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Abstract

This paper characterizes the dynamics of comparative éalyamnd draws implications from these dynamics
for quantitative analysis. In cross-section data, we distathat the distribution of export capabilities across
industries is approximately log normal. This heavy-tagbdpe is similar across 90 countries and stable over
40 years. Over time, there is mean reversion in export chifyadoid this mean reversion, rather than indicating
degeneracy, is instead consistent with a stationary ssticharocess. We develop a GMM estimator for a
Markov process whose stationary distribution nests manyngonly studied distributions, and show that the
Ornstein-Uhlenbeck (OU) special case closely approxisie dynamics of comparative advantage. The OU
process implies a log normal stationary distribution arsldhdiscrete-time representation that can be estimated
with simple linear regression. Incorporating stochastimparative advantage into the counterfactual analysis
of changes in trade costs, we document the transitory nafyrelicy effects: churning causes targeted trade-
policy changes to decay markedly, with most impacts fullsghated within 10 to 20 years. These findings
speak to the importance of incorporating dynamic compzgatvantage into quantitative trade analysis.
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1 Introduction

Quantitative analysis in international trade has attained new prominenceén@asd Rodriguez-Clare 2014).
Equipped with models that permit computational analysis when estimated or tadibnauch current research
in trade focuses on performing counterfactual exercises to evaluaimpiaets of trade reform, technological
advance, and other shocks on national and global welfare. Worly #isline has deepened our understanding
of the effects of NAFTA and other trade agreements on real incomes @aland Parro 2015), the consequences
of the global financial crisis for trade flows (Eaton, Kortum, Neiman, anth&lis 2016), and the mechanisms
through which trade barriers affect the distribution of income within and éetvnations (Burstein and Vogel
2017), among a rapidly growing set of topics.

Two advances have helped make the quantitative revolution in trade pogaikitdakis, Costinot, and
Rodriguez-Clare 2012). One is the formulation of trade models that gerggevity in bilateral trade and realistic
global specialization patterns, while still characterizing national technabgapabilities parsimoniously (e.g.,
Eaton and Kortum 2002, Melitz 2003). A second advance is the techngighirthat “exact hat algebra” permits
the measurement of discrete differences between actual and coantalrfequilibria (Dekle, Eaton, and Kor-
tum 2007). This approach collapses the time-invariant features of thi@ement—including country-specific
preference parameters, barriers to trade deriving from geogeamhyelated features, and supplies of fixed fac-
tors—into initial-period shares of consumer expenditure on goods andiiper expenditure on inputs. One
can then conduct counterfactual analysis armed with little more than gratiitya¢ss of trade-cost elasticities
(which embody preference or technology parameters) and data on irjthditure shares.

The standard approach in quantitative trade analysis is to allow specificdeaf the environment to vary
selectively—e.g., home bias in consumption (Costinot, Donaldson, Kyle, dhidria¢ 2016), import tariffs
(Caliendo and Parro 2015), or trade imbalances (Eaton, Kortum, NeimdnRamalis 2016). Comparative
advantage, however, is commonly taken as static, even though it is a prioneeyrésponsible for trade in the
first place. This approach leaves relative national-industry prodiiesyn the background to be absorbed into
expenditure shares. Resulting simulations of counterfactual outcoméseaegore conditional on the implicit
assumption that shocks to comparative advantage over relevant timensoae either modest or transitory.
Despite the importance of this premise for modern research in trade, the ligelatks an accepted set of facts
about the dynamics of comparative advantage. In this paper, we utilizeldeouse framework in trade, the
Eaton and Kortum (2002) model of Ricardian comparative advantageh@e&after), to guide our analysis of

comparative-advantage dynamics and to perform counterfactuaise®ithat allow us to evaluate how these

'Also see Burstein and Cravino (2015), Caliendo, Parro, Rossi-leamshnd Sarte (2017), Arkolakis, Costinot, Donaldson, and
Rodriguez-Clare (2018).



dynamic properties affect predictions of common quantitative trade médels.

Our motivations for using EK are that it has strong empirical support isscsection trade data (Chor 2010;
Costinot, Donaldson, and Komunjer 2012) and is a foundational modelantig@tive analysis (e.g., Costinot
and Rodriguez-Clare 2014, Di Giovanni, Levchenko, and Zhang,2D4aliendo and Parro 2015). Additionally,
the EK model presents a framework to recover measures of compardtastage from the gravity equation of
trade. Using data for 133 industries in 90 countries over the period 198206, we estimate gravity equations
year by year to extract an exporter-industry fixed effect, which nreaghe exporting country’s export capability
in an industry in a given year; an importer-industry fixed effect, whighwaes the importing country’s effective
demand for foreign goods in an industry in a given year; and an exgorporter component, which accounts for
bilateral trade frictions (Head and Mayer 2024 the EK model, the exporter-industry fixed effect embodies
national average factor prices and the location parameter of a coumtogactivity distribution for an industry.
By taking the deviation of a country’s log export capability from the globdlistry mean, we obtain a measure of
a country’s absolute advantage in an industry. Further normalizing thie glits country-wide mean removes
the effects of country-level productivity and economy-wide factorgmicWe use export capability under this
double normalization to measure comparative advantage.

After estimating the gravity model, our analysis proceeds in three parts. Wastocument the dynamic
empirical properties of comparative advantage. For this purpose, vilyjairalyze the time series and the cross-
sectional distribution at given moments in time. Strikingly, the cross-industtyitition of absolute advantage
for a country in a given year (national industry export capability redativthe global industry mean) is similar
across countries (except for the intercept). Its shape is approximateholonal with ratios of the mean to the
median of about 11. Importantly, this log-normal shape is stable over‘tifieenporal stability in the distribution
of export advantage makes a second empirical regularity all the morgssogp there is continual and rapid
turnover in countries’ top export industries. Among the goods that atdouthe top 5% of a country’s current
absolute-advantage industries, 60% were not in the top 5% two decaties’eguch churning is consistent with

mean reversion in comparative advantage. In an OLS regression oftjledechange in log export capability on

2Despite our chosen link to EK, the gravity model that we employ is consisignta large class of trade models (Anderson 1979,
Arkolakis, Costinot, and Rodriguez-Clare 2012), of which EK is just exeemple. The Krugman (1980), Heckscher-Ohlin (Deardorff
1998), Melitz (2003), and Anderson and van Wincoop (2003) modedsygeld gravity specifications and give alternative interpretations
of the exporter-industry fixed effects that we use as measures @fiédadvantage in our analysis.

30n decomposing sources of changes in bilateral trade, see alsorGandbétskhoki (2015). We estimate the gravity equation using
both OLS and methods developed by Silva and Tenreyro (2006) and,E&aidum, and Sotelo (2012) to correct for zero bilateral trade
flows.

“In our data, the median share for the top good (out of 133) in a cosritigl exports is 23%, for the top 3 goods is 46%, and for the
top 7 goods is 64%. See Easterly and Reshef (2010) and Freund aol& P2013) on export concentration in low-income countries, and
Hidalgo and Hausmann (2009) and Hausmann and Hidalgo (2011) dinkheetween export concentration and export composition.

50n changes in export diversification over time see Imbs and WacZl8a8), Cadot, Carrére, and Strauss Kahn (2011), and Sutton
and Trefler (2016).



its initial log value and industry-year and country-year fixed effects—Hizkmwe refer as a decay regression—we
estimate mean reversion at the rate of about one-third per decade.

Levchenko and Zhang (2013) also find evidence of mean reversiamniparative advantage, in their case
for 19 aggregate manufacturing sectors. One may be tempted to see maraioress evidence of convergence
in sectoral productivities across countries, possibly indicating the éegeyof comparative advantage. Such an
interpretation, however, would be subject to the Quah (1993, 1996)umitificross-country growth regressions:
mean reversion in a variable alone is uninformative about the dynamics dsitgdtion. Depending on the
stochastic process, mean reversion may alternatively coexist with asgotisn distribution that is degenerate,
non-stationary, or stationary and stable. We find that the latter is the casanfiparative advantage. Stability of
the heavy-tailed distribution of export advantage over time suggests thahfabeing degenerate, a country’s
distribution of comparative advantage is stationary.

In the second part of our analysis, we estimate a stochastic procesamthat@unt for the combination
of a stable cross-industry distribution for national export advantage ahitinning in national industry export
ranks. As a mean-reverting AR(1) specification, our OLS decay seine is a discrete-time analogue of a
continuous-time Ornstein-Uhlenbeck (OU) process, which is the uniqu&dvarocess that has a stationary
normal distribution (Karlin and Taylor 1981). The OU process is gowtetwo parameters, which we recover
from our OLS estimates. Thiissipation rateaegulates the speed at which absolute advantage reverts to its long-
run mean and determines the shape of its stationary distributionnmlogation intensityscales the stochastic
shocks to absolute advantage and determines how frequently indusshieffleealong the distribution. Our esti-
mates of the dissipation rate are similar across countries and industries,aghiaims that the heavy-tailedness
of export advantage is close to universal. To relax the assumption oblogatity, which is implied by the OU
process, we estimate via GMMgeneralized logistic diffusio(GLD) for absolute advantage, which has the OU
process as a limiting case. The GLD adds an additional parameter to estimatgeettyeelasticityallows the
rate of mean reversion to differ from above and from below the meanstHitienary distribution for the GLD is
a generalized gamma distribution, which unifies the extreme-value and gammadamdi@ests many common
distributions (Crooks 2010), including those used to study city size (Galmaixoannides 2004, Luttmer 2007)
and firm size (Sutton 1997, Gabaix 1999, Cabral and Mata 2003).

Our estimation approach targets moments of the stochastic process direcilgplivstatistical insights from
Forman and Sgrensen (2008) to our Markov process and developvataid-series estimator of the three global
parameters of the GLD: the dissipation rate, the innovation intensity, and ¢hg diasticity. Beyond earlier ap-
plications of the Forman and Sgrensen (2008) method, we show that isibleds perform unit-level estimation

in the presence of an aggregate stochastic process and recovayaeigie productivity as a by-product. We



then predict the cross-section distribution of absolute advantage, which iargeted in our estimation. Based
on just the three parameters (for all industries in all countries and in alt)yaghe predicted values match the
individual cross-section distributions with considerable accuracyobkerved churning of industry export ranks
within countries over time is matched by the model-predicted transition probabilétasebn percentiles of the
cross-section distribution, except in the very low tail of the distribution. ExErcise also reveals that while
the data select the GLD over the more restrictive OU form, the two models yiejdsimilar predictions for
period-to-period transition probabilities between quantiles of the distribufierpmrt advantage. Thus, in many
applications, the OU process may be sufficient to quantify export dynamics

In the third part of our analysis, we incorporate our findings on the mhjcg of comparative advantage
into a quantitative EK trade model. We go beyond conventional exact rediralgwhich presumes time-invariant
absolute advantage parameters for each country, and accountdgntmaic evolution of comparative advantage.
Taking as given our parameter estimates, we solve for counterfactuad@bria under a stipulated policy shock
for a large set of simulated comparative advantage realizations. We slhioiw dontext that a country’s self trade
(its expenditure on own production) can be recovered from gravity etgiathe EK model, without requiring
industry-level production data (after standardizing by country-widewt), so that quantitative analysis can be
conducted largely with trade data. To illustrate the procedure, we condunterfactual exercises in which we
permanently reduce the trade costs faced by China’s top-5 exportriegusr top-50 export industries (out of
133) by 10% in 1990 and assess mean simulated outcomes over the ensyagag20The experiments are akin
to selective reductions of trade barriers on imports from China by thef#s¢ world.

For each of the two policy shocks (falling trade barriers for China’s&ap-top-50 industries in 1990),
we consider three scenarios. In one, which follows standard practibe iliterature (e.g., Alvarez and Lucas
2007; Dekle, Eaton, and Kortum 2007), we hold all fundamentals—inajudimparative advantage—fixed at
their 1990 levels and compute a counterfactual equilibrium resulting fronetibage in selected trade costs.
Not surprisingly, China’s real wages and total exports rise (pernif)erin alternative scenarios, we allow
comparative advantage to be stochastic by initializing the series at 1990 denvkthen allowing the series to
evolve over time according to our estimated GLD process. With stochastic catipadvantage, the change in
equilibrium outcomes due to a reduction in trade costs is a random variabtbafacterize the effect of a trade-
cost reduction, we solve for equilibrium outcomes across many simulateslgfatbmparative advantage, where
for each simulation we obtain outcomes, first, without the change in trade aostsext, with the change. We
define the treatment effect, or more precisely the treatment-effect patl,theelmean percentage difference in
outcomes with and without the trade-cost reduction across simulationsatescent in time. Under stochastic

comparative advantage, the mean treatment effect of reduced tradeonastal exports dissipates over time.



Because in expectation China’s initial top export industries steadily losettigenanking—and because heavy
tails in export advantage mean that top industries matter for aggregate ostd@peportionately—trade-cost
reductions for these industries steadily lose their importance in the aggr&gaén China’s top-5 1990 export
industries are treated, the impacts on China’s real wages and total erpoatgerage fully dissipate within
approximately 15 years; when China’s top-50 1990 export industree¢reated, the impact on China’s total
exports on average dissipates by almost 10% after 10 years and by ranr&0%o after 20 years, while some
real wage impact is lasting.

The need to reconcile dynamics with well defined cross-sectional distnitsutidses in many fields. To
study economic growth, for example, Quah develops a kernel estimatoaraiygzes non-parametrically the
transitions of countries between percentiles in the cross-country incotniéwtion; his estimates provide evi-
dence of an evolving bimodal cross-sectional distribution of incomes at@mgountries, beyond conventional
patterns of convergence or divergeficgaking this kernel estimator to study the evolution of revealed compara-
tive advantage, Proudman and Redding (2000) document for thetexji@s-5 countries to the OECD between
1970 and 1993 high degrees of turnover but no marked change in icerttoation of comparative advantage.
Non-parametric estimation can help identify non-monotonicities in transitionsifridiad conditions, but a para-
metric specification is essential for calibrating economic models. We theiiafovduce the GLD as a stochastic
process that generates a unified family of common cross-sectional distnband use the estimates to check
its predicted transitions against non-parametric kernel measures oethesficies: except for deviations in the
lower-most decile of the comparative advantage distribution, the GLD fitsitiams remarkably well.

In macroeconomic labor studies, as another example, Postel-Vinay and 002) estimate the cross
sectional distribution of French wages and back out consistent dyndraiosthe cross-sectional estimates;
Guvenen, Ozkan, and Song (2014) characterize non-parametricalghtint-term transitions in the distribution
of U.S. household incomes and calibrate a stochastic process that isteangigh these moments. In the
literature on firm sizes, Arkolakis (2016) uses data on the cross sedtldrsofirm sales and Brazilian exports
to the United States to calibrate parameters of a stochastic process fordulociivity. Similarly, Gaubert and
Itskhoki (2015) estimate the equilibrium distribution of French firms’ domesiat export sales to calibrate a
consistent stochastic process for productivity; they find that indleswsl-comparative advantage accounts for
70 percent and granular sales shocks at dominant firms for anothpar8ént of the variation in export shares.
Most papers across these fields have in common that they rely on prepaftige stationary distribution to
calibrate a suitable stochastic process. Instead, we directly estimate thassimginocess itself and then use

the predicted stationary distribution to assess the fit of our estimates to tlsese®n. While entry, exit and

5Using Quah’s kernel estimator for regional economics, Overmar@athides (2001) estimate the dynamics of the U.S. city size
distribution and document that U.S cities in a second tier below the top-teneitidsit more size turnover than the largest cities.



switching between macroeconomic regimes complicate the stochastic progesd ber GLD in those lines of
research, extensions of our proposed GMM approach may also peen@stimation of stochastic processes in
other fields.

A broader literature on export dynamics includes reduced-form asalyat characterizes sources of ex-
port growth and parametric approaches that are amenable to simulation. tEstoh#he exact importance of
supply-side exporter components at the industry level differ betwegingareduced-form approaches (Daruich,
Easterly, and Reshef 2016, Egger and Nigai 2016), but have in cortirabexporter components account for a
substantive part of export growth. Lederman, Pienknagura, ajasR2015) point out that export-market exit
and re-entry patterns at the product level are suggestive of a latemacative advantage beyond manifest com-
parative advantage in current exports, especially in small countrigeugh gravity estimation we separate the
supply-side components from both bilateral trade cost and demandasitesf in importer markets, and then
focus on the realized comparative-advantage contribution to expastiyrd=xploring sources of comparative
advantage empirically, Cameron, Proudman, and Redding (2005) tie tagtngo technology and human cap-
ital for the United Kingdom and argue that international trade raises ratg& groductivity growth through
technology transfer but not innovation. Cai, Li, and Santacreu (284nate the rate of cross-border patent
citations to quantify a multi-sector endogenous growth model, in which knowl8dgs across borders are in-
dependent of trade but relative sectoral productivities change tteatitla of labor to innovative activity; they
show in simulations with data on 28 countries and 19 sectors that a reducti@uéndosts leads to a realloca-
tion of innovative activity to sectors with stronger comparative advantagalgnamic gains from trade that are
multiple times larger than the static gains from specialization.

In addition to knowledge flows that are independent of trade in Cai, Li,Sarttacreu (2018), alternative
theoretical approaches model the origins of sectoral comparativatageain production with an instantaneous
flow of knowledge across borders but varying adoption dependinglative local factor supplies (Acemoglu
and Zilibotti 2001), or with exogenous comparative advantage in innovatidnan endogenous home market
effect in demand (Somale 2017), or with sectoral productivity growthreatlts from investments in innovation
by incumbent firms with heterogenous innovation capabilities in the presémnvegying knowledge spillovers
across borders and within and between sectors (Sampson 2017). WHiilsentor models of trade are im-
portant to address comparative advantage, single-sector models thagstwth through learning in the pres-
ence of trade—such as Basu and Weil (1998), Lucas and Moll (2@&t)a and Tonetti (2014) and Sampson
(2016)—explain the flow of knowledge and technology adoption acrosstdes, or—in Perla, Tonetti, and
Waugh (2015)—within countries and across firms, or both—in Buera defield (2016). While we analyze

only the stochastic and stationary properties of comparative advantagestonates of the stable cross-sectional



concentration and the simultaneous churning of comparative advantagssrve as an empirical benchmark to
discipline the study of knowledge flows in the presence of trade.

