Who Invented Regression?

- 1. Who invented regression?
- 2. Omitted Variables and Multivariate Regression
- 3. Omitted Variable Bias (OVB)
- 4. Experiments vs. OVB
- 5. R²

1. Who invented regression?

- Francis Galton,
 - climatologist,
 - gentleman explorer
 - social scientist

Heredity and Height "regression" to the mean

2. Omitted Variables and Omitted Variable Bias

- What if you left out an important variable?
- Many interesting relationships have more than 2 dimensions

GRE prep course example

Coffee example

Problem set and exam example

• We need more variables.. "multivariate" regression

2. OLS Multivariate regression

The OLS Estimators, Predicted Values, and Residuals in the Multiple Regression Model

The OLS estimators $\hat{\beta}_0$, $\hat{\beta}_1$, ..., $\hat{\beta}_k$ are the values of b_0 , b_1 , ..., b_k that minimize the sum of squared prediction mistakes $\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{1i} - \cdots - b_k X_{ki})^2$. The OLS predicted values \hat{Y}_i and residuals \hat{u}_i are:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \dots + \hat{\beta}_k X_{ki}, i = 1, \dots, n, \text{ and}$$
 (5.11)

$$\hat{u}_i = Y_i - \hat{Y}_i, \ i = 1, \dots, n.$$
 (5.12)

The OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k$ and residual \hat{u}_i are computed from a sample of *n* observations of $(X_{1i}, \ldots, X_{ki}, Y_i), i = 1, \ldots, n$. These are estimators of the unknown true population coefficients $\beta_0, \beta_1, \ldots, \beta_k$ and error term, u_i .

Look familiar? Same criterion with more variables.

2. Properties of OLS estimators in Multivariate Regression

- Consistent
- Unbiased
- Approximately N(.) in large samples
- Same first order conditions (for 2 or more X's)

$$\sum_{i=1}^{N} e_{i} = 0$$
$$\sum_{i=1}^{N} X_{1i} e_{i} = 0$$
$$\sum_{i=1}^{N} X_{2i} e_{i} = 0$$

First order conditions for
multivariate regression

$$\begin{array}{l}
\frac{\partial e^{x}}{\partial b_{0}} = \frac{\partial e^{z}}{\partial e_{i}} \times \frac{\partial e_{i}}{\partial b_{0}} \\
= 2e_{i} (-i)
\end{array}$$

$$\begin{array}{l}
\frac{\partial e^{x}}{\partial b_{0}} = \frac{\partial e^{z}}{\partial b_{0}} \times \frac{\partial e^{x}}{\partial b_{0}} \\
= 2e_{i} (-i)
\end{array}$$

$$\begin{array}{l}
\frac{\partial e^{x}}{\partial b_{0}} = \frac{\partial e^{z}}{\partial b_{0}} \times \frac{\partial e^{x}}{\partial b_{0}} \\
= (Y_{i} - b_{0} - b_{1}Y_{1i} - b_{2}Y_{1i} - b_{3}Y_{3i} - \dots - b_{1}Y_{ki})$$

$$\begin{array}{l}
\frac{\partial e^{x}}{\partial b_{0}} = \frac{\partial e^{z}}{\partial b_{0}} \times \frac{\partial e^{x}}{\partial b_{0}} \\
= (Y_{i} - b_{0} - b_{1}Y_{1i} - b_{2}Y_{1i} - b_{3}Y_{3i} - \dots - b_{1}Y_{ki})$$

$$\begin{array}{l}
\frac{\partial e^{x}}{\partial b_{0}} = \frac{\partial e^{z}}{\partial b_{0}} \times \frac{\partial e^{x}}{\partial b_{0}} \\
= \frac{\partial e^{z}}{\partial b_{0}} \times \frac{\partial e^{z}}{\partial b_{0}} \\
= \frac{\partial e^{z}}{\partial b_{0}} + \frac{\partial e^{z}}{\partial b_{0}} + \frac{\partial e^{z}}{\partial b_{0}} + \dots & \frac{\partial e^{x}}{\partial b_{0}} \\
= -2e_{i} (-i)
\end{array}$$

$$\begin{array}{l}
\frac{\partial e^{x}}{\partial b_{0}} = -2e_{i} (-i)$$

3. Omitted Variable "Bias"

- Short regression $y = b_0^s + b_1^s x_1 + e^s (SR) x_1^s x_2^s$
 - Long regression

$$\Rightarrow y = b_0^{L} + b_1^{L} x_1 + b_2^{L} x_2 + e^{L}$$
 (LR)

