Who Invented Regression?

1. Who invented regression?
2. Omitted Variables and Multivariate Regression
3. Omitted Variable Bias (OVB)
4. Experiments vs. OVB
5. R^{2}

1. Who invented regression?

- Francis Galton,
- climatologist,
- gentleman explorer
- social scientist

Heredity and Height "regression" to the mean

2. Omitted Variables and Omitted Variable Bias

- What if you left out an important variable?
- Many interesting relationships have more than 2 dimensions

GRE prep course example
Coffee example
Problem set and exam example

- We need more variables..
"multivariate" regression

2. OLS Multivariate regression

The OLS Estimators, Predicted Values, and Residuals in the Multiple Regression Model

The OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are the values of $b_{0}, b_{1}, \ldots, b_{k}$ that minimize the sum of squared prediction mistakes $\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{1 i}-\cdots-b_{k} X_{k i}\right)^{2}$. The OLS predicted values \hat{Y}_{i} and residuals \hat{u}_{i} are:

$$
1=1
$$

:

$$
\begin{gather*}
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\cdots+\hat{\beta}_{k} X_{k i}, i=1, \ldots, n, \text { and } \tag{5.11}\\
\hat{u}_{i}=Y_{i}-\hat{Y}_{i}, i=1, \ldots, n \tag{5.12}
\end{gather*}
$$

The OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ and residual \hat{u}_{i} are computed from a sample of n observations of $\left(X_{1 i}, \ldots, X_{k i}, Y_{i}\right), i=1, \ldots, n$. These are estimators of the unknown true population coefficients $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ and error term, u_{i}.

Look familiar? Same criterion with more variables.

2. Properties of OLS estimators in Multivariate Regression

- Consistent
- Unbiased
- Approximately $N($.$) in large samples$
- Same first order conditions (for 2 or more X's)

$$
\begin{aligned}
& \sum_{i=1}^{N} e_{i}=0 \\
& \sum_{i=1}^{N} X_{1 i} e_{i}=0 \\
& \sum_{i=1}^{N} X_{2 i} e_{i}=0
\end{aligned}
$$

First order conditions for multivariate regression

$$
\begin{aligned}
\frac{\partial e_{1}^{2}}{\partial b_{0}} & =\frac{\partial e_{1}^{2}}{\partial e_{1}} \times \frac{\partial e_{1}}{\partial b_{0}} \\
& =2 e_{1}(-1)
\end{aligned}
$$

Min $\left\langle e_{i}^{2}, e_{i}=\left(y_{i}-\hat{y}_{i}\right)\right.$

$$
\left\{b_{0}, b_{1}, b_{2} \ldots b_{k}\right\}=\left(y_{i}-\underline{b}_{0}-b_{1} x_{1 i}-b_{2} x_{2 i}-b_{3} x_{3 i}-\cdots b_{k} x_{k i}\right)
$$

$k+1$ fotorder conditions..

$$
\begin{align*}
& 0=\frac{\partial \sum e_{i}^{2}}{\partial b_{0}}=\frac{\partial<e_{i}^{2}}{\partial b_{0}}=\frac{\partial e_{i}^{2}}{\partial b_{0}}+\frac{\partial e_{2}^{2}}{\partial b_{0}}-\cdots \cdot \frac{\partial e_{N}^{2}}{\partial b_{0}}=-2 e_{1}-2 e_{2}-2 e_{3}-2 e_{4} \cdots \cdot-2 e_{N} \\
& 0=\frac{\partial e_{i}^{2}}{\partial b_{1}}=\frac{\partial e_{1}^{2}}{d}+\frac{\partial e_{2}^{2}}{\partial b_{1}}+\frac{\partial e_{3}^{2}}{\partial b_{1}}+\ldots \frac{\partial e_{1}^{2}}{\partial b_{i}} \Leftrightarrow-2 \xi e_{i} \Leftrightarrow \varepsilon e_{i}=0 \\
& =-2 e_{1} x_{11}-2 e_{2} x_{12}-2 e_{3} x_{13} \ldots-2 e_{1} x_{N} \\
& =-2 \sum_{i} e_{i} x_{1 i} \Leftrightarrow \sum e_{i} x_{1 i}=0 \tag{}\\
& 0=\frac{\partial \sum e_{i}^{2}}{\partial b_{k}}=-2 \sum e_{i} x_{k i} \Leftrightarrow \sum e_{i} x_{k i}=0
\end{align*}
$$

If the $k+1$ equations are not linearly dependant we con solve for

3. Omitted Variable "Bias"

- Short regression egg. $\begin{aligned} & y \text {-SAT Sorer } \\ & x_{1}-\text { SAT pep. }\end{aligned}$ $\rightarrow \mathrm{y}=\mathrm{b}_{0}^{\mathrm{s}}+\underline{b}_{1}^{\mathrm{s}} \mathrm{x}_{1}+\mathrm{e}^{\mathrm{s}}(\mathrm{SR}) \longleftarrow \mathrm{x}_{2}$-sAT ability
- Long regression
$\rightarrow y=b_{0}{ }^{L}+b_{1}{ }^{L} x_{1}+b_{2}{ }^{L} x_{2}+e^{L} \quad(L R)$
- Claim:

$$
b_{1}^{s}=b_{1}{ }^{L}+b_{2}^{L} b_{21},
$$

$$
\frac{d Y}{d x_{1}}=\left.\frac{\partial Y}{\partial x_{1}}\right|_{x_{2}}+\frac{\partial Y}{\partial x_{2}} \frac{d x_{2}}{d x_{1}}
$$

b_{21} is slope of a regression of x_{2} on x_{1}

$$
b_{21}=\frac{\sum\left(x_{1}-\bar{x}_{1}, \bar{x}_{1}\left(x_{2 i} \bar{x}_{2}\right)\right.}{\sum\left(x_{1}-\bar{x}_{1}\right)^{2}}
$$