In Section 2 we present a theoretical motivation for our gravity specifitalitSection 3 we describe the data
and gravity model estimates, and document stationarity and heavy tails irt expantage as well as churning
in top export goods. In Section 4 we introduce a stochastic processahetajes a cross-sectional distribution
consistent with heavy tails and embeds innovations consistent with chuemidgye derive a GMM estimator
for this process. In Section 5 we present estimates and evaluate the #& wiottkel. In Section 6 we turn to

simulations that use our estimates and perform counterfactual policyise®rin Section 7 we conclude.

2 Theoretical Motivation

We use the EK model to motivate our definitions of export capability and atesativantage, and describe our

approach for extracting these measures from the gravity equation ef trad

2.1 Export capability, absolute advantage, and comparativadvantage

In EK, an industry consists of many product varieties. The productiyitf a source-country firm that
manufactures a variety in industiyis determined by a random draw from a Fréchet distribution with CDF
Fg(q) = exp{—(q/gis)*e} for ¢ > 0. The location parameter, determines the typical productivity level of a
firm in the industry while the shape parametarontrols the dispersion in productivity across firms. Consumers,
who have CES preferences over product varieties within an industyyfrom the firm that delivers a variety
at the lowest price. With marginal-cost pricing, a higher productivity dnaakes a firm more likely to be the
lowest-cost supplier of a variety to a given market.

Comparative advantage stems from the location of the industry productisttibdtion, given bylis, which
may vary by country and industry. In a country-industry with a higﬂgrfirms are more likely to have a high
productivity draw, such that in this country-industry a larger fractiofirafis succeeds in exporting to multiple
destinations. Consider the many-industry version of the EK model in Codiinagldson, and Komunjer (2012).

Exports by source countryto destination country in industryi can be written as,

)
(wsTisd/giS)
Xisd = —7 HidEd, 1)

> (weriala,,)

wherews is the unit production cost in source counityr; .4 is the iceberg trade cost betweeandd in industry

i, g 1S the Cobb-Douglas share of industryn destinationd expenditure, ands; is national expenditure in



countryd.” Taking logs of (1), we obtain a gravity equation for bilateral trade
In X;sq = kis +miqg — 01InTigq, (2)

wherek;s = mn(ﬂis/ws) is source country’s log export capabilityin industry s, which is a function of the

country-industry’s efﬁciencyggs) and the country’s unit production cosiJ),2 and

—0
miq = In [MidEd/ > (wcTicd/ Qig) ]

is the log of effective import demand by counttyn industryi, which depends on national expenditure on goods
in the industry divided by an index of the toughness of industry competitioreisahntry?

Looking forward to the estimation, the presence of the importer-industrgt &ectm;, in (2) implies that
export capabilityk; is only identified up to an industry normalization. We therefore re-exprgssrecapability
as the deviation from its global industry meéty.S) Zle kic, whereS is the number of source countries.
Exponentiating this value, we measatesolute advantagef source country in industry: as
exp {kis} (qis/ws)(9

e (A58 k) e {452, mig, ju)'} ©)

Ais

The normalization in (3) differences out both worldwide industry supplydd@mns, such as shocks to global
total factor productivity, and worldwide industry demand conditions, saghariation in the expenditure share
g WhenA;, rises for country-industrys, we say that country’s absolute advantage has increased in industry

1 even though it is only strictly the case that its export capability has risenveslatithe global geometric mean

for 7. In fact, s's export capability ini may have gone up relative to some countries and fallen relative to others.
We use the deviation from the industry geometric mean to define absolutetaglvdrecause it simplifies the

specification of a stochastic process for export capability. Rather feaifging export capability itself, we

’In our simulations we allow for trade imbalances so that= Y, — TB,, whereY; is national income an@B; is the trade balance.

80ur assumption that unit production costs are country specific and not also industry specific allows us to differentthis term
in the country normalization of export advantage that we apply below.pfésence of industry specific production costs would imply
that export capabilityt;s depends on endogenously determined factor prices. Although in tlésaeasould no longer interpret export
capability as a primitive, it would retain an interpretation as a reduced-fieterminant of comparative advantage.

%Any trade model that has a gravity structure will generate exporteistngfixed effects and a reduced-form expression for export
capability ¢;s). In the Armington (1969) model, as applied by Anderson and van V@in¢@003), export capability is a country’s
endowment of a good relative to its remoteness from the rest of the wbrl&rugman (1980), export capability equals the number
of varieties a country produces in an industry times effective industngime production costs. In Melitz (2003), export capability
is analogous to that in Krugman adjusted by the Pareto lower bound fdugieity in the industry. In a Heckscher-Ohlin model
(Deardorff 1998), export capability reflects the relative size of antgis industry based on factor endowments and industry-specific
factor intensities. The common feature of these models is that expabitipis related to a country’s productive potential in an
industry, be it associated with resource supplies, a home-market, effehe distribution of firm-level productivity.



model its deviation from a worldwide industry trend, which frees us frowmirtgato model the global trend
component.
To relate our use of absolute advantafye to conventional approaches, average (2) over destinations and

define (harmonic) log exports from source courntiy industry: at the country’s industry trade costs as
1 & 1 &
lnXisEkis"i‘D;mid_D;QIHTisda (4)

whereD is the number of destination markets. We say that counhgs a comparative advantage over country

¢ in industryi relative to industryj if the following familiar condition holds:

Xis/ X Ais/A;

o bl ©
Intuitively, absolute advantage defines country relative exports, weaeeutralize the distorting effects of trade
costs and proximity to market demand on trade flows, as in (4). In practieegenumber of industries and
countries makes it cumbersome to conduct double comparisons of candistry is to all other industries
and all other countries, as suggested by (5). The definition in (3) simplifisscomparison in thevithin-
industry dimensiorby setting the “comparison country” in industiyto be the global mean across countries
in 4. In the final estimation strategy that we develop in Section 4, we will furthemalize the comparison
in the within-country dimensiolby estimating the absolute advantage of the “comparison industry” for gountr
s, consistent with an arbitrary stochastic country-wide growth processndaning in the industry dimension
and then estimating the most suitable normalization in the country dimension makempitical approach
consistent with both worldwide stochastic industry growth and stochasticahtiountry growth.

Our concept of export capability;; can be related to the deeper origins of comparative advantage by treating
the country-industry specific location parameferas the outcome of an exploration and innovation process. In
Eaton and Kortum (1999, 2010), firms generate new ideas for how tlupecexisting varieties more efficiently.
The efficiencyg of a new idea is drawn from a Pareto distribution with COFy) = (¢/z;,)~?, wherez;, > 0
is the minimum efficiency. New ideas arrive in continuous time according to adojsrocess, with intensity
rate p;s (t). At datet, the number of ideas with at least efficiengys then distributed Poisson with parameter
T;is (t) g%, whereT;, () is the number of previously discovered ideas that are available to predace that

is in turn a function ofz!, and past realizations of;; (¢)."° SettingT;s(t) = ¢, (t)°, this framework yields

Eaton and Kortum (2010) allow costly research effort to affect thes®aisntensity rate and assume that there is “no forgetting”
such that all previously discovered ideas are available to firms. Inioyles sketch, we abstract away from research effort and treat
the stock of knowledge available to firms in a country (relative to the measscountries) as stochastic. Buera and Oberfield (2016)
microfound the innovation process in Eaton and Kortum (2010) by allowgents to transmit ideas within and across borders through



identical predictions for the volume of bilateral trade as in equation (1). eDwirical approach is to treat the
stock of ideas available to a country in an industty (¢)—relative to the global industry mean stock of ideas

(1/5) Zle T (t)—as following a stochastic process.

2.2 Estimating the gravity model

Allowing for measurement error in trade data or unobserved trade @estsan introduce a disturbance term into
the gravity equation (2), converting it into a linear regression model. Withatatalateral industry trade flows
for many importers and exporters, we can obtain estimates of the expaftestiiyn and importer-industry fixed

effects from an OLS regression. The gravity model that we estimate is
In Xjsqr = Kist + Midr + Thgebit + Visars (6)

where we add time subscriptWe include dummy variables to measure exporter-industry#sgaand importer-
industry-yearmn;q; terms. The regressors,; are the determinants of bilateral trade costs, @nd is a residual
that is mean independent of;;. The variables we use to measure trade cogisin (6) are standard gravity
covariates, which do not vary by industy.However, we allow the coefficient vectb, on these variables to
differ by industry and by yedr Absent annual measures of industry-specific trade costs for a,y@armodel
these costs via the interaction of country-level gravity variables and tirderalustry-varying coefficients.

The values we use for empirical analysis are deviations of estimated exjpoltistry-year dummies from

global industry means. The measure of absolute advantage in (3) feesmuntrys in industry: becomes

kQLS

A . = €Xp { ist _ exp {kist} (7)
ist — g - S )
exp {% Z<:1 kz%s} exp {% Zq:l kigt}

wherek2.s is the OLS estimate df,, in (6).

As is well known (Silva and Tenreyro 2006, Head and Mayer 2014) litlear regression model (6) is
inconsistent with the presence of zero trade flows, which are common irralldéa. We recast EK to allow for
zero trade by following Eaton, Kortum, and Sotelo (2012), who posit theaah industry in each country only

a finite number of firms make productivity draws, meaning that in any realizafidime data there may be no

trade. A Fréchet distribution for country-industry productivity emsragan equilibrium outcome in this environment, where the location
parameter of this distribution reflects the current stock of ideas in a gountr

HThese include log distance between the importer and exporter, the timedifée(and time difference squared) between the importer
and exporter, a contiguity dummy, a regional trade agreement duenduymmy for both countries being members of GATT, a common
official language dummy, a common prevalent language dummy, aieblelationship dummy, a common empire dummy, a common
legal origin dummy, and a common currency dummy.

2\We estimate (6) separately by industry and by year. Since in each yaagtiessors are the same across industries for each bilateral
exporter-importer pair, there is no gain to pooling data across industriks gstimation.
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firms from countrys that have sufficiently high productivity to profitably supply destination miadke industry

i. Instead of augmenting the expected log trade fbjin X4 from gravity equation (2) with a disturbance,
Eaton, Kortum, and Sotelo (2012) consider the expected share of gauntthe market for industryin country

d, E [X;sq/ Xiq4), and write this share in terms of a multinomial logit model. This approach reghaesne know
total expenditure in the destination markét,;, including a country’s spending on its own goods. Since total
spending is unobserved in our data, we invoke independence of antlakernatives and specify the dependent

variable as the expectation for the share of source countrymport purchases by destinatidrin industryi:

E (8)

Xisdt _ €xXp {kist - I'/Sdtbit}
Dot Xicdt > c2d €XP {kict — 1. 4bit }

Since estimation of (8) is well approximated the Poisson pseudo-maximum-likelitRiML) gravity model
(Silva and Tenreyro 2006), we re-estimate exporter-industry-yeza &fects by applying PPME3

Our baseline measure of absolute advantage uses regression-tasates of exporter-industry-year fixed
effects, which may be imprecise when a country exports a good to few dstig in a given year. As an
alternative measure of export performance, we use the Balassa) (E¥88led comparative advantage (RCA)

index:

22q Xisdt/ 22 2o Xisdt
ZL Zd XLSdt/ ZL Zg Zd XLcdt ‘

The RCA index does not correct for trade costs or proximity to market ddmi&d uses just raw trade data.

RCA, = 9

Throughout our analysis we will employ OLS and PPML gravity-based oreasof absolute advantage (7)

alongside the Balassa RCA index (9). Reassuringly, our results forrbe tieasures are quite similar.

3 Data and Main Regularities

The data for our analysis are World Trade Flows from Feenstra, Lii3eyg, Ma, and Mo (2005), and their
extension to 2007, which are based on SITC revision 1 industries f@tbaB83 and SITC revision 2 industries
for 1984 to 2007. We create a consistent set of country aggregatessi dlata by maintaining as single units
countries that split up or unite over the sample petfbdo further maintain consistency in the countries present,
we restrict the sample to nations that trade in all years and that exceed a nsiziendreshold, which leaves 116

country unitst®> The switch from SITC revision 1 to revision 2 in 1984 led to the creation of nmamyindustry

13we thank Sebastian Sotelo for estimation code.

These countries are the Czech Republic, the Russian Federation, goslattia. We join East and West Germany, Belgium and
Luxembourg, as well as North and South Yemen.

5This reporting restriction leaves 141 importers (97.7% of world tradd) 189 exporters (98.2% of world trade) and is roughly
equivalent to dropping small countries from the sample. For consisiarterms of country size, we drop countries with fewer than 1
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categories. To maintain a consistent set of SITC industries over the saerud,pve aggregate industries to a
combination of two- and three-digit categorfésThese aggregations and restrictions leave 133 industries in the
data. In an extension of our main analysis, we limit the sample to SITC revisiateXar 1984 forward, so we
can check the sensitivity of our results to industry aggregation by usingligio(60 industries) and three-digit
definitions (225 industries), which bracket the industry definitions thaisecfor the full-sample period.

A further set of country restrictions is required to estimate importer andeqfixed effects. For coefficients
on exporter-industry dummies to be comparable over time, it is important to eetipait destination countries
import a product in all years. Imposing this restriction limits the sample to 46 imgomdrich account for an
average of 92.5% of trade among the 116 country units. In addition, wkthaeexporters ship to overlapping
groups of importing countries. As Abowd, Creecy, and Kramarz (2882)v, such connectedness assures that
all exporter fixed effects are separately identified from importer fixegtesS. This restriction leaves 90 exporters
in the sample that account for an average of 99.4% of trade among thedaBycunits. Using our sample of
90 exporters, 46 importers, and 133 industries, we estimate the gravitiiaeq(& separately by industryand

yeart and then extract absolute advantatye; given by (7). Data on gravity variables are from CEPII.org.

3.1 Stable heavy tails in export advantage

Figure 1 depicts the full distribution of absolute advantage across industries fanurries in 20028 The plots
show the log number of industries for exportethat have at least a given level of absolute advantage intyear
against the corresponding log level of industry absolute advamtadg,. By design, the plots characterize the
cumulative distributions of absolute advantage by country and by yeael{®001, Luttmer 2007). Plots for 28
countries in 1967, 1987 and 2007 are shown in AppeRrdixres Al, A2andA3. While the lower cutoff for

million inhabitants in 1985, reducing the sample to 116 countries (97.4% i wade).

8There are 226 three-digit SITC industries that appear in all yearshvaticount for 97.6% of trade in 1962 and 93.7% in 2007.
Some three-digit industries frequently have their trade reported onlyawtrdigit level (which accounts for the just reported decline
in trade shares for three-digit industries). We aggregate over thesstiie$, creating 143 industry categories that are a mix of SITC
two and three-digit industries. From this group we drop non-standatsirids: postal packages (SITC 911), special transactions (SITC
931), zoo animals and pets (SITC 941), non-monetary coins (SIT; 86d gold bars (SITC 971). We further exclude uranium (SITC
286), coal (SITC 32), petroleum (SITC 33), natural gas (SITCO 341d electrical current (SITC 351), which violate the Abowd, Creecy
and Kramarz (2002) requirement of connectedness for estimatingifidd exporter fixed effects in many years.

In an earlier version of our paper, we estimated OLS gravity equatianfodio-digit SITC revision 2 products (682 industries).
PPML estimates at the four-digit level turn out to be quite noisy, owing to eynexporters in industries at this level of disaggregation
that ship goods to no more than a few importers. Consequently, we exttid on four-digit industries from the analysis.

8In the Online Supplement (Table S1), we show the top two products in tdrms4.. for select countries and years. To remove the
effect of national market size and make values comparable acvostries, we normalize log absolute advantage by its country mean,
which produces a double log difference—a country-industry’s logadiewn from the global industry mean less the country-wide average
across all industries—and captures comparative advantage. Thetnusg of export advantage are enormous. In 2007, comparative
advantage in the top product is over 300 log points in 88 of the 90 expomimgtides. To verify that our measure of export advantage
does not peg obscure industries as top industries, in the Online Suppl@figeme S1) we ploin A;s: against the log of the share of the
industry in national exports (X /(>, X.s¢)). In all years, there is a strongly positive correlation between log absadiventage and
the log industry share of national exports (0.77 in 1967, 0.78 in 19870&83 in 2007).
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Figure 1:Cumulative Probability Distribution of Absolute Advantage for Select Countries in 2007

Brazil China Germany

256 ’
128 128 N 1284 \
64 S 64 X 644

Number of industries
=
3
Number of industries
=
3
i
Number of industries
e
5

84 8 8
4 4 4
21 2 24
14 14 14
o1 1 1 B 160 1000 10600 01 1 1 i) 160 1000 10000 01 1 1 10 160 1000 10600
Absolute Advantage Absolute Advantage Absolute Advantage
—— Data_ —— Lognormal —— Pareto (upper tai) | —— Data__—— Lognomal —— Pareto (upper tail) | ——~ Datla —— Lognormal ——— Pareto (upper tail)
2564 256 256
1284 1284 128
o 4 o 64 , 64
8 3 2
g 32 E 32 g 329
2 2 2
5 16 5 16 5 169
2 2 2
£ 8 E 8 E 8
5 £ £
2 2 2
49 44 4
24 24 2 X
14 14 1
o1 1 1 B 160 1000 10600 n 1 1 1 160 1000 10600 01 1 1 10 160 1000 10600
Absolute Advantage Absolute Advantage Absolute Advantage
— Data —<— Lognormal —— Pareto (upper tail) — Data —<— Lognomal —— Pareto (upper tai) —— Data_—— Lognomal —— Pareto (upper tail) |
256 256
1284 128
64 644
4 "
2 L
32 g 5 %]
2 2
161 5 5 164
2 2
84 £ g s
2 2
44 4
21 24
1 1
o1 1 1 B 160 1000 10600 01 1 1 ) 160 1000 10000 01 1 1 o0 160 1000 10600
Absolute Advantage Absolute Advantage Absolute Advantage
— Data —<— Lognormal ——— Pareto (upper tail) — Data —<— Lognomal —— Pareto (upper tai) — Data —<— Lognormal ——— Pareto (upper tai)
256 256
128 1284
P " o 64
2 2 2
g 32 g 2 32
2 2 2
5 16 5 5 16
2 2 2
£ 8 £ £ 89
5 £ £
2 2 2
4 4
24 2]
11 11
o1 1 B 160 1000 10600 ot 1 1 T 160 1000 10600 o1 1 1 o 160 1000 10600
Absolute Advantage Absolute Advantage Absolute Advantage
[—— pata —— Lognormal  —— Pareto (upper tail | [—— Dpata —— Lognomal —— Pareto (upper tail | [—— Dpata —+— Lognomal —— Pareto (upper tail |

Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@B)2or 133 time-consistent industries in 90 countries in
2005-2007 and CEPIl.org; three-year means of OLS gravity nmessi export capability (log absolute advantage} In A from (6).
Note The graphs show the frequency of industries (the cumulative pildpab— F4 (a) times the total number of industriéds= 133)

on the vertical axis plotted against the level of absolute advantdgech that4,,; > a) on the horizontal axis. Both axes have a log
scale. The fitted Pareto and log normal distributions are based on maxikalimood estimation by country in yeart = 2007 (Pareto

fit to upper five percentiles only).
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absolute advantage shifts right over time, the shape of the cross-sebiiois @markably stable across countries
and years. This shape stability of the cross-sectional absolute adeahshgbution suggests that comparative
advantage is trend stationary, a robust feature that we will revisit wadlging perspectives.