Claim:

 $b_1^{s} = b_1^{L} + b_2^{L} b_{21}, \quad \frac{dY}{dx_i} = \frac{\partial Y}{\partial x_1} \Big|_{x_2} + \frac{\partial Y}{\partial x_2} \frac{dx_2}{dx_i}$

 b_{21} is slope of a regression of x_2 on x_1 $b_{21} = \frac{\xi(x_1, -\bar{x}_1)(x_{2\bar{1}}, \bar{x}_2)}{\xi(x_1, -\bar{x}_1)^2}$

Omitted variable bias formula
- derivation

$$b_{1}^{\xi} = \frac{\xi(x_{i}, -\bar{x}_{i})(x_{i}, -\bar{y})}{\xi(x_{i}, -\bar{y}_{i})^{2}} = \frac{\xi(x_{i}, -\bar{x}_{i})y_{i}}{\xi(x_{i}, -\bar{x}_{i})^{2}} = \frac{\xi(x_{i}, -\bar{x}_{i})(x_{i}, -\bar{y}_{i})}{\xi(x_{i}, -\bar{y}_{i})^{2}} = \frac{\xi(x_{i}, -\bar{y}_{i})(x_{i}, -\bar{y}_{i})}{\xi(x_{i}, -\bar{y}_{i})^{2}} = \frac{\xi(x_{i}, -\bar{y}_{i})(x_{i}, -\bar{y}_{i})}{\xi(x_{i}, -\bar{y}_{i})^{2}} + b_{2}^{L} \frac{\xi(x_{i}, -\bar{y}_{i})^{2}}{\xi(x_{i}, -\bar{y}_{i})^{2}} + b_{2}^{L} \frac{\xi(x_{i}, -\bar{y})^{2}}{\xi(x_{i}, -\bar{y})^{2}} + b_{2}^{L} \frac{\xi(x_{i}, -\bar{y})^{2}}{\xi(x_{i}, -\bar{y})^{$$

$$b_{1}^{S} = b_{1}^{L} + b_{2}^{L} b_{21}$$

$$\begin{cases} \xi(X_{ii} - \overline{X}_{i}) e_{i}^{L} \\ = \xi X_{ii} e_{i}^{L} - \xi \overline{X}_{i} e_{i}^{L} \end{cases}$$

4. Why experiments eliminate OVB (s) $Y = b_{0}^{s} + b_{1}^{s} \times t + e^{s}$ (1) Y= b; +b; x, +b; x, +e'

- 1 = 0 • So there's no OVB if $b_{21} = 0$ i.e., $b_{21} = 0$ implies $b_1^{s} = b_1^{L}$ X1- # of students
- .. Which you can guarantee if you design an experiment in which X₁ is uncorrelated with other X's (omitted variables).

Random assignment of X_1 is sure to do that. ... Back to examples to demonstrate

(+) (-) (+) (+)

 $b_1^{s} = b_1^{L} + b_2^{L} b_{21}$,

5. R² – How much Variation Explained?

• How much of the variation in Y did we explain with the regression line?

4

Coffee Demand – High R²

E.g. Coffee Demand – high R²

- p is the price of coffee,
- q is the quantity (in cups)

```
. reg q p, robust
Regression with robust standard errors
Regression with robust standard errors
F( 1, 21) = 28.20
Prob > F = 0.0000
R-squared = 0.7349
Root MSE = 4.0549
Root MSE = 4.0549
Problement
P | Coef. Std. Err. t P>|t| [95% Conf. Interval]
p | -6.246766 1.176301 -5.31 0.000 -8.693018 -3.800513
_cons | 17.5064 1.822797 9.60 0.000 13.71568 21.29711
```

Eg. Wage Regression - Low R²

* Lhwage is log(hourly wage), ed is years of education

regress lhwage ed, robust

Regression with robust standard errors					Number of obs F(1, 13741)	
					Prob > F	= 0.0000
					R-squared	= 0.1185
					Root MSE	= .5083
I		Robust				
lhwage		Std. Err.			[95% Conf.	Interval]
ed	.0704563	.0016628	42.37	0.000	.0671969	.0737156
_cons	.9852746	.0238393	41.33	0.000	.9385464	1.032003