.1, so the probability of 1 com-
puter crash is 10%, and so forth for the other bars.

Probability

0.8

0

1 2

3 4
Number of crashes
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.

-~ B 3. Expected Value

Suppose the random variable Y takes on k possible values, y,, . . ., y,, where y,
denotes the first value, y, denotes the second value, etc., and that the probabil-
ity that Y takes on y, is p,, the probability that Y takes on y, 1s p,, and so forth.
The expected value of Y, denoted E(Y), is

k
BY) = 1o+ Yap2 o+ el = 2, Vb (2.4)
where the notation EY; p;” means “the sum of y, p. for i running from 1 to k.”

The expected value of Y is also called the mean of Y or the expectation of
Y and is denoted py.
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n Variance

The variance of the discrete random variable Y, denoted o7, is
k
oy = var(Y) = E[(Y =)’ = D) (v, — 1)* ps (2.6)
i=1

The standard deviation of Y'is oy, the square root of the variance. The units of
the standard deviation are the same as the units of Y.
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FIGURE 2.5 Daily Percentage Changes in the Dow Jones Industrial Average in the 1980s

During the 1980s, Percent change
the average percentage 0r
daily change of “the
Dow” index was 0.05%
and its standard devia-
tion was 1.16%. On
October 19, 1987—
“Black Monday”—the
index fell 25.6%, or

un
I

more than 22 standard
deviations. il
-10
-15
=20 -
October 19, 1987
25 \

=30 1 1 1 1 1 ] | | | ]
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Year
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3 Variances of sums of RVs

Let X, Y, and IV be random variables, let u, and 0')% be the mean and variance
of X, let oy be the covariance between X and Y (and so forth for the other
variables), and let g, b, and ¢ be constants. The following facts follow from the
definitions of the mean, variance, and covariance:

E(a+ bX + ¢Y) = a + buy + city, (2.29)

[ N()‘N) var(a + bY) = b’c2, (2.30)
EEX /4’5(\1 /‘V)] var(aX + bY) —2 a’oy + 2aboyy + b0y, (2.31)
E(Y9) =g+ 1, (2.32)

cov(a + bX + ¢V, Y) = boyy + copy, and (2.33)

E(XY) = oxy + Uxlly- (2.34)

|corr(X,Y)| €1 and|oyy|< Vogod (correlation inequality). (2.35)
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r_. 4. Random Sampling

—
i

=

In a simple random sample, n objects are drawn at random from a population
and each object is equally likely to be drawn. The value of the random variable
Y for the i randomly drawn object is denoted Y. Because each object is equally
likely to be drawn and the distribution of Y is the same for all i, the random
variables Y}, . . ., Y, are independently and identically distributed (i.1.d.); that
15, the distribution of Y, is the same forall i = 1, ..., n and Y] 1s distributed
independently of Y, . . ., Y, and so forth.
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g 5. Sample size matters

The sample average Y converges in probability to iy, (or, equivalently, Y is con-
sistent for 1) if the probability that Y is in the range 1y — ¢ to iy + ¢ becomes
arbitrarily close to one as n increases for any constant ¢ > (. This is written as
¥ s Ly

The law of large numbers says thati1f Y, i=1,..., nare mdependently and
identically distributed with E(Y,) = uy and var(Y,) = 3% < oo, then Y —> Uy
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I 7. Working with “Normal” Random
ol \ariables

Suppose Yis normally distributed with mean ¢ and variance o2, that is, Y'is dis-
tributed N(u, 6°). Then Y is standardized by subtracting its mean and dividing
by its standard deviation, that is, by computing Z = (Y — u)/c.

Let ¢; and ¢, denote two numbers with ¢;<c¢,, and let d; = (¢; — 1) /o and
d, = (¢, — 1) /0. Then,

Pr(Y < o) = Pr(Z < dy) = d(dy), (2.38)
Pr(Y2¢) =Pr(Z2d,) = 1 — d(d,), and (2.39)
Pr(c, < Y< o) = Pr(d, < Z< dy) = d(dy) — d(d,). (2.40)

The normal cumulative distribution function @ is tabulated in Appendix Table 1.
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FIGURE 2.3 The Normal Probability Density

The normal probability density

function with mean p and variance

0 is a bell-shaped curve, centered

at 1. The area under the normal

p.d.f. between u — 1.960 and

U+ 1.96cis 0.95. The normal

distribution is denoted N(u, ¢?). 95%

u—1.960 I u+ 1.960

Three reasons to love the Normal Distribution are:
1.

2.
3.
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FIGURE 2.4 Calculating the Probability that Y < 2 When Y is Distributed N(1, 4)

To calculate Pr(Y < 2), standardize Y, then

use the standard normal distribution table.

Y is standardized by subtracting its mean

(¢ = 1) and dividing by its standard devia-

tion (oy = 2). The probability that Y< 2 is

shown in Figure 2.4a, and the correspond-

ing probability after standardizing Y is Prir<2)
shown in Figure 2.4b. Because the stan-

dardized random variable, % is a

standard normal (Z) random variable,
Y-1 2-1 |

N(1, 4) distribution

Pr{Yﬂ?]:Pr( . <5 )=Pr{Zs0.5). '

1.0 2.0 y
From Appendix T0b|e ], PI’[Zﬂ 05] =0.691. (a) N(1, 4)
Pz <05 0.691
N(0, 1) distribution
'|
0.0 05 z
(b) N(O, 1)
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n 8. The Central Limit Theorem