The figures also graph the fit of absolute advantage to a Pareto distrilntioto a log normal distribution
using maximum likelihood, where each distribution is fit separately for eachtopin each year. The Pareto
and the log normal are common choices in the literatures on the distribution ohcitfiren sizes (e.g., Sutton
1997). For the Pareto distribution, the cumulative distribution plot is linear ifodpge whereas the log normal
distribution generates a relationship that is concave to the origin.

The cumulative distribution plots clarify that the empirical distribution of abscdgiieantage is not Pareto.
The log normal, by contrast, fits the data closely. The concavity of the datiptiicate that gains in absolute
advantage fall off progressively more rapidly as one moves up theamtes of absolute advantage, a feature
characteristic of the log normal. The upper tails of the distribution are héargss all countries and years, the
ratio of the mean to the median is 11.1 for absolute advantage based on eliméh&4 S estimates of export
capability, 23.5 for absolute advantage based on PPML estimates, and the Balassa RCA inde’¥. Though
overall the log normal approximates the shape of the distribution for absmlwtntage, for some countries the
number of industries in the upper tail drops too fast, relative to strict lognality. These discrepancies motivate
our specification of a generalized logistic diffusion for absolute advarita§ection 4.

To make sure that our findings are not the byproduct of incompletely mdde#ieo bilateral trade in the
gravity estimation, we also show plots based on PPML estimates of expotiiligpavith similar results. To
verify that the graphed cross-section distributions are not a bypraduspecification error in estimating the
gravity model, we repeat the plots using the Balassa RCA index in 1987 &¥d aQain with similar results.
And to verify that the patterns we uncover are not a consequenceusdtigchggregation, we construct plots at
the three-digit level based on SITC revision 2 data in 1987 and 200@ggét with similar resultg’

Figures A1, A2andA3 in the Appendix provide visual evidence that the heavy-tailed shape digtrdution
of absolute advantage for individual countries are stable over time. BRiamntiate this property of the data, we
pool industry-level measures of comparative advantage acrossriesuand plot the percentiles of this global
distribution in each year, as shown kigure 2 for OLS-based measures of export capability and for Balassa
RCA indexes’! The plots for the 5th/95th, 20th/80th, 30th/70th, and 45th/55th percentilesvidheminor
fluctuation, parallel to the horizontal axis. This is a strong indication thatltigagdistribution of comparative

advantage is stationary. If it were the case that comparative advargggaatated, the percentile lines would

19To compute the reported mean-median ratios, we omit outliers and wsigidisstry counts within country-years.

2Each of these additional sets of results is available in the Online Supplenigumte$S2 and S3 for the PPML estimates, Figures S4
and S5 for the Balassa measure, and Figures S6, S7, S8 and S9tfeo-tlead three-digit industry definitions under SITC revision 2.

2The Online Supplement (Figure S10) shows percentile plots for PPNeebmeasures of export capability.
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Figure 2:Percentiles of Comparative Advantage Distributions by Year
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)Z0r 133 time-consistent industries in 90 countries from
1962-2007; OLS gravity measures of export capability (log absoluarddge): = In A from (6).

Note We obtain log comparative advantage as the residuals from OLS prejecivindustry-year and source country-year effegts (
andJ,.) for (a) OLS gravity measures of log absolute advaniagé;,; and (b) the log Balassa index of revealed comparative advantage

In RCASt = ln(Xist/ Zg XiCt)/(ZL XLSt/ ZL Z§ XLgt).

slope downward from above the mean and upward from below the metire distribution became increasingly
compressed over time, a pattern clearly not in evidence. If, instead, thnibwulisn of comparative advantage
was non-stationary, we would see the upper percentile lines drifting dawalthe lower percentile lines drifting
downward. There is mild drift only in the extreme tails of the distribution,tHeand99*" percentiles, and there
only during the early 2000s, a pattern which stalls or reverses after 2005

Before examining the time series of export advantage in more detail, we eonglietther a log normal
distribution of absolute advantage could be an incidental consequerice gfavity estimation. The exporter-
industry fixed effects are estimated sample parameters, which by the Aamiitalheorem converge to being
normally distributed around their respective population parameters asripessize becomes large. However,
normality of this log export capability estimator does not imply that the crossssat distribution of absolute
advantage becomes log normal. If no other element but the residual rmsgifavity estimation generated log
normality in absolute advantage, then the cross-sectional distribution aluédsidvantage between industries
in a country would be degenerate around a single mean. The data atg tigarvor of non-degeneracy for
the distribution of absolute advantagégure 1 and its counterpartg={gures Al, A2andA3 in the Appendix)

document that industries within a country differ markedly in terms of their mgparecapability??

22The distribution of Balassa revealed comparative advantage is alsoxipptely log normal, which indicates that non-regression
based measures of comparative advantage exhibit similar distribugiatiains.
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Figure 3:Absolute Advantage Transition Probabilities
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)Z0r 133 time-consistent industries in 90 countries from
1962-2007; OLS gravity measures of export capability (log absolutarddge): = In A from (6).

Note The graphs show the percentiles of produgtshat are currently among the top 5% of products, 20 years earlier. dmhpls

is restricted to products (country-industriés)with current absolute advantagg,; in the top five percentilesl(— Fa(A;s:) > .05),
and then grouped by frequencies of percentiles twenty years prierewhe past percentile is— Fa(A;s,t—20) of the same product
(country-industry)s. For the classification of less developed countries (LDC) see the Supplarg Material (Section S.1).

3.2 Churning in export advantage

The stable distribution plots of absolute advantage give an impression of litisowNigy. The strong concavity
in the cross-sectional plots is present in all countries and in all years.th¥e cross-sectional stability masks
considerable turnover in industry rankings of absolute advantaged#tarcross-sectional distribution. Of the
90 exporters, 68 have a change in the top comparative-advantagéryndesveen 1987 and 206?. Over
this period, Canada’s top good switches from sulfur to wheat, Chinara fireworks to telecommunications
equipment, India’s from tea to precious stones, and Poland’s fromyltarfeirniture. Moreover, most new top
products in 2007 were not the number one or two good in 1987 but fromrldewn the ranking.

To characterize churning in industry export advantag&jgure 3 we calculate the fraction of top products
in a given year that were also top products in the past. For each courgacimyear, we identify where in the
distribution the top 5% of absolute-advantage products (in terms £f were 20 years earlier. We then average
across outcomes for the 90 export countries. The fraction of top 5#upt®in a given year that were also top
5% products two decades before ranges from a high of 42.9% in 2002wocd 36.7% in 1997. Averaging over
all years, the share is 40.2%, indicating a 60% chance that a good in théctoptérms of absolute advantage
today was not in the top 5% two decades before. On average, 30.6% obperoducts come from the 85th to

95th percentiles, 15.5% come from the 60th to 85th percentiles, and 11.9%fiemméhe bottom six deciles.

ZEvidence of this churning is seen in the Online Supplement (Table S1).
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Outcomes are similar when we limit the sample to developing economies.
Turnover in top export goods suggests that over time export advadisgjpates—countries’ strong indus-
tries weaken and their weak industries strengthen—as would be congigttentean reversion. We test for mean

reversion in export capability by specifying the AR(1) process
totr10 — kig® = p ki + dit + st + s t410, (10)

wherek?:S is the OLS estimate of log export capability from gravity equation (6). In,(t@ dependent variable
is the ten-year change in export capability and the predictors are the iaitig @f export capability and dummies
for the industry-yead,; and for the country-yea¥,;. We choose a long time difference for export capability—a
full decade—to help isolate systematic variation in country export advasit&patrolling for industry-year fixed
effects converts export capability into a measure of absolute advactageplling additionally for country-year
fixed effects allows us to evaluate the dynamics of comparative advartageoefficienp captures the fraction

of comparative advantage that decays over ten years. The speadifigat{h0) is similar to the productivity
convergence regressions reported in Levchenko and Zhang)(284&®pt that we use trade data to calculate
country advantage in an industry, examine industries at a considerabdydisaggregate level, and include both
manufacturing and nonmanufacturing industries in the analysis. Becausstimate log export capabilify?;°
from the first-stage gravity estimation in (6), we need to correct the stdredeors in (10) for the presence of
generated variables. To do so, we apply a generated-variablettmmrésze Appendix D).

Table 1 presents coefficient estimates for equation (10). The first three colepod results for log export
capability based on OLS, the next three for log export capability bas&PdflL, and the final three for the log
Balassa RCA index. Estimates fprare uniformly negative, consistent with mean reversion in export advan-
tage. We soundly reject the hypothesis that there is no ddégy{ = 0) and also the hypothesis that there is
instantaneous dissipatioi{{: p = —1) at conventional levels of significance. Estimates for the full sample of
countries and industries in columns 1, 4, and 7 are similar in value, equdl.8 when using OLS log export
capability,—0.32 when using PPML log export capability, are).30 when using log RCA. These magnitudes
indicate that over the period of a decade the typical country-industsysgg@oximately one-third of its compar-
ative advantage (or disadvantage) erode. In columns 2, 5, and 8es@np comparable results for the subsample
of developing countries. Decay rates for this group are larger than ¢hielwide averages in columns 1, 4,
and 7, indicating that in less-developed economies mean reversion in @ivg@advantage is more rapid. In
columns 3, 6, and 9, we present results for nonmanufacturing indu&ggsulture, mining, and other primary
commodities). For PPML export capability and Balassa RCA, decay ratésgcmonmanufacturing industries

are similar to those for the full sample of industries.
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Table 1: OLS BTIMATES OF COMPARATIVE ADVANTAGE DECAY, 10-YEAR TRANSITIONS

OLS gravityk PPML gravityk In RCA
All LDC Nonmanf. All Nonmanf. All LDC Nonmanf.
1) (2) 3) 4) (6) ) (8) 9)
Decay Regression Coefficients
Decay ratep -0.349 -0.454 -0.450 -0.320 -0.322 -0.303 -0.342 -0.293
(0.002y**  (0.002)** (0.003)** (0.0002)** (0.0003)** (0.01y**  (0.013)** (0.012)**
Var. of residuals? 2.089 2.408 2.495 2.709 3.123 2.318 2.849 2.561
(0.024y**  (0.026)** (0.042)* (0.013** (0.021)* (0.006y**  (0.009)** (0.009)**
Implied Ornstein-Uhlenbeck (OU) Parameters
Dissipation rate) 0.276 0.292 0.280 0.198 0.173 0.222 0.199 0.195
(0.003)**  (0.003)** (0.005)** (0.0009)** (0.001)** (0.006)**  (0.006)** (0.006)**
Intensity of innovations 0.558 0.644 0.654 0.623 0.670 0.570 0.648 0.596
(0.003)**  (0.004y** (0.006)** (0.001)** (0.002)** (0.005y**  (0.009)** (0.006)**
Observations 324,978 202,010 153,768 320,310 199,724 149,503 324,282,014 153,773
AdjustedR? (within) 0.222 0.267 0.262 0.282 0.266 0.216 0.224 0.214
Yearst 36 36 36 36 36 36 36 36
Industriess 133 133 68 133 68 133 133 68
Source countries 90 62 90 90 90 90 62 90

Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@B)2or 133 time-consistent industries in 90 countries from 1962-20@7GEPII.org; OLS and

PPML gravity measures of export capability (log absolute advantage)n A from (8).

Note Reported figures for ten-year changes. Variables are OLS and.gRiity measures of log absolute advantagel;s; and the log Balassa index of revealed comparative
advantagén RCAs; = In(Xyse/ 35 Xict)/ (30, Xust/ D2, >0 Xuct). OLS estimation of the ten-year decay ratEom

kist+10 — kist = pkist + it + Ost + €is,t410,

conditional on industry-year and source country-year effégtandd,. for the full pooled sample (column 1-2) and subsamples (columns Bh&)implied dissipation rate and

squared innovation intensity® are based on the decay rate estimat:nd the estimated variance of the decay regression resitliml (13). Less developed countries (LDC)
as listed in the Supplementary Material (Section S.1). Nonmanufactugmghandise spans SITC sector codes 0-4. Robust standard elustered at the industry level and
corrected for generated-regressor variation of export capabijliiyr p ands?, applying the multivariate delta method to standard errorgfamdo. * marks significance at ten,

** at five, and"** at one-percent level.



As an additional robustness check, we re-estimate (10) for the per®H2®07 using data from the SITC
revision 2 sample, reported in Appendiable Al. Estimated decay rates are comparable to thoSahie 1. At
either the two-digit level (60 industries) or three-digit level (224 indus}rithe decay-rate estimates based on
PPML export capability and RCA indexes are similar to those for the baselmbioed two- and three-digit level
(133 industries), with estimates based on OLS export capability being sahevdne variable. Because these
additional samples use data for the 1984-2007 period and the originalesasgs the full 1962-2007 period,

these results also serve as a robustness check on the stability in coeéftierates over timé*

3.3 Comparative advantage as a stochastic process

On its own, mean reversion in log export capability is uninformative aboutlyinamics of its distributioR®
While mean reversion is consistent with a stationary cross-sectional digtripit is also consistent with a
non-ergodic distribution or a degenerate comparative advantage tlaises at a long-term mean of one (log
comparative advantage of zero). Degeneracy in comparative adeaistan interpretation that has arisen from
the findings in Levchenko and Zhang (2013) of cross-country agevee in industry productivities. Yet, the
combination of mean reversion rable 1 and temporal stability of the cumulative distribution plotd-igure 1
suggests a balance between random innovations to export capabilityeaddtdrministic dissipation of these
capabilities, a balance characteristic of a stochastic process thattgsraestationary cross-sectional distribution.
The decay regression in (10) is consistent with the discretized versiancommonly studied stochastic
process, the Ornstein-Uhlenbeck (OU) process, which belongs tarttily fof diffusions (Markov processes for
which all realizations of the random variable are continuous functions of dimepast realizations). The OU
process is the unique non-degenerate diffusion that has a statiomarglmhstribution (Karlin and Taylor 1981).
Consider log comparative advantdge@is(t)—export capability normalized by industry-year and country-year

means. Suppose that in continuous time comparative advaﬁta@é follows an OU process given by
. 770.2 R -
din Ais(t) = ==~ In Ais(t) ot + o dwi(t), (11)

WhereWié(t) is a Wiener process that induces stochastic innovations in comparataetage® The parameter

20ur finding that decay rates imply incomplete mean reversion is furtlidemee against absolute advantage being incidental. Sup-
pose that the cumulative distribution plots of log absolute advantage reflestdom variation in export capability around a common
expected value for each country in each year due to measurememningrade data. If this measurement error were classical, all within-
country variation in the exporter-industry fixed effects would be thelr@duid disturbances that were uncorrelated across time. We
would then observe no temporal connection between these distributiamsn @étimating the decay regression in (10), mean reversion
would be complete, yielding a value pfclose to—1. The coefficient estimates are inconsistent with such a pattern.

A case in point is Quah’s (1993, 1996) critique of using cross-couagressions to test for convergence in rates of economic growth.

25To relate equation (11) to trade theory, our specification for the evolufierpmrt advantage is analogous to the equation of motion
for a country’s stock of ideas in the dynamic EK model of Buera andrf@e (2016). In their model, each producer in source country
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n regulates the rate at which comparative advantage reverts to its globaluongean and the parameter
scales time and therefore the Brownian innovatidﬂﬂgf,j(1t).27 Because comparative advantage reflects a double
normalization of export capability, it is natural to consider a global meareaf forln A;,(t). As mentioned,
the OU process has a stationary normal distribution, so its specificatiorgfoploparative advantagﬂflis(t)
implies thatA;,(¢) has a stationary log normal distribution.

In (11), we refer to the parameteias thedissipation rateof comparative advantage because it contributes to
the speed at which Ais(t) would collapse to a degenerate level of zero if there were no stochagiaitons.
The parametrization in (11) implies thatalone determines the shape of the stationary distribution, whise
irrelevant for the cross section. Our parametrization treads a normalized rate of dissipation that measures
the “number” of one-standard deviation shocks that dissipate per utihef We refer tar as theinnovation
intensity It plays a dual roles governs volatility by scaling the Wiener innovations, and helps regulate gszlsp
at which time elapses in the deterministic part of the diffusion.