Omitted variable bias formula - derivation

$$
\begin{aligned}
& b_{1}^{s}=\frac{\sum\left(x_{i 1}-\bar{x}_{1}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}_{1}\right)^{2}{ }^{2}{ }_{2}}=\frac{\sum\left(x_{1 i}-\bar{x}_{1}\right) y_{i}}{\sum\left(x_{i i}-\bar{x}_{1}\right)^{2}}=\frac{\sum\left(x_{i i}-\bar{x}_{1}\right)\left[b_{b}^{2}+b_{1}^{2} x_{1 i}+b_{2}^{L} x_{2 i}+t_{i}^{t}\right]}{\sum\left(x_{1 i}-\bar{x}_{1}\right)^{2}} \\
& =0^{1}+b_{1}^{L} \frac{\sum\left(x_{i i}^{2}-\bar{x}_{1}\right) x_{1 i}}{\sum\left(x_{1} i-\bar{x}_{1}\right)\left(x_{1 i}-\bar{x}_{1}\right)}+b_{2}^{L} \frac{\sum\left(x_{1 i}-\bar{x}_{1}\right)\left(x_{2 i}-\bar{x}_{2}\right)}{\left\{\left(x_{1 i}-\bar{x}_{1}\right)^{2}\right.}+ \\
& b_{1}^{s}=b_{1}^{2}+b_{2}^{2} b_{21} \\
& \frac{\sum\left(x_{1 i}-\bar{x}_{1}\right) e_{1}^{L}}{\sum\left(x_{i i}-\bar{x}_{1}\right)^{2}} \\
& \varepsilon\left(x_{i i}-\bar{x}_{1}\right) e_{i}^{c} \\
& =\left\langle x_{i} e_{1}^{L}-\sum \bar{y} e_{i}^{c}{ }^{0}\right.
\end{aligned}
$$

4. Why experiments eliminate OVB

(t) $\quad(-) \quad(t)(t)$
(s) $y=b_{0}^{s}+b_{1}^{s} x_{1}+e^{s}$
$b_{1}^{s}=b_{1}^{L}+b_{2}^{L} \frac{b_{21}}{\overline{0}}$,
(c) $y=b_{b}^{2}+b_{1}^{2} x_{1}+b_{2}^{2} x_{2}+e^{2}$

- So there's no OVB if $\mathrm{b}_{21} \stackrel{\text { sen }}{0}$ i.e., $b_{21}=0$ implies $b_{1}{ }^{s}=b_{1}{ }^{L}$

$x_{1}-\#$ of students
.. Which you can guarantee if you design an experiment in which X_{1} is uncorrelated with other X's (omitted variables).
Random assignment of X_{1} is sure to do that.
.. Back to examples to demonstrate

5. R^{2} - How much Variation Explained?

- How much of the variation in Y did we explain with the regression line?

$$
\begin{aligned}
& R^{2}=\frac{\sum_{i=1}^{N}(\hat{y-\bar{y}})^{2}}{\sum_{i=1}^{N}(y-\bar{y})^{2}} \\
& =1-\frac{\sum_{i=1}^{N} e^{2}}{\sum_{i=1}^{N}(y-\bar{y})^{2}}
\end{aligned}
$$

CLAIM: $\sum\left(y_{i}-\bar{y}\right)=\sum\left(\hat{y}_{i}-\bar{y}\right)+\Sigma e^{2}$
total. $=$ on the line + oft the line

Coffee Demand - High R²

E.g. Coffee Demand - high R2

- p is the price of coffee, - q is the quantity (in cups)

```
. reg q p, robust
```

Regression with robust standard errors

Number of obs	$=$	23
F(1, 21)	$=28.20$	
Prob $>$	$=0.0000$	
R-squared	$=0.7349$	
Root MSE	$=4.0549$	

q	Robust					
	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
P	-6. 246766	1.176301	-5.31	0.000	-8.693018	-3.800513
_cons	17.5064	1.822797	9.60	0.000	13.71568	21.29711

Eg. Wage Regression - Low R²

* Lhwage is log(hourly wage), ed is years of education
regress lhwage ed, robust

Regression with robust standard errors

| Number of obs | $=13743$ |
| :--- | ---: | ---: |
| F (1, 13741) | $=1795.40$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.1185$ |
| Root MSE | $=.5083$ |

Robust						
lhwage	Coef.	Std. Err.	t	$p>\|t\|$	[95\% Con	nterval]
ed	. 0704563	. 0016628	42.37	0.000	. 0671969	. 0737156
cons	. 9852746	. 0238393	41.33	0.000	. 9385464	1.032003