Suppose that Y], ..., Y, are i.i.d. with E(Y;) = uy and var(Y,) = o, where
0 < oy < oo. As n —> oo, the distribution of (Y — )/ o (where 62 = oy /n)

becomes arbitrarily well approximated by the standard normal distribution.
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FIGURE 2.6 Sampling Distribution of the Sample Average of n Bernoulli Random Variables
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The distributions are the sampling distributions of ¥, the sample average of n independent Bernoulli random vari-
ub|v_as with p = Pr(Y, = 1) = 0.78 [the probability of & fast commute is 78%). The variance of the sampling distribution
of Y decreases as n gets larger, so the sampling distribution becomes more fightly concentrated around its mean u =

0.78 as the sample size n increases.
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FIGURE 2.6 Sampling Distribution of the Sample Average of n Bernoulli Random Variables
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The distributions are the sampling distributions of Y, the sample average of n independent Bernoulli random vari-
ables with p = Pr(Y; = 1) = 0.78 (the probability of a fast commute is 78%). The variance of the sampling distribution
of Y decreases as n gefs larger, so the sampling distribution becomes more tightly concentrated around its mean u =
0.78 as the sumple size n increases.
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FIGURE 2.6 Sampling Distribution of the Sample Average of n Bernoulli Random Variables

Probability
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The distributions are the sampling distributions of Y, the sample average of n independent Bernoulli random vari-
ables with p = Pr(Y. = 1) = 0.78 (the probability of a fast commute is 78%). The variance of the sampling distribution
of Y decreases as n gets larger, so the sampling distribution becomes more tightly concentrated around its mean u =
0.78 as the sample size n increases.
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FIGURE 2.7 Dishibution of the Standardized Sample Average of n Bernoulli Random
Variables with p = .78
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The sampling distribution of ¥ in Figure 2.6 is plotted here after standardizing ¥. This centers the distributians in Fig-
ure 2.6 and magniies the scale on the horizontal axis by a factor of %/n. When the sample size is large, the sampling
distributions are increasingly well approximated by the normal distribution (the solid line), as predicted by the central
limit theorem.
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FIGURE 2.7 Distribution of the Standardized Sample Average of n Bernoulli Random
Variables with p = .78
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The sampling distribution of Y in Figure 2.6 is plotted here after standardizing Y. This centers the distributions in Fig-
ure 2.6 and magnifies the scale on the horizontal axis by a factor of Vn. When the sample size is large, the sampling
distributions are increclsingly well cpproximclred b}f the normal distribution (the solid line), as predicted by the central
limit theorem.
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FIGURE 2.7 Distribution of the Standardized Sample Average of n Bernoulli Random
Variables with p = .78
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The sampling distribution of Y in Figure 2.6 is plotted here after standardizing Y. This centers the distributions in Fig-
ure 2.6 and magnifies the scale on the horizontal axis by a factor of Vn. When the sample size is large, the sampling
distributions are increasingly well approximated by the normal distribution (the solid line), as predicted by the central
limit theorem.
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FIGURE 2.8 Distribution of the Standardized Sample Average of n Draws from a Skewed Distribution
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The figures show the sampling distribution of the standardized sample average of n draws from the skewed (asym-
meric) population distribulion shown in Figure 2.8a. When n is small (n = 5), the sampling disiribution, like the pop-
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ulation distribution, is skewed. But when n is large {n = 100), the sampling distribution is well approximated by a
standard normal distribution (solid line), as predicted by the central limit theorem.
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FIGURE 2.8 Distribution of the Standardized Sample Average of n Draws from a Skewed Distribution
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The figures show the sampling distribution of the standardized sample average of n draws from the skewed (asym-
metric) population distribution shown in Figure 2.8a. When n is small (n = 5), the sampling distribution, like the pop-
ulation distribution, is skewed. But when n is large (n = 100), the sampling distribution is well approximated by a
standard normal distribution (solid line), as predicted by the central limit theorem.
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FIGURE 2.8 Distribution of the Standardized Sample Average of n Draws from a Skewed Distribution
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The figures show the sampling distribution of the standardized sample average of n draws from the skewed (asym-
metric) population distribution shown in Figure 2.8a. When n is small (n = 5), the sampling distribution, like the pop-
ulation distribution, is skewed. But when n is large (n = 100), the sampling distribution is well approximated by a
standard normal distribution (solid line), as predicted by the central limit theorem.
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Econometrics 120B
Summary of Probability Lecture

Probability

Random Variables
Expected Value
Variance, Covariance
Random Sampling
Sample size matters
Working with Normal Distribution
Central Limit Theorem

Next Class: Statistics Review
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Problem Set #1

Problem Set #1
Due Thursday, January 24
Please answer the questions on this sheet (or photcopy) in pen.
1. Polling
Hillary and Barack compete in the primary of a large state. They are the only two candidates. Five
minutes afier the polls close the Constant News Network announces the results of an exit poll. In a

random, representative sample of 200 primary voters (all of whom tell the truth), they find that 56%
voted for Hilary.

Let p be the true proportion of primary voters that voted for Hillary,

a. Calculate and report a 95% confidence terval for p, showing your steps.
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Problem Set #1: Data Gathering

2. Data gathering exercise. (Submit a page or two with two graphs, stapled to this question sheet.)

a. Gather data from a controlled experiment. Report the values of one variable (X) that you
controlled (or randomly assigned) and another (Y') that was influenced by X. You should have at
least 15 observations. (The “demand for coffee” survey performed in class was an experiment in
which X was priceand Y was quantity demanded.) Do not survey people on their demand for coffee,

Report the source of the data, the sample mean of each variable and attach an X-Y graph

(scatterplot). (Stata 1s good at this. Recall that Stata is available in the lab or can be leased on the
Internet.)
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