To connect the continuous-time OU process in (11) to our decay régmeiss(10), we use the fact that
the discrete-time process that results from sampling an OU process atdifi interval A is a Gaussian
first-order autoregressive process with autoregressive parassgterno2A/2} and innovation variancél —
exp{—no?A})/n (Ait-Sahalia, Hansen, and Scheinkman 2010, Example 13). Applying thightrte the first-

difference equation above, we obtain our decay regression:
kis(t + A) — kis(t) = phis(t) + 6i(t) 4 05(t) + €is(t, 1+A), (12)
which implies for the reduced-form decay parameter that
p=—(1—exp{-no®A/2}) <0,

for the unobserved country fixed effe€t(t) = InZs(t+A) — (1+p)In Z,(t), whereZ,(t) is an arbitrary
time-varying country-specific shock, and for the residyal(t,t+A) ~ N (0, (1 — exp{—no?A})/n).?8 An

s draws a productivity from a Pareto distribution, where this productivitploimes multiplicatively with ideas learned from other firms,
either within the same country or in different countries. Learning—oosype to ideas—occurs at an exogenous dsatg) and the
learning of one producer from another depends on the parametenich captures the transmissibility of ideas between producers. In
equilibrium, the distribution of productivity across suppliers within a courgrffréchet, with location parameter equal to a country’s
current stock of ideas. The OU process in (11) emerges from thaiequof motion for the stock of ideas in Buera and Oberfield (2016,
equation (4)) as the limiting case with the transmissibility parametes 1, provided that the learning rate, (¢) is subject to random
shocks and producers in a country only learn from suppliers within time sauntry. In Section 7, we discuss how equation (11) could
be extended to allow for learning across national borders.

2’Among possible parameterizations of the OU process, we choose étajde it is related to our later extension to a generalized
logistic diffusion and clarifies that the parameteis irrelevant for the shape of the cross-sectional distribution. We detilgrspecify
7 ando to be invariant over time, industry and country and in Section 5 assess tinel€ir this restriction.

ZFor theoretical consistency, we state the country fixed effg¢) as a function of the shocK, (¢), which we will formally define as
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OU process wittp € (—1,0) generates a log normal stationary distribution in the cross section, with a shap
parameter of /n and a zero mean.

The reduced-form decay coefficiemin (12) is a function of both the dissipation ratend the intensity of
innovationss and may differ across samples because either or both of those paravaeyerBhis distinction is
important because may vary even if the shape of the distribution of comparative advantagertoehangé?

From OLS estimation of (12), we can obtain estimates ahds? using the solutions,

1—(14p)
y— (§2 P) (13a)
~9 ~~—2
o2 £ W{+p) (13b)

T1-(1+p2 A

wherej is the estimated decay rate astdis the estimated variance of the decay regression residual.

Table 1 shows estimates of ando? implied by the decay regression results, with standard errors obtained
using the multivariate delta methd®l. The estimate of) based on OLS export capability, @28 in column 1
of Table 1, is larger than those based on PPML export capabilit§, 24t in column 4, or the log RCA index, at
0.22 in column 7, implying that the distribution of OLS export capability will be more @wecto the origin. But
estimates generally indicate strong concavity, consistent with the visuaheeidieFigure 1. To gain intuition
aboutn, suppose the intensity of innovations of the Wiener process is unity {). Then a value of) equal to
0.28 means that it will take 5.0 years for half of the initial shock to log comparativaiatage to dissipate (and
16.4 years for 90% of the initial shock to dissipate). Alternatively, @uals).20 it will take 6.9 years for half
of the initial shock to decay (and 23.0 years for 90% of the initial shock ifise)3?

To see how the dissipation rate and the innovation intensity affect the kdoice decay parameter, we
contrast) ando? estimates across subsamples. First, compare the estimataftie subsample of developing
economies in column 2 ofable 1 to that in the full sample of countries in column 1. The larger estimate
of p in the former sample—{0.45 in column 2 versus-0.35 in column 1) implies thateduced-formmean
reversion is relatively rapid in developing countries. However, thislréssilent about how the shape of the
distribution of comparative advantage varies across nations. The similaribeiestimated dissipation rate

1 between the developing-country sample = 0.29) and the full-country sampléy = 0.28) indicates that

a country-wide stochastic trend in equation (14) below and then identifybisesuent GMM estimation.

The estimated value ¢fis sensitive to the time intervah that we define in (12), whereas the estimated valugisfnot. At shorter
time differences—for which there may be relatively more noise in exgagéability—the estimated magnitudemfs larger and therefore
the reduced-form decay parameteis as well. However, the estimated intrinsic speed of mean reveps®unaffected. In unreported
results, we verify these insights by estimating the decay regression ifo¢ttpe differences of 1, 5, 10, and 15 years.

0Details on the construction of standard errorsif@ndo? are available in the Online Supplement (Section S.3).

3ln the absence of shocks and for= 1, log comparative advantage follows the deterministic differential equaltlnnflis(t) =
—(n/2)In A;5(t) dt by (16) and 16’s lemma, with the solutioin A, (t) = In A;5(0) exp{—(n/2)t}. Therefore, the number of years
for a dissipation ofn A, (0) to a remaining leveln A, (T) is T = 2log[In A;s(0)/ In A;s(T)] /7.
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comparative advantage is similarly heavy-tailed in the two groups. The legdaced-form decay rate for
developing countries results from a larger intensity of innovatiens=(0.64 in column 2 versug = 0.56 in
column 1, where this difference is statistically significant). While a one-stdrdieviation shock to comparative
advantage in a developing country dissipates at roughly the same ratendadtustrialized country, because the
magnitude of this shock is larger for the developing country, its obsenteddf decay will be faster.

Second, compare nonmanufacturing industries in column 3 to the full samphelwdtries in column 1.
Whereas the average nonmanufacturing industry differs from thegeeaverall industry in the reduced-form
decay rate (—0.45 in column 3 versus-0.35 in column 1), it shows no difference in the estimated dissipation
raten (0.28 in column 1 versu$.29 in column 3), implying that comparative advantage has comparably heavy
tails inside and outside manufacturing. However, the intensity of innovatiaasarger for nonmanufacturing
(0.65 in column 3 versu$.56 in column 1), due perhaps to higher volatility associated with resource discov
ies. These nuances regarding the shape of and the convergerda®@pard the cross-sectional distribution of
comparative advantage are undetectable when one considers thed-édun decay ratp alone3?

The diffusion model in (11) and its discrete-time analogue in (12) reveaka donnection between heavy
tails in export advantage and churning in industry export ranks. Ramalmovations in absolute advantage cause
industries to change positions in the cross-sectional distribution of cotiveeaalvantage for a country at a rate
of innovation precisely fast enough so that the deterministic dissipationsolte advantage creates a stable,
heavy-tailed distribution of export prowess. We turn next to a genetalizaf the OU process and a more

rigorous characterization of the dynamic behavior.

4 The Diffusion of Comparative Advantage

Over time, the stochastic process must match the cumulative distributibiguire 1. Figures AlthroughA3 in

the Appendix show for more countries, and over time in 1967, 1987 and, 20at the cross-sectional distribu-
tions of absolute advantage shift right for each country, consistenttaétkeries being non-stationary. Yet, the
cross-section distributions preserve their shape across periodgssing that once we adjust absolute advantage
for country-wide productivity growth, the resulting series is stationarg dafine this series to lgeneralized

comparative advantagevritten in continuous time as

(14)

32AppendixTable Al shows results for two- and three-digit industries for the subperiod-2982. Whereas reduced-form decay rates
p increase in magnitude as one goes from the two- to the three-digit levepaliea rates; remain stable. The difference in reduced-
form decay ratep is driven by a higher intensity of innovatioasamong the more narrowly defined three-digit industries. Intuitively,
the magnitude of shocks to comparative advantage is larger in the maggoégated product groupings.
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whereA;;(t) is observed absolute advantage a@h¢t) is an unobserved country-wide stochastic trend (an arbi-
trary country-specific shock to absolute advant&ge).

The appealing simplicity of the OU process notwithstanding, a concern foirieally characterizing com-
parative advantage over time is the strict log-linearity of the deterministic dissipeomponent: by (11) the
change in log comparative advantage depends linearly on the log levehgfazative advantage. In order to
allow the deterministic component to vary with the level of comparative advamtemye generally, we replace
the termin A;,(¢) with a common transformation:

_ 77;"2 Ais (t)¢

din A (1) = 25~ 20— L+ odmi). (15)

By L'Hépital’s rule, the generalized termis(tW —1]/¢ simplifies toln Ais(t) as¢ approaches zerty. Next, we
use (15) to derive a generalized diffusion, which guides the speciiicatid estimation of a stochastic process

for comparative advantage that is less restrictive than the OU.

4.1 Generalized logistic diffusion

Using Ito's lemma, we can restate the diffusion of log comparative advantage ¢lfheaelative change in

comparative advantage with

i 2 A (1)¢ — i
dAu(t) _ o ll—nAwwl dt + o AW (o), (10)

a diffusion for the real paramete(s, o, ¢). The variabIeWié(t) is the Wiener process. The diffusion (16) nests
the OU process ag — 0 (with 7 finite). For the special case gf = 1, the process is known as the stochastic
logistic equation or ordinary logistic diffusion (Leigh 1968). We therefmai(16) ageneralized logistic diffusion
(GLD). While we intentionally stay within the family of diffusions, the GLD allowstostest the OU process
against well-defined alternatives, to evaluate the fit of the model to the aledato characterize the dynamic

implications of the model—all of which we undertake in Sectiof? 5The GLD also allows us to make the

33This measure satisfies the properties of comparative advantage \wh{g), compares country and industry pairs.

34The generalized term is a common choice in many fields. In econométrisknown as the Box-Cox transformation (Box and
Cox 1964), in macroeconomics and decision theory a similar generatizstlog utility is called the isoelastic utility function or CRRA
(constant relative risk aversion) utility (Pratt 1964), and in statisticalvaeics it is referred to as Tsallis entropy (Tsallis 1988).

%Returning to the connection between our approach and the dynamic E&l indliera and Oberfield (2016)—also see footnotes 10
and 26—the specification in (16) is equivalent to their equation of motiothtostock of ideas (Buera and Oberfield 2016, equation (4))
under the assumptions that producers only learn from suppliers withimnidgonal borders and the learning rate (¢) is constantly
growing across industries, countries, and over time but subject to idiosyc shocks. The parametgin (16) is equivalent to the value
£ — 1 in their model, where3 captures the transmissibility of ideas between producers. Our findirgysdisd in Section 5, thatis
small and negative implies that the valuefih the Buera and Oberfield (2016) model is large (but just bdlpas they require).
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deterministic dissipation of comparative advantage depend on the curehbieomparative advantage, so as
to provide additional realism for our simulations in Section 6.

The term(02/2)[1 — n{As(t)® — 1}/¢] in (16) is a deterministic drift that regulates the relative change
in comparative advantagedd, (t)/A;s(t). It involves constant parameters, ¢, ¢) and a level-dependent com-
ponentA;,(t)?, where¢ is the elasticity of the mean reversion with respect to the current level ofuibs
advantage, which we call thdecay elasticity For the OU processp( — 0), the relative change in absolute
advantage is neutral with respect to the current leveb. ¥ 0, then the drift componeniis(t)¢ leads to a faster
than neutral mean reversion from above than from below the mean, indjthéinthe loss of absolute advantage
in a currently strong industry tends to occur more rapidly than the buildupsafiate disadvantage in a currently
weak industry. Conversely, i§ < 0 then mean reversion tends to occur more slowly from above than below the
mean. The parametensando in (16) inherit their interpretations from the OU process in (11) as the @issip
rate and the innovation intensity. As before, the innovation intemsiggulates the speed of convergence to the
stationary distribution but has no effect on its shape. Under the GLD ,isgdtion rate; and decay elasticity

¢ jointly determine the heavy tail of the cross-sectional distribution, to which wertow.

4.2 Cross-sectional distribution of comparative advantag

For real parameters), o, ¢), the GLD (16) has a stationary distribution that is generalized gamma. Welprav
derivation in Appendix A and restrict our discussion here to a descripfitme main properties. The generalized
gamma distribution unifies the gamma and extreme-value distributions, as wellasthers (Crooks 2010), and
has the log normal, the Pareto, and other commonly used distributions ad spdioiting cases. To motivate
our choice of the GLD, and hence of the generalized gamma as the exgsial distribution for comparative
advantage, consider the graphd-igure 1 (as well ag-igures Al throughA3 in the Appendix). These figures
are broadly consistent with comparative advantage being log normal imdbe section. But they also indicate
that for many countries the number of industries drops off more quickly eesiowly in the upper tail than the
log normal distribution can capture. The generalized gamma distribution acatetescsuch kurtosts.

Formally, after arbitrarily much time has passed under the GLD, a crossrsettite data has the generalized

gamma pdf for a realizatiod;, of the random variable comparative advantaige given by:
éa K/7 d)) = AN

1 dis o1 &is ¢
- expl — | — for a;s >0, 17
i 5| (5) p{ <9)} 40

360ur implementation of the generalized gamma uses three parameterStas)i1962). In their analysis of the firm size distribution,
Cabral and Mata (2003) also use a version of the generalized gamtmilaLdiisn.

[ (s

¢
i
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wherel'(-) denotes the gamma function afd », ¢) are real parameters with
0= (¢*n)"">0 and r=1/0°>0.

The generalized gamma nests the ordinary gamma distributiop fer 1 and the log normal or Pareto

distributions whenp tends to zerd® A non-degenerate stationary distribution exists only if 0.3

4.3 Cross-sectional distributions of absolute advantage

Absolute advantage, defined as in (3), is measurable by exportetsingesr fixed effects estimated from the
gravity model in (6). By contrast, generalized comparative advantagdefned in (14), has an unobserved
country-specific stochastic treri, (¢), and lacks a direct empirical counterpart. We therefore need to identify
Z(t) in estimation. Intuitively, identification of(¢) is possible because we can observe the evolving position
of the cumulative absolute advantage distribution over time and, as we now ttgevolving position is the
only difference between the cumulative distributions of absolute and catiygadvantage.

The stationary distribution of absolute advantage is closely related to thatnpfarative advantage under the
maintained assumption that comparative advanifhget) follows a generalized logistic diffusion given by (16).
As stated before, the GLD of comparative advantage implies that the stgtidisaribution of comparative ad-

vantageflis(t) is generalized gamma with the CDF

Fj(aislf,¢,5) =G

whereG|z; k] = v.(k; z)/T'(k) is the ratio of the lower incomplete gamma function and the gamma function. We

show in Appendix A.3 that then the cross-sectional distribution of absotivi@aageA;;(¢) is also generalized

Qs ¢ e

0s(t))

S\We allow ¢ to take any real value (see Crooks 2010), including a strictly negatiez a generalized inverse gamma distribution.
Crooks (2010) shows that this generalized gamma distribution (Amdalissdution) nests the Fréchet, Weibull, gamma, inverse gamma
and numerous other distributions as special cases and yields the nogmalymal and Pareto distributions as limiting cases.

%As ¢ goes to zero, it depends on the limiting behavior.afhether a log normal distribution or a Pareto distribution results (Crooks
2010, Table 1). The parameter restrictipn= 1 clarifies that the generalized gamma distribution results when one takesliaarg
gamma distributed variable and raises it to a finite polyer.

*In the estimation, we will impose the constraint that 0. If n were negative, comparative advantage would collapse over time for
¢ < 0 or explode forp > 0. We do not constrain to be finite.

gamma, but with the CDF

Fa(ais|0s(t), 6, 1) = G
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for the strictly positive parameters
N __ 2 1/¢ ) o A¢
0=(¢2/n)"", 0,(t)=02,(t) and r=1/6°.

These cumulative distribution functions follow from Kotz, Johnson, arldiBeshnan (1994, Ch. 17, Section 8.7).

The cross-section distributions of comparative and absolute advantéereodly in the scale parameter.
For comparative advantage, the scale paranﬁeisaltime invariant; for absolute advantage, the scale parameter
0Z,(t) is time varying but country specific. EmpiricalljZ, () increases over time so that, visually, the plotted
cumulative distributions of absolute advantage shift rightward over timeaf@abee seen from a comparison of
the cumulative distribution plots for 1967, 1987 and 2007 in Appeftixres Al, A2andA3).

This connection between the cumulative distributions of absolute and caipaadvantage allows us to
estimate a GLD for generalized comparative advantage based on datadtuta advantage alone. The mean of
the log of the distribution of absolute advantage is as a function of the mogehpters, enabling us to identify
the trend from the relatioR.y; [In A;(t)] = Eq[ln A;s(t)] — In Z,(t), which follows by definition (14f° As we
show in Appendix B, if comparative advantagg, (¢) follows the GLD (16), then the country specific stochastic

trendZ,(t) can be identified from the first moment of the logarithm of absolute advantigg

(¢*/n) +T"(n/¢*)/T(n/¢”) } 7 (18)

Z,(t) = exp {Est [In Ay (£)] — In J

wherel”(x)/I'(k) is the digamma function. Crucially, we can obtain detrended comparativetageameasures

based on the sample analog of equation (18):

! /
Au(t) = exp { I A 0) = + 37 A1) - LD LT T/ )
j=1

¢ )

(19)

which permits us to use (the observed series of) absolute advatitdggto estimate the GLD of (the unobserved

series) comparative advantage (t).

4.4 A GMM estimator

The generalized logistic diffusion model (16) has no known closed-toamsition density whew # 0. We
therefore cannot evaluate the likelihood of the observed data andtgaerfarm maximum likelihood estimation.

However, an attractive feature of the GLD is that it can be transformedisitochastic process that belongs to the

“0The expectations operat; [-] denotes the conditional expectation for source counaytimet.
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Pearson-Wong family, for which closed-form solutions of the conditionanents do existt As documented
in detail in Appendix C, we construct a consistent GMM estimator based ordhéitional moments of a
transformation of comparative advantage, using results from Forma8@usen (2008).

Formally, if comparative advantag@as(t) follows the generalized logistic diffusion (16) with real parameters

n, 0, ¢ (n > 0), then the transformed variable
Bis(t) = [Ais(t)~" = 1] /¢ (20)

follows the diffusion

R 2

ABiu(t) = ~ 5 [(n = 62) Bis(t) — 8] d + 0\/62Bi(0)? + 26 Bis(t) + 1 dWE()

and belongs to the Pearson-Wong family (see Appendix C.1 for the tenyaAs elaborated in Appendix C.2,
it is then possible to recursively derive theth conditional moment of the transformed procéss(t) and to
calculate a closed form for the conditional moments of the transformedgzatéimet. given the information
set at timet,_;. If we use these conditional moments to forecast,théh power OfBiS(tT) with time ¢,_;
information, the resulting forecast errors are uncorrelated with argtibimof pastéis(tT,l). We can therefore

construct a GMM criterion for estimation. Denote the forecast error with

Uis(m> tT—17tT) = Eis(tﬂ')m —E [Bis(tT)m

Bis(t‘r—l)i| .

This random variable represents an unpredictable innovation im:tte power ofBiS(tT). As a result, the
forecast errot/;s(m, t-_1,t;) is uncorrelated with any measurable transformatioﬁlgttT_l).

A GMM criterion function based on these forecast errors is

gz‘sr(Tl, g, ¢) = [hl (Bis(tT—l))Uis(L tT—17 tT)? ) hM(BiS(tT—l))UiS(M7 tT—la tT)]/a

where eaclhh,, is a row vector of measurable functions specifying instruments fonttie moment condition.
This criterion function has mean zero due to the orthogonality between teeafdrerrors and the tinte_;
instruments. Implementing GMM requires a choice of instruments. Computationaiderations lead us to
choose polynomial vector instruments of the fobm (Bis(t)) = (1, Bis(t), ..., Bis(t)~1) to constructi

instruments for each of the/ moments that we include in our GMM criteridA.In the estimation, we usk = 2

“Ipearson (1895) first studied the family of distributions now called Peatisiributions. Wong (1964) showed that the Pearson
distributions are stationary distributions of a specific class of stochastiegses, for which conditional moments exist in closed form.
*2We work with a suboptimal estimator because the optimal-instrument GMM atstiroonsidered by Forman and Sgrensen (2008)
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instruments and/ = 2 conditional moments, providing us withi - M = 4 equations and overidentifying the
three parameter@), o, ¢). Appendix C.3 gives further details on our GMM routine.

Standard errors of our estimates need to account for the preceding testimBiour absolute advantage
In A;5(t) measures. Newey and McFadden (1994) present a two-step estimatiadrfaticMM, which ac-
counts for generated (second-stage) variables that are predicigdd(ffirst stage). However, our absolute ad-
vantagdn A;,(t) measures are not predicted variables but parameter estimates frontyegaation:In A;,(t)
is a normalized version of the estimated exporter-industry-year fixedtéffeequations (6) and (8). Whereas
the Newey-McFadden results require a constant number of first-stagmpters, the number of parameters we
estimate in our first stage increases with our first-stage sample size. Mordgw/moments in GMM time series
estimation (just as the variables in OLS decay estimation in Section 3.2) invohegigiarameter estimates
from different points in time-tn A;4(¢) andIn A;5(t + A)—and thus require additional treatments of induced
covariation in the estimation. In Appendix D, we extend Newey and McFa{t@&), which leads to an al-
ternative two-step estimation method to compute standard errors. We thereusaltivariate delta method to

calculate standard errors for transformed functions of the estimatechgtes.

5 Estimates

Following the GMM procedure described in Section 4.4, we estimate the dissipate;, innovation intensity
o, and decay elasticity in the diffusion of comparative advantage, subject to an estimated cospeific
stochastic trendZ(¢). The trend allows absolute advantage to be non-stationary but, becéseritmon to
all industries in a country, the trend has no bearing on comparative @geanEstimating the GLD permits us
to test the strong distributional assumptions implicit in the OLS estimation of the tizszi@U process and to

evaluate the fit of the model, with or without the OU restrictions applied.

5.1 GMM results for the Generalized Logistic Diffusion

Table 2 presents our baseline GMM estimation results using moments on five-yeaalatafle move to a five-
year horizon, from the ten-year horizon in the OLS decay regressiorable 1, to allow for a more complete
description of the time-series dynamics of comparative advantage. Rastnass, we also report GMM results
using moments on ten-year intervals (see the Online Supplement, Table S3).r irtfila OLS decay regres-

sions, we use measures of export advantage based on OLS gravitytestiohexport capability, PPML gravity

requires the inversion of a matrix for each observation. Given oue lsagnple, this task is numerically expensive. Also, we found local
minima in our GMM criterion. At the cost of additional computation, we uséoha optimization algorithm to find our estimates#f
n, ando?. Specifically, we use Matlab’s Genetic Algorithm included in the Global Optitinnaloolbox.
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Table 2: GMM ESTIMATES OF COMPARATIVE ADVANTAGE DIFFUSION, 5-YEAR TRANSITIONS

OLS gravityk PPML gravityk InRCA
All LDC Nonmanf. All LDC Nonmanf. All LDC Nonmanf.
&) 2 3 4 ®) (6) Q) ) ©)
Estimated Generalized Logistic Diffusion Parameters
Dissipation ratey 0.256 0.270 0.251 0.180 0.166 0.147 0.212 0.194 0.174
(0.004y**  (0.006f**  (0.005)** (0.006y**  (0.004y** (0.005)** (0.006y**  (0.012y**  (0.008)**
Intensity of innovations 0.739 0.836 0.864 0.767 0.863 0.852 0.713 0.789 0.722
(0.010y**  (0.017y**  (0.017)** (0.037y** (0.03) (0.045) (0.051y**  (0.082y**  (0.042)**
Elasticity of decayp -0.041 -0.071 -0.033 -0.009 -0.002 -0.006 0.006 -0.011 -0.045
(0.017y*  (0.027y** (0.018y (0.035) (0.028) (0.038) (0.053) (0.083) (0.039)
Implied Parameters
Log gen. gamma scale ¢ 121.94 56.50 164.79 900.95 6,122.90 1,425.40 -1,410.50 708.56 99.83
(71526 (32.175f (120.946) (4581.812)  (113520.900)  (11449.450) (14983).32 (7069.866)  (126.167)
Log gen. gamma shape~x  5.017 3.991 5.439 7.788 10.873 8.360 8.641 7.467 4.464
(0.842y**  (0.76)** (1.077y** (8.062) (31.199) (12.926) (17.289) (15.685) (1.714)
Mean/median ratio 8.203 8.203 8.293 16.897 20.469 31.716 10.256 13.872 8625.2
Observations 392,850 250,300 190,630 389,290 248,360 187,390 392,260,300 190,630
Industry-source obd. x S 11,542 7,853 5,845 11,531 7,843 5,835 11,542 7,853 5,845
Root mean sq. forecast error ~ 1.851 2.028 1.958 1.898 2.026 2.013 1.760.930 1.965

Min. GMM obj. (x 1,000)  3.27e-13 7.75e-13 7.37e-13 2.56e-12 7.82e-12 5.53e-12 -B79€.16e-11  1.65e-11

Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@B)2or 133 time-consistent industries in 90 countries from 1962-20@7GEPII.org; OLS and
PPML gravity measures of export capability (log absolute advantage)n A from (8).
Note GMM estimation at the five-year horizon for the generalized logistic difusf comparative advantag@s(t),
2 4 N

din A;,(t) = —%% dt + o dW;i(t)
using absolute advantagg, (t) = Ais(t)Zs(t) based on OLS and PPML gravity measures of export capabifitym (6) and (8), and the Balassa index of revealed comparative
advantageRCA. = (Xist/ Yoo Xict)/ (X, Xust/ Y2, Do Xiot). Parameters), o, ¢ are estimated under the constraihis), Ino® > —oo for the mirror Pearson (1895)
diffusion of (20), while concentrating out country-specific trestigt). The implied parameters are inferredéas- (¢2/n)'/?, k = 1/6%and the mean/median ratio is given
by (A.10). Less developed countries (LDC) as listed in the Supplemeiitaterial (Section S.1). The manufacturing sector spans SITC jiiecddes 5-8, the nonmanufacturing
merchandise sector codes 0-4. Robust errors in parenthesecfedrfor generated-regressor variation of export capali)ity marks significance at tefi} at five, and™* at
one-percent level. Standard errors of transformed and impliedngdeas are computed using the multivariate delta method.



estimates of export capability, and the Balassa RCA index.

The key distinction between the OU process in (11) and the GLD in (15) isrds=pce of the decay elas-
ticity ¢, which allows for asymmetry in mean reversion from above versus beloméaa. Using OLS gravity
estimates of comparative advantage (columns 1 toTabie 2), the GMM estimate o is negative and statisti-
cally significantly different from zero at conventional levels. Negatiuity implies that comparative advantage
reverts to the long-run mean more slowly from above than from below.sinida that randomly churn into the
upper tail of the cross section will tend to retain their comparative advaitadenger than those below the
mean, affording high-advantage industries with opportunities to reacleligyels of comparative advantage as
additional innovations arrive. Thus, we reject log normality in favor ofgbeeralized gamma distribution.

The rejection of log normality, however, is not robust across measticesrparative advantage. Trable 2,
using PPML gravity estimates of comparative advantage (columns 4 to 6) Bathgsa RCA index (columns 7 to
9) produces GMM estimates ¢fthat are not statistically significantly different from zero at conventiteadls
and small in magnitud® These results are an initial indication that imposing log normality on comparative
advantage may not strongly misrepresent reality. A second indication i&Mkt estimates of the dissipation
raten for the GLD inTable 2 are similar to those derived from the OLS decay regressidraiie 1. In both
sets of resultsy takes a value of about one-quarter for OLS gravity comparative éalyanabout one-sixth for
PPML gravity comparative advantage, and about one-fifth for the BalBEA index.

To make precise comparisons of parameter estimates under alternativautiiebassumptions for com-
parative advantage, ifable 3 we report GMM results (for OLS gravity estimates of comparative advajtag
with and without imposing the restriction that= 0. Without this restriction (columns 1, 3, 5 and 7), we allow
comparative advantage to have a generalized gamma distribution; with thisti@stfcolumns 2, 4, 6, and 8),
we impose log normality. Estimates for the dissipation raad the innovation intensity are nearly identical
in each pair of columns. Parameter stability implies that the special case of tipgdokks captures the broad
persistence and overall variability of comparative advantage. Betia@skcay elasticity also determines the
shape of the stationary distribution of the GLD, two processes that hamtdalevalues ofy but distinct val-
ues of¢ will differ in the shape of their generalized gamma distributions. We séalite 3 that the implied
mean/median ratios are modestly higher for columns whéseinrestricted (and found to be small and negative)
versus columns in which is set to zero. The estimated mean-median ratio increasessitbm 7.0 under the
constrained estimation of the OU process$t® — 8.3 under the unconstrained case. The extension to a GLD
thus appears to help explain the export concentration in the upper taihéoted in subsection 3.1 above.

Table 3 also allows us to see the impact on the GMM parameter estimates of altering the tinelioter

43As shown in AppendiXable A2, we obtain similar results for the 1984 to 2007 period when we use two-e@e-tigit SITC revision
2 industries, thus establishing the robustness of the GMM results undexasilterindustry aggregation.
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Table 3: GMM ESTIMATES OF COMPARATIVE ADVANTAGE DIFFUSION, UNRESTRICTED ANDRESTRICTED

OLS gravityk, 5-year transitions OLS, 10-yr. trans.

Full sample LDC exp. Non-manuf. Full sample
=0 6=0 =0 =0
@ 2 3 4 ®) (6) () C)
Estimated Generalized Logistic Diffusion Parameters
Dissipation rate) 0.256 0.263 0.270 0.274 0.251 0.256 0.264 0.265
(0.004)** (0.003)** (0.006)** (0.003y** (0.005)** (0.004)** (0.004)** (0.003y**
Intensity of innovations 0.739 0.736 0.836 0.831 0.864 0.860 0.569 0.568
(0.01)** (0.008)** (0.017y** (0.012)** (0.017y** (0.014y** (0.007y** (0.006)**
Elasticity of decayy -0.041 -0.071 -0.033 -0.029
(0.017y* (0.027y** (0.018Y (0.014y*
Implied Parameters
Log gen. gamma scale 6 121.940 56.502 164.790 202.430
(71.526Y (32.175% (120.946) (131.469)
Log gen. gamma shape « 5.017 3.991 5.439 5.781
(0.842y** (0.76)** (L.077y** (0.968)**
Mean/median ratio 8.203 6.691 8.203 6.222 8.293 7.036 7.281 6.588
Observations 392,850 392,850 250,300 250,300 190,630 190,630 335,8235,820
Industry-source obd. x S 11,542 11,542 7,853 7,853 5,845 5,845 11,213 11,213
Root mean sq. forecast error 1.851 1.726 2.028 1.821 1.958 1.859 1.8761.799
Min. GMM obj. (x 1,000) 3.27e-13  2.87e-12 7.75e-13  2.08e-11 7.37e-13  8.99e-12 -1203e5.92e-12

Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)Z0r 133 time-consistent industries in 90 countries from 1962-2007CEPIl.org; OLS gravity
measures of export capability (log absolute advant&age)in A from (6).

Note GMM estimation at the five-year (ten-year) horizon for the generalizgistic diffusion of comparative advantage, (1),

2 A ($)? — A
_%% dt + o dW/i(t)

using absolute advantagh (t) = Ais(t)Zs(t), unrestricted and restricted o= 0. Parameters, o, ¢ are estimated under the constraihts), In > > —oo for the mirror
Pearson (1895) diffusion of (20), while concentrating out counpeeiic trendsZ, (¢). The implied parameters are inferredéas: (@2 /MY k= 1/67(”and the mean/median
ratio is given by (A.10). Less developed countries (LDC) as listed in thgpementary Material (Section S.1). The manufacturing sector spidits one-digit codes 5-8, the
nonmanufacturing merchandise sector codes 0-4. Robust erqoasantheses (corrected for generated-regressor variation aft@gpabilityk): * marks significance at tefy;
at five, and™** at one-percent level. Standard errors of transformed and implieaneters are computed using the multivariate delta method.

dln Ais(t) =



which moment conditions are based. Columns 7 and 8 show results for daemyervals, which compare to
the preceding columns whose results are for five-year intet¢a¥hereas estimates for the dissipation rate
are nearly identical for the two time horizons, estimates for the innovation ityendecome smaller when
we move from five- to ten-year intervals. Similar to attenuation bias driving et persistence to zero in

auto-regression models, measurement error may deliver larger vélaes ehorter horizon®

5.2 Model fit I. Matching dynamic transition probabilities

We next evaluate the performance of the model by assessing how wellLibegplicates the churning of export
industries in the data. Using estimates based on the five-year horizon élamrc 1 inTable 2, we simulate
trajectories of the GLD. In the simulations, we predict the model's transitiobgtitities over the one-year
horizon across percentiles of the cross-section distribution. We ddkiberese a shorter time horizon for the
simulation than the five-year horizon used for estimation to assess moment®ttat mot target in GMM. We
then compare the model-based predictions to the empirical transition probakilitiessone-year horizon.

Figure 4 shows empirical and model-predicted conditional cumulative distributiortiumecfor annual tran-
sitions of comparative advantage. We select percentiles in the startlyedi0th and 25th percentile, the median,
the 75th, 90th and 95th percentile. The left-most upper parébiare 4, for example, considers industries that
were at the 10th percentile of the cross-section distribution of compaladiventage in the start year; panel
Figure 4c shows industries that were at the median of the distribution in the start yaah darve in a panel
then plots the conditional CDF for the transitions from the given percentilesiistiért year to any percentile of
the cross section one year later. By design, data that are re-sampledamiid distribution would show up
at a 45-degree line, while complete persistence of comparative advambagge make the CDF a step function.
To characterize the data, we use three windows of annual transitionsnee annual transitions during the
years 1964-67 at the beginning of our sample period, the mean anmsaitnas during the years 1984-87 at the
middle of our sample, and the mean annual transitions during the year©0Z0fi4he end of the sample. These
transitions are shown in gray. Our GLD estimation constrains parameterstmbtnt over time, so the model
predicted transition probabilities give rise to a time-invariant CDF shown in blue

The five-year GLD performs well in capturing the annual dynamics of @atwe advantage for most in-
dustries. Agrigure 4 shows, the model-predicted conditional CDF’s tightly fit their empirical caates for
industries at the median and higher percentiles in the start year. It is onlg lowker tail, in particular around

the 10th percentile, that the fit of the GLD model becomes less close, thoeghdtiel predictions are more

*“The Online Supplement (Table S3) presents GMM results for momentsneyets intervals using PPML gravity estimates of
comparative advantage and the Balassa RCA index.
%|n the limit wheno becomes arbitrarily large, the GLD would exhibit no persistence, cgmgto an iid process.
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Figure 4:Diffusion Predicted Annual Transitions
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)Z0r 133 time-consistent industries in 90 countries from
1962-2007 and CEPIIl.org; OLS gravity measures of export dhyaliog absolute advantagé) = In A from (6).

Note Predicted cumulative distribution function of comparative advant&ggﬂ after one year, given the percentile (10th, 25th, me-

dian, 75th, 90th, 95th) of current comparative advant&g,a. Predictions based on simulations using estimates from Table 2 (column 1).
Observed cumulative distribution function from mean annual transitiariagithe periods 1964-1967, 1984-1987, and 2004-2007.

comparable to the data in later than in earlier periods. Country-industries lbottwen tail have low trade vol-
umes, especially in the early sample period, meaning that estimates of the engirisdilon probabilities in the
lower tail are not necessarily precisely estimated and may fluctuate moréroeelFigure 4 indicates that the
dynamic fit becomes relatively close for percentiles at around the 25te#de. The discrepancies in the lowest
tail notwithstanding, for industries with moderate to high trade values, whimbuat for the bulk of global trade,
the model succeeds in matching empirical transition probabilities.

The transition probabilities implied by the GLD also allow us to assess how well desi@ig process
approximates trade dynamics. In a statistical horse race between thestragwmd GLD and the OU process,
the former wins—at least for OLS gravity estimates of comparative advartagcause we reject that= 0 in
Table 3, columns 1 to 3. Yet, estimating the GLD is substantially more burdensome than esgithatisimple
discretized linear form of the OU process. For both empirical and theatetiodeling, it is helpful to understand
how much is lost by imposing log normality on comparative advantage.

Following Figure 4, we simulate trajectories of the GLD, once from estimates witimconstrained and once

from estimates witlp = 0, using coefficients from columns 1 and ZTiable 3. The simulations predict the tran-
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Figure 5:Diffusion Predicted Annual Transitions, Constrained and Unconstained ¢
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)Z0r 133 time-consistent industries in 90 countries from
1962-2007; OLS gravity measures of export capability (log absolutarddge): = In A from (6).

Note Predicted cumulative distribution function of comparative advantage , after one year, given the percentile (10th, 25th, me-

dian, 75th, 90th, 95th) of current comparative advant&gg. Predictions based on simulations using estimates from Table 2 (column 1)
and Table 3 (column 25 = 0). Observed cumulative distribution function from mean annual transitioming the period 2006-2009.

sition probabilities over the one-year horizon across percentiles oftss-section distributiorf-igure 5 shows
the empirical cumulative distribution functions for annual transitions of coaip@ advantage over the full sam-
ple period 1962-2007 (in gray) and compares the empirical distribution twihvenodel-predicted cumulative
distribution functions (light and dark blue), where the fit of the uncomsthGLD model (dark blue) is the same
as depicted ifFigure 4 above. As inFigure 4, each panel ifrigure 5 considers industries that were at a given
percentile of the cross-section distribution of comparative advantage stetttggear. Each curve in a panel shows
the conditional CDF for the transitions from the given percentile in the s&at {0 any percentile of the cross
section one year later. For all start-year percentiles, the model-prediatesitions hardly differ between the
constrained specification (light blue) and the unconstrained specifiddtiok blue). When alternating between
the two models, the shapes of the model-predicted conditional CDF’s grsingitar, even in the upper tail. In
the lower tail, where the GLD produces the least tight dynamic fit, the constt&t specification performs no
worse than the unconstrained GLD. The simple OU process thus appepw tximate the empirical dynamics

of trade in a manner that is very close to the GLD extension.
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5.3 Model fit Il: Matching the empirical cross-section distribution

Next, we evaluate the fit of our GLD by examining how well the GMM parametgmates describe the cross-
section distribution of comparative advantage. We have given the GMM dstimdeavy burden: to fit the
export dynamics across 90 countries for 46 years using only three tiragant parameterg), o, ¢), conditional
on stochastic country-wide growth trends. Because the moments we useNhdstination reflect the time-
series behavior of country-industry exports, our estimator fits the @fiusf comparative advantage but not its
stationary cross-section distribution. We can therefore use the statigereyalized gamma distribution implied
by the GLD to assess how well our model captures the stability of the heavgftaitport advantage observed in
the repeated cross-section data. For this comparison, we use the bdnebktimates fronTable 2in column 1.
(We obtain similar results fap constrained to zero in column 2 ©éble 3.)

For each country in each year, we project the cross-section distriboftioomparative advantage implied
by the parameters estimated from the diffusion and compare it to the empirit@wdion. To implement this
validation exercise, we need a measurelgf in (14), the value of which depends on the unobserved country-
specific stochastic trend,;. This trend accounts for the observed horizontal shifts in distributiongofbsolute
advantage over time, which may result from country-wide technologicarpss, factor accumulation, or other
sources of aggregate growth. In the estimation, we concentratg,pby (18), which allows us to estimate its
realization for each country in each year. Combining observed absalvaatgeA;,; with the stochastic-trend
estimate allows us to compute realized values of comparative advastage

To gauge the goodness of fit of our specification, we first plot our ecapimeasure of absolute advantage
A;s¢+. To do so, following the earlier exercise kigure 1, we rank order the data and plot for each country-
industry observation the level of absolute advantage (in log units) agamdbg number of industries with
absolute advantage greater than this value, which is equal to the log of ouns tinénempirical CDF. To obtain
the simulated distribution resulting from the parameter estimates, we plot the diffbsion’s implied stationary
distribution for the same series. The diffusion implied values are constridotesghch level of4, ., by evaluating
the log of one minus the predicted generalized gamma CDFE at= Aist/Zs. The implied distribution thus
uses the global diffusion parameter estimates (to project the scale ardadtiap CDF) as well as the identified
country-specific trend; (to project the position of the CDF).

Figure 6 compares plots of the actual data against the GLD-implied distributions foctmntries in three
years, 1967, 1987, 200Figures A4, A5andA6 in the Appendix present plots in these years for the 28 coun-
tries that are also shown Figures A1, A2 andA3.46 While Figures Alto A3 depicted Pareto and log normal

“Because the country-specific trefid; shifts the implied stationary distribution horizontally, we clarify fit by cutting tiepidted
part of that single distribution at the lower and upper bounds of the speoifintry’s observed support in a given year.
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Figure 6: Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage
for Select Countries in 1967, 1987 and 2007
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)Z0r 133 time-consistent industries in 90 countries from
1962-2007 and CEPIIl.org; OLS gravity measures of export dhjyaltog absolute advantagé) = In A from (6).

Note The graphs show the observed and the predicted frequency otiiledughe cumulative probability — Fa(a) times the total
number of industrie$ = 133) on the vertical axis plotted against the level of absolute advantéggch thatd;s; > a) on the horizontal
axis. Both axes have a log scale. The predicted frequencies aredraelGMM estimates of the comparative advantage diffusion (15)
in Table 2 (parameterg and ¢ in column 1) and the inferred country-specific stochastic trend commpdne”Z,, from (18), which
horizontally shifts the distributions but does not affect their shape.



maximum likelihood estimates of each individual country’s cross-sectiastllmlition by year (number of pa-
rameters estimated number of countriex number of years), our exercise now is vastly more parsimonious and
based on a fit of the time-series evolution, not the observed cross se¢tigare 6 and Appendixrigures A4
to A6 show that the empirical distributions and the GLD-implied distributions have the sancave shape and
horizontally shifting position. Considering that the shape of the distributipemi#s on only two parameters for
all country-industries and years, the GLD-predicted distributions ananeably accurate. There are important
differences between the actual and predicted plots in only a few couatrééa few years, including China in
1987, Russian Federation in 1987 and 2007, Taiwan in 1987, and Vietm&a@87 and 2007. Three of these
cases involve countries transitioning away from central planning, stiggeperiods of economic disruption.

There are other, minor discrepancies between the empirical distributidrtheGLD-implied distributions
that merit further attention. In 2007 in a handful of countries in East andi&ast Asia—China, Japan, Rep.
Korea, Malaysia, Taiwan, and Vietham—the empirical distributions exhibitdessavity than the generalized
gamma distributions (or the log normal for that matter). These countries shoesmmass in the upper tail of
comparative advantage than they ought, implying that they excel in too manstiias, relative to the norm.
It remains to be investigated whether these differences in fit are assbuwidte conditions in the countries
themselves or with the particular industries in which these countries tend talgeec

The noticeable deviations for some countries in certain years notwithstarsirass countries and for the
full sample period the percentiles of the country-level distributions of coatipe advantage are remarkably
stable for each of our three measures of comparative advantage.tdiilgyssuggests that there is a unifying
global and stationary distribution of comparative advantage. Our estinfates GLD time series imply shape-
parameter values of a generalized gamma CDF, and those predicted shapeters tightly fit the relevant

percentiles of the global comparative-advantage distribdfion.

6 Simulations

Having established the dynamic properties of comparative advantagexiveamsider their relevance for quan-
titative trade analysis. We examine how accounting for these dynamicssatfecresults of a common type of
counterfactual exercise. A distinguishing feature of quantitative tradietads that they allow for shocks that are
asymmetric across industries—the existence of such shocks is in pariaetisates multi-sector trade models
in the first place. If there is churning in comparative advantage, the impastgh industry-specific treatments

may be fleeting. This impermanence arises because prominent industriasethaiated today are likely to be-

4"The Online Supplement (Figure S11) shows percentile plots for OLSPRMIL-based measures of export capability over time and
the fit of our according GLD estimates to those percentiles.
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come less prominent tomorrow, and the heavy tails of the distribution can dictatié iimostly shocks to the
prominent industries that matter in the aggredét&@he long-run effect of a permanent reduction in trade costs

may therefore differ substantially from the short-run effect.

6.1 Counterfactual exercises

As an application, we consider a counterfactual in which China’s toprexptustries in 1990—either its top-5
or top-50 industries—have their export costs reduced permanentlyoyviBich is equivalent to countries in the
rest of the world lowering their barriers on selected imports from Chintndpresence of stochastic comparative
advantage, the change in equilibrium outcomes due to this reduction in traidebe@omes a random variable.
Unlike standard counterfactuals considered in the trade literature (e.gre&land Lucas 2007 and Dekle, Eaton,
and Kortum 2007), we must now solve for equilibrium repeatedly across/ mmianulated potential paths for
comparative advantage in order to characterize the effect of a teadeecluction.

To measure the “typical” impact of a change in trade costs, we compute egavecatment effect, or more
precisely an average path for the treatment effect. Specifically, we Bwltbe counterfactual equilibrium at
each moment in time across 10,000 simulated paths of comparative advantagendwvithout the change in
trade costs. For each simulated path of comparative advantage, we cahgopecent difference in equilibrium
outcomes between the counterfactual with the trade-cost reduction acduhirfactual without the trade-cost
reduction. This percent change measures the effect of the tratidropsconditional on the simulated path of
comparative advantage. Our measure of the average treatment effemn ihe average of this percent change
over many simulations.

To prepare our simulations of comparative-advantage paths for a bdlgnaup of countries and industries,
we need to construct a set of unobserved variables that are noireecause we vary the productivity funda-
mentals of the EK model, consistent with a GLD of comparative advantageen8ipspE presents the procedure
in detail. We need to infer self trade at the level of industries and countr@sipute industry-level expenditure
for our balanced group of importers and exporters. Existing data setstdufer production information at the
level of disaggregated industries. However, we show that a courdnsiry’s share in the country’s total self
trade can be inferred from gravity fixed-effect estimates under the ElentVe can then combine the estimates
of the shares of self trade with the observed country-level self trad¢ lsing UNIDO and WIOD data and

obtain measures of self trade at the level of industries and countries iratigeyiear 1990. To account for a

“The importance of shocks to prominent industries, or firms, for aggesoutcomes has been called “granularity.” While most results
on granularity are stated for power-law distributions, they arguably caer to our case of a log normal cross sectional distribution of
industry capabilities. Gabaix (2011, p. 744) states: “Though the beswghcase of Zipf's law is empirically relevant, and theoretically
clean and appealing, many arguments [about granularity] do nondemeit. ... For instance, if the distribution of firm sizes were
lognormal with a sufficiently high variance, then quantitatively very little watlidnge.”
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few missing gravity fixed-effect estimates, we interpolate and extrapolatddad®e the group of importers and
exporters. To balance global trade, we need a rest-of-world entityditi@dl for which we also have to construct
self trade by industry. We follow the same idea as for the gravity-sampleriesiand construct self trade from
available gravity estimates. We consider the rest of the world a synthetic antityredict a complete hypothet-
ical set of bilateral gravity covariates (distance, common language, corbardar, and so forth) as if the rest of
the world were a single entity. For this purpose, we linearly project expoatebilities, import propensities and
trade costs for the single rest-of-world entity on convex combinations afdbariates for the countries behind
the rest-of-world entity; from those projections we obtain synthetic grawiggdfeffect estimates, form which we
then build self trade shares and ultimately industry-level self trade in thefrésé world as described above.
Given simulated comparative advantages (and the resulting Fréchet topatameters) and given trade cost
changes, we then solve for equilibrium year by year and path by pathgasyaxpenditure shares by industry
and country, and prices. For given realizations of comparative éalyaywe can now characterize the difference
between the initial (in 1990) and the counterfactual equilibrium using thet &ead algebra of Dekle, Eaton, and
Kortum (2007) path by path.

To isolate how churning in comparative advantage influences the effageduction in trade costs, we con-
sider three scenarios for relative industry productivity. The first, wine call thestatic equilibrium represents
the usual exercise in the trade literature. We hold all fundamentals—incladingarative advantage—fixed at
their 1990 levels and compute a counterfactual equilibrium in which the omggehis the reduction in trade
costs. The second scenario, which we describe agdhsition path initializes comparative advantage at 1990
levels, and then allows it to evolve stochastically over time according to our éstin®&.D process. This ex-
ercise permits us to see how churning in comparative advantage affedibragn outcomes over time relative
to the standard counterfactual captured by our static-equilibrium soerf@nally, we consider ateady state
scenario, in which we sample initial conditions from the stationary distributiocoofparative advantage and
then again allow comparative advantage to evolve stochastically over timedancgto our GLD process.

Drawing initial values from the distribution for each simulation eliminates the infleesf initial condi-
tions—that is China’s top export industries in 1990 will not be its top indusivie=n averaging over many draws
from the distribution—and allows us to characterize long-run outcomes irréseipce of stochastic comparative
advantage. We emphasize that this long-run equilibrium is far from statimp@mtive advantage continues to
evolve dynamically. Averaging over many initial draws and the period4ayep change in comparative advan-
tage following each draw causes the average treatment effect to be sabtethough for each simulation the
equilibrium differs period by period, on average there is no variation irtrisggment effect across time. For

all simulations, we hold trade balances fixed at their 1990 levels in orderltddégbe importance of stochastic
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comparative advantage.

Figure 7 shows the average percent change in equilibrium outcomes due to gisadncChinese export
costs in each of these relative productivity scenarios. The first rowslkhe effect on real wages in China, the
second row shows the effect on exports in treated industries, and ghedim shows the effect on aggregate
Chinese exports. The left column shows the impact of a narrow tradeezhsction that affects only the top-5
export industries in 1990, while the right column shows the impact of a hreae-cost reduction that affects
the top-50 industries (out of 133). Within each panel, the black dasheddimesponds to the static equilibrium,
the light blue dash-dot line corresponds to the transition path, and the &adidire corresponds to the steady
state. Whereas static-equilibrium values are constant over time, steéelyadtees appear to be constant because
of the averaging over simulations. The transition path shows the avertig&ga the initial static equilibrium
to the steady-state equilibrium, or how long it takes for the dynamic evolutioaroparative advantage to wash
out the impact of initial conditions on the average treatment effect.

We see immediately that the short-run impact of the trade cost reductiomptasazhby the static equilibrium,
can differ substantially from the long-run impact, as captured by the st&atly scenario. Consider first the
narrow trade-cost reduction in the left column. On impact, China’s regewiges, exports of treated industries
increase, and aggregate exports expand. This initial impact is showbyttk values for the static equilibrium
in all periods and by the values of the transition path in the initial period. Ustdehastic comparative advantage,
the treatment effect on macro outcomes decays over time: in the transitiosqeatario, the real wage and
aggregate exports decline. The effect on both outcomes becomes regligthe long run, convergence to
which is largely complete after 10 years and fully complete after 20 yeargnwhe shock initially arrives, it
is targeted towards high comparative-advantage industries which makéaugegportion of Chinese exports.
However, churning in comparative advantage implies that the reductiordie ¢@sts becomes less targeted over
time. An industry that was initially in the top of the comparative advantage distributith tend to shuffle
to a new position in the distribution, which makes long-run rankings indeperadenitial rankings. It is this
reshuffling that makes the steady-state scenario immune to the treatment, siitiéahdraw of comparative
advantage pays no heed to the industries that topped China’s expgkirigain 1990. Note that, although the
effect is fleeting at the macro level, there is a permanent effect ontsxpithin those industries for which trade
costs were reduced. In fact, the impact on exports within these industinesdasing over time, since the decline
of the real wage implies falling export prices and hence rising exports.

Consider next the broad trade-cost reduction in the right column. Thectnopahe falling trade costs on
treated-industry exports in the second row and on aggregate exporstimridh row are qualitatively similar to

those for the more targeted reduction in industry trade costs in the left collimrimpact on exports by treated
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Figure 7:Simulated Outcomes in China after 10-percent Export Trade Cost Reuction
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industries rises over time, while the macro impact on aggregate exports thssgyar time. By contrast, the
path for the real wage differs sharply between the two experiments. a&beeal-wage impacts decay over time
when the narrow set of industries is treated, real-wage impacts actuajageover time when the broad set
of industries is treated. Next, we unpack the forces behind these riditibandynamics, which are of course

absent in conventional applications of quantitative trade analysis.

6.2 The dissipation of treatment effects in a quantitative tade model

To obtain intuition as to why these treatment effects decay over time, assumeithatsmall country and
therefore has a negligible influence on competitiveness indices and cegagg expenditure in country Let
X,sq be observed expenditure by destination coudton goods from source countgyin industryi in 1990 and
Tisd = Xisd/ Y_ Xica D€ the expenditure share within industryLet a hat on a variable denote the ratio of the
counterfactual outcome and the variable’s observed 1990 level. \Wtedtiie permanent change in trade costs

with 7;.4 = 7;sq: SiNCe it is constant over time. Counterfactual trade flows relative to their iletiels satisfy

Aisdt = —(%ideft)_QAiSt Edm
D4
where A, = gfst is the change in comparative advantage énd = s msd(ﬁsdwst)—%st is the change in
competitiveness in industrywithin destination.

Given that country is small,®;;;, = 1 andE,; = 1, so the counterfactual level of exports at tirris

X0 =2 misa(Fisathst) " AistpiaBa
d#s 1
wherep;q = > Xica/ >, > X.a is the (constant) Cobb-Douglas expenditure share. Using the samplg analo
of the expectations operaty-] = (1/1) ) _,(-) over industries, we can invoke the properties of the covariance

to decompose exports as

/ ~—0 A ~—0 3 ~—0
Xst = Z E [TrisdTisd} E [Aist} + Cov <7Tisd7_i5d7 Aist) Wy HidEd’
d+#s . v
Direct effect on impact Change in direct effect Indirect wage effect

whereCou(-) is the associated covariance operator.
There are two effects that determine the counterfactual level of expidrtsfirst is a direct effect, which is

summarized by the expression in brackets. The product of expectat&gids the brackets captures the direct
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effect on impact and the covariance term captures the change in theafieet over time. The product of expec-
tations in the bracket is a constant because the change in trade ;gp&sconstant over time, and so are initial
expenditure shares;;;; mean comparative advanta@@flist] is also constant since the distribution of compar-
ative advantage is stationary. The covariance term in the brackets isteq&ao on impact because initially
there is no change in productivities and therefore no correlation with thmtgg%i;g. However, industries with
high comparative advantage will tend to lose comparative advantage overTiirase industries will also have
reduced trade costs and high initial expenditure shares. As a resulpvhisance term—the change in the direct
effect—is negative and increasingly negative over time, which implies thaivibiall direct effect is strongest
on impact and decays over time.

The second effect—captured by the term outside of the brackets—is iaecingeneral-equilibrium effect
that operates through the wage. Through the direct effect, a traal@echuction drives up exports and therefore
increases the demand for labor in coundrylf this increase in labor demand is large, the wage will rise. But
a rising wage increases the cost of countmgxports and leads to an offsetting reduction in exports. That is, if
the trade-cost change affects a large portion of the economy, it will leadising wage in general equilibrium,
which will dampen the increase in exports. Over time, as the direct effealydalue to churning, the wage will
tend to fall and this indirect wage effect will tend to raise exports. Thgsamics are such that exports can rise
or fall over time, depending on the relative importance of the direct andeictogffects. Since the change in trade
costs underlying the results in the left columrFadure 7 is narrowly limited to the top-5 industries in 1990, the
indirect wage effect is small. The dynamics are driven primarily by dec#lydrlirect effect due to churning in
comparative advantage. As a result, the impact of the trade-cost raduaioly reflects the direct effect and
decays over time as comparative advantage churns.

By contrast, the right column dfigure 7 (for the broad reduction in trade costs that affects the top-50
industries in 1990) shows how outcomes can change when the secondiaggt effect on the wage is large.
This shock impacts a large portion of industries, so it has a non-negligibledbdvage effect. The implied
increase in demand for labor within China drives up the wage and, beecausany industries are treated,
continues to do so even as churning in comparative advantage altersripesition of top industries. Although
rising wages imply rising prices, because China is an open economy witlgeegage self-trade share less than
one, the net result is an increase in the real wage. The real wagenisegact, and rises further over time.
Aggregate exports therefore increase on impact and then decay by &% in the long run. Over time, the
combination of decay in the direct effect (due to churning in comparativargage) and the lack of decay in the
offsetting indirect wage effect creates a hump shape in the time path afgedgrexports.

This conceptual exercise demonstrates that our main conclusion—nameethigheffects from permanent
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changes in trade costs can be fleeting—is robust to the industry-widdthbfahe change in trade costs, despite
the presence of general equilibrium effects that generate rich trangjtiamics. These transition dynamics are
missing from standard quantitative trade analysis, as is a mechanism thdt gemerate differences between
impacts in the static equilibrium.

In summary, our simulation results show that conclusions from standardertactual exercises in trade
can change significantly once we account for randomness in comgaaattantage. The effect of an uneven
reduction in industry trade costs—which describes many trade liberalizgiisades—can be transitory given
the perpetual churning in comparative advantage. When performingeréactual analysis in quantitative trade

models, it is therefore crucial to account for the dynamics of comparativantage.

7 Conclusion

Quantitative analysis of global general equilibrium models is a vibrantanessearch, due in part to the success
of the Eaton and Kortum (2002) model of Ricardian trade. The primitivesdrEtk model are the parameters
of the distribution for industry productivity, which pin down country exjpeaipabilities and hence comparative
advantage. Despite the importance of these primitives in driving internati@td, much current analysis of
changes in trade policy leaves comparative advantage in the backdrparediting it as static. Our goals in this
paper are, first, to characterize the dynamic empirical properties of catiygeadvantage; second, to show that
these properties are consistent with a unifying family of estimable stochagtiegses; and third, to demonstrate
how the stochastic nature of comparative advantage materially affects uhtedactual policy exercises that
have become central to quantitative trade modeling.

Our analysis starts from two strong empirical regularities in trade that etsst®have studied mostly in
isolation. Many papers have noted the tendency for countries to coateettieir exports in a relatively small
number of industries. Our first contribution is to show that this concentratises from a heavy-tailed distri-
bution of industry export capability that is approximately log normal and wisbsipe is stable across countries,
industries, and time. Likewise, the trade literature has detected in variagus #tendency for mean reversion
in national industry productivities. Our second contribution is to establigmikan reversion in export capabil-
ity, rather than indicative of convergence in productivities and degegen comparative advantage, is instead
consistent with a stationary stochastic process, whose propertiesrangocoacross borders and industries. In
literatures on the growth of cities and the growth of firms, economists hadestsehastic processes to study the
determinants of the long-run distribution of sizes. Our third contribution is ¥eldp an analogous empirical
framework for identifying the parameters that govern the stationary distiibaf export capability. One result of

this analysis is that log normality offers a reasonable approximation andratéidone version for the analogous
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stochastic process can be estimated with straightforward linear regresgsfonrth contribution is to quantify
the time horizon at which policy or cost shocks to a country’s exports @isigven substantive interventions
in targeted industries become largely irrelevant for export flows in a mdteedecade. Allowing comparative
advantage to be stochastic differs strongly from most current apmesanc the literature. Our fifth contribution
is to show that when one incorporates stochastic comparative advantagtaindard counterfactual exercises
the impact of industry-specific treatments (such as changes in trade palidgtbr some industries over others)
can be fleeting, with initial impacts decaying substantially within 10 to 20 years.

In the stochastic process that we estimate, country export capabilitieg @vdbpendently across industries,
subject to controls for aggregate country growth, and independemtigsacountries, subject to controls for global
industry growth. Recent work in trade theory examines how innovationsouptivity are transmitted across
space and time. Our analysis can be extended straightforwardly to allsudbrinteractions. The Ornstein-
Uhlenbeck process generalizes to a multivariate diffusion, in which sttichanovations to an industry in one
country also affect related industries in the same economy or the same yniuatnation’s trading partners.
Because of the linearity of the discretized OU process, it is feasible to estsuelteinteractions while still
identifying the parameters that characterize the stationary distribution ofarathye advantage. An obvious

next step is to model diffusions that allow for such intersectoral and iatiermal productivity linkages.
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Appendix

A Generalized Logistic Diffusion

The principal insights of Subsections 4.1 and 4.3 are based on the folloglatgpnship.

Lemma 1. The generalized logistic diffusion

T dt + o diW (1) (A.1)

dA;(t) Uj [1 o Ais(?; —1

for real parametergy, o, ¢) has a stationary distribution that is generalized gamma with a probability density
I A(&is}a K, ¢) given by(17) and the real parameters

6= (0*n)"">0 and x=1/6°>0.

A non-degenerate stationary distribution exists only if 0.

Equation (A.1) restates equation (16) from the text.

A.1 Derivation of the generalized logistic diffusion

We now establish Lemma 1. As a starting point, note that the ordinary gamma distrilstknown to be the sta-
tionary distribution of the stochastic logistic equation (Leigh 1968). We gdizerthis ordinary logistic diffusion
to yield a generalized gamma distribution as the stationary distribution in the exigss Our (three-parameter)
generalization of the gamma distribution relates back to the ordinary (twoagtes) gamma distribution through
a power transformation. Take an ordinary gamma distributed random haiatvith two parameters, x > 0
and the density function

fX(w|§, K) = 1“(1”);_ (%)H_l exp{—%} for z>0. (A.2)

Then the transformed Yariab.l/é: X1/¢ has a generalized gamma distribution under the accompanying param-
eter transformatiol = /¢ because

fa(ald,r,0) = ZPr(A<a)=2Pr(X"? <a)
= ZPr(X <a®) = fx(a®|0 k) - |pa®!|
el () e ) -l () e {- ()
== - - X — = —— |= = X — | = s
T(x) 40| \ go PU %S ~ T |a]\5 P17 \0

which is equivalent to the generalized gamma probability density function W®rel'(-) denotes the gamma
function andd, «, ¢ are the three parameters of the generalized gamma distribution in our cé@ntext ¢an be
arbitrarily close to zero).

The ordinary logistic diffusion of a variabl& follows the stochastic process

dX () = [a— BX ()] X(¢)dt + o X(t)dW(t)  for X(t) >0, (A.3)
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wherea, 3,6 > 0 are parameterg, denotes timeJ¥ (t) is the Wiener process (standard Brownian motion)

and a reflection ensures th&t(¢t) > 0. The stationary distribution of this process (the limiting distribution of
X = X(00) = limy_,00 X(2)) is known to be an ordinary gamma distribution (Leigh 1968):

;\ () e {2} for

fX(x|é, K) = F(ln)
as in (A.2) with

x>0, (A.4)

= a%/(28) >0, (A.5)

2a/5%* —1>0
under the restrictiom > 2/2. The ordinary logistic diffusion can also be expressed in terms of infinitésima
parameters as

dX (t) = pux (X (1)) dt + ox (X (t))dW(t)  for X(t) >0,
px(X)=(a—FX)X and o%(X)=35>X2

Now consider the diffusion of the transformed variabl¢) = X (¢)'/¢. In general, a strictly monotone
transformationrd = g(X) of a diffusion X is a diffusion with infinitesimal parameters

pa(A) = S04 (X)g"(X) + ux(X)d/(X) and o%(A) = 0% (X)g/(X)?

(see Karlin and Taylor 1981, Section 15.2, Theorem 2.1). Applying thigigé result to the specific monotone
transformationd = X'/¢ yields our specification of generalized logistic diffusion

dA(t) =

[a - 5A(t)ﬂ A(t) dt + g A(t) dW (t)
with the parameters

(A.6)
1—¢a? a] 6 o

a=|——+—|, =—, o= —. A7

e =5 s A1
The term—ﬁfl(tW now involves a power function and the parameters of the generalized ladjitision col-
lapse to the parameters of the ordinary IogiAstic diffusiongfes 1
We infer that the stationary distribution df(co) = lim;_,~, A(t) is a generalized gamma distribution by (17)
and by the derivations above:

) o\ PRl N
faalt, k,¢) = F(lﬁ) (g <Z> exp {— <g) } for z >0,
with
6 = 0" =1[c%/(28)]"* = [90°/(28)]"/¢ > 0,
K = 2a/5*—1=[2a/c*—1]/¢p >0
by (A.5) and (A.7).

(A.8)
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A.2 Existence and parametrization

Existence of a non-degenerate stationary distribution @jth > 0 circumscribes how the parameters of the
diffusion o, 3, ¢ and¢$ must relate to each other. A strictly positi#émplies that sig3) = sign(¢). Second, a
strictly positiver implies that sigic— o2 /2) = sign(¢). The latter condition is closely related to the requirement
that comparative advantage neither collapse nor explode. If the legétélaof dissipationy is strictly positive
(¢ > 0) then, for the stationary probability densify,(-) to be non-degenerate, the offsetting constant drift
parametery needs to strictly exceed the variance of the stochastic innovatiens: (¢2/2, cc). Otherwise
absolute advantage would “collapse” as arbitrarily much time passes, implylogtites die out. Iy < 0 then
the offsetting positive drift parameterneeds to be strictly less than the variance of the stochastic innovations:
a € (—o00,0?/2); otherwise absolute advantage would explode.
Our preferred parametrization of the generalized logistic diffusion is (l.Lemma 1 for real parameters
n,0,¢. That parametrization can be related back to the parameters in (A.6) by settingo?/2) + 3 and
B = no?/(2¢). In this simplified formulation, the no-collapse and no-explosion conditioasatisfied for the
single restriction tha > 0. The reformulation in (A.1) also clarifies that one can view our generalizatithe
drift term [A;5(¢)? — 1]/ as a conventional Box-Cox transformationd, (¢) to model the level dependence.
The non-degenerate stationary distribution accommodates both the log rowithle Pareto distribution as
limiting cases. Whemw — 0, botha and S tend to infinity; if 3 did not tend to infinity, a drifting random walk
would result in the limit. A stationary log normal distribution requires that — 1, soa — oo at the same
rate with — oo as¢ — 0. For existence of a non-degenerate stationary distribution, in the bericloase
with ¢ — 0 we needl/a — 0 for the limiting distribution to be log normal. In contrast, a stationary Pareto
distribution with shape parametewould require thaty = (2—p)o?/2 as¢ — 0 (see e.g. Crooks 2010, Table 1;
proofs are also available from the authors upon request).

A.3 From comparative to absolute advantage

If comparative advantagéis(t) follows a generalized logistic diffusion by (A.1), then the stationary distriloutio
of comparative advantage is a generalized gamma distribution with densityr(diﬁ)arametelé;: (¢2 / n) Ve s
0andx = 1/6% > 0 by Lemma 1. From this stationary distribution of comparative advantageve can infer
the cross-sectional distribution of absolute advantagét). Note that, by definition (14), absolute advantage is
not necessarily stationary because the stochastic #eftgl may not be stationary.

Absolute advantage is related to comparative advantage through a cauidérgtochastic trend by defini-
tion (14). Plugging this definition into (17), we can infer that the probabilitysity of absolute advantage must

be proportional to
o pr—1 o ¢
é,Zst,, x | —= e — =
(0:1:0) <ezs<t)> Xp <ezs(t)>

It follows from this proportionaljty that the probability density of absolute axdage must be a generalized
gamma distribution witt¥,(¢) = 6Z,(t) > 0, which is time varying because of the stochastic tréi(t). We
summarize these results in a lemma.

fA(ais

Lemma 2. If comparative advantagéis(t) follows a generalized logistic diffusigi\.1) with real parameters
n, o, ¢ (n > 0), then the cross-sectional distribution of absolute advantagét) is generalized gamma with the

CDF .
Qs .
<95(t>> ’”] A9

FA(ais‘HS(t)» §Z5, ’{) =G
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for the strictly positive parameters
0= (0*n)"", 0.(t)=02t) and x=1/6°.

Proof. Derivations above establish that the cross-sectional distribution ofudabsadvantage is generalized
gamma. The cumulative distribution function follows from Kotz, Johnson, Baldkrishnan (1994, Ch. 17,
Section 8.7). O

Lemma 2 establishes that the diffusion and cross-sectional distributiorsolusd advantage inherit all rel-
evant properties of comparative advantage after adjustment forlzitrday) country-level growth trend. Equa-
tion (A.9) predicts cumulative probability distributions of absolute advantagk as those ifrigure 1 (and in
AppendixFigures Al, A2andA3). The lower cutoff for absolute advantage shifts right over time, buthbpes
of the cross sectional CDF is stable across countries and years. Wewtilingnt in Appendix B how the trend
can be recovered from estimation of the comparative-advantage diffusiog absolute advantage data.

A.4 Moments and the mean-median ratio

As a prelude to the GMM estimation, theth raw moments of the ratias, /6,(t) anddis/é are

(CIRIGIR

0s(t) 0 (k)

and identical because bdjidy /0, (¢)]'/¢ and|a;s/0]'/¢ have the same standard gamma distribution (Kotz, John-
son, and Balakrishnan 1994, Ch. 17, Section 8.7). As a consequieacaw moments of absolute advantage

are scaled by a country-specific time-varying facto(t)” whereas the raw moments of comparative advantage
are constant over time if comparative advantage follows a diffusion witle twastant parametef&, «, ¢):

PL(r+7/¢)

E [(ais)"| Zs(t)'] = Zs(t)" - E [(@3s)"] = Zs(t)" - 0 T

By Lemma 2, the median of comparative advantagesis= 0(G~![.5; n])1{¢. A measure of concentration
in the right tail is the ratio of the mean and the median, which is independérdrud equals

I'(k+1/9)/T(x)

Mean/median ratio= .
(G~ 1[5; m])1/0

(A.10)

We report this measure of concentration to characterize the curvattire stiationary distribution.

B Identification of the Generalized Logistic Diffusion

Our implementation of the Generalized Logistic Diffusion requires not onlytifieation of the three time-
invariant real paramete«s), o, »)—or equivalently(6, x, ¢)—, but also identification of a stochastic trend: the
country-specific time-varying factdf(¢).

Proposition 1. If comparative advantagd; (t) follows the generalized logistic diffusig¢A.1) with real param-
etersn, o, ¢ (n > 0), then the country specific stochastic trefig{¢) is recovered from the first moment of the
logarithm of absolute advantage as:

2,0 = e { i ,0] - MO OISV ) 610
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wherel” (k) /T (k) is the digamma function.

Equation (B.11) restates equation (18) from the text. For a proof ofdBitign 1, first consider a random
variable X that has a gamma distribution with scale paramét@nd shape parameter For any powemn € N
we have

E[ln(X™)] = OOln(w”)Ll (E)H_l exp{—f}dx

wherel”(x)/I'(k) is the digamma function.
From Appendix A (Lemma 1) we know that raising a gamma random variable tpaWer1/¢ creates a
generalized gamma random variab{é/? with shape parametersand¢ and scale parametét/¢. Therefore

In(0) + I' (k) /T ()
¢
This result allows us to identify the country specific stochastic tr€n@).

ForAis(t) has a generalized gamma distribution acriofes any givens and¢ with shape parametetsand
n/¢? and scale parametép?/n)'/¢ we have

B [In A ()] = 2L P'(£/¢2)/F(77/¢2)

From definition (14) andd;,(t) = Ais(t)/Zs(t) we can infer tha[In Ais(t)] = Eglln Ag(t)] — In Zy(2).
Re-arranging and using the previous resultii@in A;s(¢) | s, t] yields

In(¢?/n) +T"(n/¢*)/T(n/$?) }
¢

E [In(x"/%)] = ;E In X] =

Zs(t) = exp {Est[ln Ais(t)] —

as stated in the text.

C GMM Estimation of the Associated Pearson-Wong Process

GMM estimation of the Generalized Logistic Diffusion requires conditional mdsyevhich we obtain from a
Pearson-Wong transformation.

Proposition 2. If comparative advantagd,, (¢) follows the generalized logistic diffusigA.1) with real param-
etersn, o, ¢ (n > 0), then the following two statements are true.

e The transformed variable
Bis(t) = [Ais(t) ™ = 1]/¢ (C.12)



follows the diffusion

0.2

ABis(t) = = | (n— ¢) Bis(t) — 0| dt + o\ 02 Bis (1) + 2081, (t) + 1dWE (2)

and belongs to the Pearson-Wong family.

e For any timet, time intervalA > 0, and integern < M < n/¢?, then-th conditional moment of the
transformed procesB;,(t) satisfies the recursive condition:

E | Bis(t + A)"

Bis(t) = b} =exp{—a,A} i Tn,mb™ Z Tn,mE { is(t+ A)" ’Bw = b} ,
m=0

(C.13)
for coefficients:,, andr,, ,,, (n,m = 1,..., M) as defined below.

Equation (C.12) restates equation (20) in the text.

C.1 Derivation of the Pearson-Wong transform

To establish Proposition 2, first consider a random variableith a standard logistic diffusion (the = 1 case).

The Bernoulli transformation /X maps the standard logistic diffusion into the Pearson-Wong family (see e.qg.
Prajneshu 1980, Dennis 1989). Similar to our derivation of the geneddbggstic diffusion in Appendix A, we
follow up on that transformation with an additional Box-Cox transformatmmayplszs( ) = [Ais(t)"?—1]/¢

to comparative advantage, as stated in (C.12). Dé}ﬁ@fe(t = —WA( ). ThenA:* = ¢Bi,(t) + 1 and, by
Ito’s lemma,

dgis(t) _ d(‘zlw(t)d)_l>

— A0 () + 0+ DAL (A (0)?
S (1—17‘4“(t)¢‘1) Aig(t) 6t + 0 Asy (1) WA ()
+ 56+ DA 0% A (1)
_ '<1+’7);1 (t)_¢n] Gt — o Aoy (8 AWA(E) + Lo (6 + 1) Ass(6)—
2 d) 18 ¢ 18 18
o? A
= -2 [(2-6) dnoe - 2] @ sdawin
a2 [(n B
= -3 (¢_¢> (¢Bis(t) + 1) ]dt+a(¢Bw()+1)dW (t)
- _"22 :(77_¢2) Bis(t) —gzb] dt+0\/¢23is(t)2+2¢1§is(t) +1dWE(t).

The mirror diffusionB;, (t) is therefore a Pearson-Wong diffusion of the form:

N

dBis(t) = —q(Bis(t) — B)dt+ \/QQ(aEis(t)Q +bBys(t) + ¢) de(t),

56



whereq = (1 — ¢*)0*/2, B = 0°$/(2q), a = ¢°0%/(29), b = ¢ /q, andc = 0% /(2q).

To construct a GMM estimator based on this Pearson-Wong representi@pply results in Forman and
Sgrensen (2008) to construct closed form expressions for thetiooradl moments of the transformed data and
then use these moment conditions for estimation. This technique relies on tleaigott structure of the Pearson-
Wong class and a general result in Kessler and Sgrensen (1998Icatating conditional moments of diffusion
processes using the eigenfunctions and eigenvalues of the diffusifinitesimal generatdt®

A Pearson-Wong diffusion’s drift term is affine and its dispersion terquadratic. Its infinitesimal generator
must therefore map polynomials to equal or lower order polynomials. Asi#t,reslving for eigenfunctions and
eigenvalues amounts to matching coefficients on polynomial terms. This keyvalien allows us to estimate
the mirror diffusion of the generalized logistic diffusion model and to rectwe generalized logistic diffusion’s
parameters.

Given an eigenfunction and eigenvalue pait, \,) of the infinitesimal generator dB;,(), we can follow
Kessler and Sgrensen (1999) and calculate the conditional moment ajénéumction:

E [ Bis(t + A) | Bis(t) | = exp {0t} h(Bis(1)). (C.14)

Since we can solve for polynomial eigenfunctions of the infinitesimal géorecd B;,(¢) by matching coef-
fipients, this results delivers closed form expressions for the conditinoments of the mirror diffusion for
Bis(t).

To construct the coefficients of these eigen-polynomials, it is usefultsider the case of a general Pearson-
Wong diffusionX (¢). The stochastic differential equation governing the evolutioX 0f) must take the form:

dX (1) = —q(X () — X) + V/2(aX (8)2 + bX (t) + )TV (x) /T (k) dWX ().
A polynomialp,,(z) = > _, ™ ma™ is an eigenfunction of the infinitesimal generator of this diffusion if there
is some associated eigenvalue# 0 such that

n n n
—q(z — X) Z ﬂnymmxm_l + 9(aw2 + bx + ¢) Z Tn,mm(m — l)acm_2 =\, Z Tnm®
m=1 m=0

m=2

We now need to match coefficients on terms.

From thez™ term, we must have,, = —n[l — (n — 1)alq. Next, normalize the polynomials by setting
Tmm = 1 and definer,, ,,+1 = 0. Then matching coefficients to find the lower order terms amounts to
backward recursion from this terminal condition using the equation

b1 Emyo (C.15)

Tnm = Tnm+1 + 0 Tn,m+2

Qm, n m n

with a,,, = m[1 — (m — 1)alq, by, = m[X + (m — 1)b]q, andc,,, = m(m — 1)eq. Focusing on polynomials with
order ofn < (14 1/a)/2 is sufficient to ensure that,, # a,, and avoid division by zero.
Using the normalization that, ,, = 1, equation (C.14) implies a recursive condition for these conditional

“For a diffusion
AX (£) = px (X (£)) dt + ox (X () AW (8)

the infinitesimal generator is the operator on twice continuously differdatiaimctions f defined by A(f)(z) = px(z)d/dz +

%ax (x)*d?/dz>. An eigenfunction with associated eigenvalue 0 is any function’, in the domain of4 satisfyingAh = Ah.
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moments:
n
E[X(t+A)") [X(t) = 2] = exp{—anA} Y mpma™ Z TnmBE [X (t+ A)™|X (1) = ].
o
These moments exist if we restrict ourselves to the fifst (1 + 1/a)/2 moments.

C.2 Conditional moment recursion

To arrive at the result in the second part of Proposition 2, set theneteas as;, = o2(n — ¢2)/2, X

/(N — ¢?), as = ¢*/(n — ¢?), bs = 2¢/(n — ¢?), andes = 1/(n — ¢*). From these parameters, we can
construct eigenvalues and their associated eigenfunctions using thisiveacondition (C.15). For any timeg
time intervalA > 0, and integen < M < n/¢?, these coefficients correspond to thh conditional moment
of the transformed procesds;, (t) and satisfy the recursive moment condition

Bz‘s(t):b]:exp{—anA}zn:ﬂnm Zﬂ'nm [wt—i-Am‘Bw —b],

m=0

E [Bis(t +A)"

where the coefficients,, andr, ,, (n,m = 1,..., M) are defined above. This equation restates (C.13) in
Proposition 2 and is-th conditional moment recursion referenced in Subsection 4.4.

In practice, it is useful to work with a matrix characterization of these momamditions by stacking the
first N - moments in a vectoY ;5 (¢):

- E [Yis(t + A) [ Bis(h)] = AA) - T Y (1) (C.16)

with Y, (t) = (1, Bis(1), . . ., Bis(t)M)" and the matricedA (A) = diag(e @2, e~ %24 e~om2) andIl =
(11,700, ..., 7)), Wherert, = (T 0, - -« s Tim, 0, ..., 0)' for eachm = 1,..., M. In our implementation of
the GMM criterion function based on forecast errors, we work with thedast errors of the linear combination
IT - Y,5(t) instead of the forecast errors faf;(¢). Either estimator is numerically equivalent since the matrix
IT is triangular by construction and therefore invertible.

C.3 GMM minimization problem

To derive the GMM estimator (stated in Subsection 4.4)7letdenote the number of time series observations
available in industryi and countrys. Given sample size oN = ). > " T;,, our GMM estimator solves the
minimization problem

(n*,0%,¢*) = arg min (N Zzzgm n,0,¢ ) (;Zzzgm(n,a, ¢)) (C.17)

(n,0,9)

for a given weighting matriXW. Being overidentified, we adopt a two-step estimator. On the first step we
compute an identity weighting matrix, which provides us with a consistent initial etgtin@n the second step
we update the weighting matrix to an estimate of the optimal weighting matrix by settingvdrsenveighting
matrix oW1 = (1/N) Y, 3.3 gisr (1, 0, 8)gis-(n, 0, ¢)', which is calculated at the parameter value from
the first step. Forman and Sgrensen (2008) establish asymptotics fayle tiime series a§ — c0.°% For

%0ur estimator would also fit into the standard GMM framework of Hans&8Z), which establishes consistency and asymptotic
normality of our second stage estimator & — oo. To account for the two-step nature of our estimator, we use an asfimpto
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estimation, we impose the constraints that 0 ando? > 0 by reparametrizing the model in termslof) > —oco
and2lno > —oco. We evaluate the objective function (C.17) at valuegmlr, ¢) by detrending the data at
each iteration to obtaivﬁg'\’”\" (t) from equation (19), transforming these variables into their mirror variables
BEMM (1) = [ASMM ()=¢ _ 1] /¢, and using equation (C.13) to compute forecast errors. Then we daltoda
GMM criterion function for each industry and country pair by multiplying thémecast errors by instruments
constructed fronﬁg'\’”\" (t), and finally sum over industries and countries to arrive at the value cGMBI
objective.

D Correction for Generated Variables in GMM Estimation

D.1 Sampling variation in estimated absolute and comparatie advantage

Let k;.;, denote the vector of export capabilities of industrgt timet across countries anah;., the vector of
importer fixed effects. Denote the set of exporters in the industry in ttzaitwieh S;; and the set of destinations,
to which a country-industrys ships in that year, witD;,;. The set of industries active as exporters from source
countrys in a given year is denoted with,;. Consider the gravity regression (6)

In Xijsar = Kist + Midt + TgyDit + Visdr-
Stacking observations, the regression can be expressed more compatilyix notation as
_ 15 D
Xt = Jitki-t + Jz’t m;.; + R~~tbit + Vi,

wherex;.., is the stacked vector dbg bilateral exportng and JZ are matrices of indicators reporting the
exporter and importer country by observatidt,; is the matrix of bilateral trade cost regressors apd is the
stacked vector of residuals.

We assume that the two-way least squares dummy variable estimator for dastryrtime pairit is con-
sistent and asymptotically normal for an individual industshipping from source countryto destinatiornd at
time ¢,>! and state this assumption formally.

Assumption 1. If k?;® is the OLS estimate &f;.;, then
vV Dit(kglt's — ki-t) i> N(O, Eit) as Dit — 00,
where D;; = (1/]Si]) ZseSit |D;st| is the source-country-average number of countries importing industry

goods in yeat and
-1

Si=o0d | lim — (35) My (35)

Dit—o0 Lt
with aizt = Eit”z?sdt’
Mt = Iis, 5, — Ui, R {1357 Rea) T2, R} I Rl
andlI;s, p,, the identity matrix.

In finite samples, uncertainty as capturedy can introduce sampling variation in second-stage estimation

approximation where each dimension of our panel data gets large sienlisly (see Appendix D).
5IThis high-level assumption can be justified by standard missing-atsraadsumptions on the gravity model.
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becaus&?;® is a generated variable. To perform an according finite sample correatonse

1 -1
=0 = (03 | 5 (4%) Ma (33)|

with (69-5)? = (1/|Si| Dit) (vSS)'vOLS to consistently estimate the mati;;.

Our second stage estimation uses demeaned first-stage estimates of agabititg. For the remainder of
this Appendix, we defintog absolute advantage atay comparative advantage in the population as

1

Qist = In Ajgr = kit — W
it

N A 1
E ki and Giq =InAjy = ajsr — ] g jst- (D.18)
GES;t st JE€Lst

Correspondingly, we denote their estimates with® anda?}>.
For each year, IeK?"° denote anf x S matrix with entries equal to estimated export capability whenever
available and equal to zero otherwise, it record the pattern of non-missing observations EKndollect the

population values of export capability:

[ Si 1 i kis Si
[K?Ls]is = ot 5 C o ’ [Ht]z’s = 5 € S ) [Kt]is = oS e o :
0 S ¢ Sit 0 s §é Sit 0 S ¢ Sib

where[-];s denotes the specific entiy. Similarly, collect estimates of log absolute advantage into the matrix
A?'S and estimates of log comparative advantage into the mAfpi%:

In ASLS 5 ¢ Sit

AOLSis: 15t ,
(AP {0 s,

15t

0 S%Sit'

(AP

is =

{ln AQLS s € Sy

We maintain the OLS superscripts to clarify that absolute advant&geand comparative advantagsS are
generated variables.

The two matricesA®-S and A%'S are linearly related to the matrix containing our estimates of export capa-
bility K-°. From equation (D.18), the matrix?“S is related tdK?"* andH, by

[HL]} . [He)s

Is = mnmy 0
veqA?P®) = Trans(1, S) : : ved(K?P ). (D.19)
[H:]7.[He]r.
0 o Is = mp
EZ[S(Ht)

Hereved-) stacks the columns of a matrix into a vector dmens(7, .S) is a vectorized-transpose permutation
matrix>2 The functionZ;s(H;) maps the matriH, into a block diagonal S x I.S matrix, which removes the

%2The vectorized-transpose permutation matrix of type n) is uniquely defined by the relation
vedB) = Trans(m,n)vedB’) VB € R™*",

The (i7)-th entry of this matrix is equal to if j = 1 + m(i — 1) — (mn — 1)floor((¢ — 1)/n) and0 otherwise.
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global industry average across countries. The matrix of comparatantatie estimates is then:

1, — i 0
ti1- ]y,
veq APS) = : : veq APY) = Zg (H))veq AP). (D.20)
[H;]5.[H]s.
0 SR A iy

=Zs;(HY)

The functionZs;(H}) maps the matrid; into a block diagonabI x ST matrix, which removes the national
average across industries.

For simplicity, we assume that the sampling variation in export capability estimatesasrelated across
industries and years.

Assumption 2. For any (it) # (jT'), E(k?}® — ki) (k7 — kjr) = 0.
We then have the following result.

Lemma 3. Suppose Assumptions 1 and 2 hold and that theredgan 0 for each(it) so thatlimp o Dyt/D =
wit. Then

VDved A%S) — Trans(I, S)Z;s(H,)ved(K®S)]] % A(0, Trans(I, S)Z;s(H,) =} Z;5(H,) Trans(I, S))
and

VD{ved AP"®) — Zs;(H})Trans(I, S)Zs(H;)ved (K]

4 N (o, Zs(H))Trans(I,S)Z;s(H,) X} Zis(H,) Trans(I, S)'Zs;(H,)')

with .
Wi By 0
= : : :
0 - Wﬁlzﬂ
where thes-th column of¥, is equal to country’s corresponding column il;; whenever export capability is
estimated fofist) and is a vector of zeros otherwise.

Proof. Assumptions 1 and 2 along with;; — D — oo for all (it) implies thaty/D (ved(K?"S)'] — vedK})) KN
N(0,X7). The results then follow from equation (D.19) and equation (D.20). O]
D.2 Second-stage generated variable correction

We estimate two time series models which both can be implemented as GMM estimatdnevigr we focus on
GLD estimation here. (We present the case of OLS estimation of the decagsiEm in the Online Supplement
(Section S.2), which simply uses a different GMM criterion and absoluteradge as data instead of comparative
advantage.) GLD estimation is based on a conditional moment of the form:

0 =Eis1—ag (0, dst, Gist—n) (D.21)

where® = (1, 0, ¢) is the vector of parameters. In our overidentified GMM estimaias, a column vector of
known continuously differentiable functions (moment conditions) for any tage\ > 0.
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The moment conditions apply to any instant in continuous time, but our data cadisxiete annual obser-
vations for a finite period of years. To account for missing datasjfetc S;; denote the set of countries that
werepreviouslyobserved to export goodand that are still exporting goadat current time': Szf ={se S|
3P < tsts € S;,p}. Similarly, letS] = {s € Si; | 377 > ts.t.s € S;,»} be current exporter countries
that ship good to at Ieast one destination also sofumireyear. Denote the most recent prior period in which
exported inindustry by 7, = sup{7¥ < t | s € S;.r} and the most recent future period in whictvill export
by 7£, = inf{7¥" >t | s € S;,r }. We will use these objects to keep track of timing.

For instance, foreach=1,....1,t=2,...,T,ands € Ssz we can design a GMM criterion based on the
following conditional moment:

EZSTP g (9 a15t7azs7' t) =0.

ist

Our finite sample analog for second-stage estimation is:

I T
1 1 _ ) )
m Z Z SP Z gist(0) with g;.(0) =g (e7 a?sI%Sa a?s:i}:t) 7

i=1 t=2 Sit sesk

where|SY | is the number of exporters in industrgit timet that were also observed exporting gaad a previous
time.

The effective sample size for the second stag&is= >/, 32771 S| and the GMM criterion can be
expressed as

/

1 I T 1 I T
QvEeW)=| %D > > - \51; AT LA IDIE \51; AT
eSP v esP E

=1 t=2g4 =1 t=2g4

whereW is a weighting matrix.
In order to get consistency, we assume that all dimensions of our ddeageeasV gets large.

Assumption 3. AsSN — oo we have
1. D — o0
2. V(it) 3wy > 0sothatDy; /D — wiy, N/[I|SE(T—-1)] — 1, and S| — oo;
3. V(st) |Zst| — o0;
4. T — oo.

Letting D — oo andD;;/D — w;; > 0 ensures that we consistently estimiige on the first stage and we
can use Lemma 3 for the first stage sampling distribution of comparative adeanThen, lettingS;;| — oo
ensures that we consistently estimate absolute advantadg@.gneb oo lets us consistently estimate comparative
advantage. The asymptotic results of Forman and Sgrensen (2008uapplythe assumption that— oo.

Under the maintained assumptions, we get the following consistency result.

Proposition 3. Suppose that
1. © € © for some compact sé€i;

2. foranyA > 0, there is a uniqu®, € © such that
0= Eg (907 &ista disﬂf—A) 5
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3. for any given positive definite matrik” and for each/V, there is a unique minimizer 0} (0; W) given
by O n;
4. bothE;:k;s; andEg; k;s exist and are finite.
Then, under Assumptions 1 and 3, we héxe& 0.

Proof. The proof follows from a standard consistency argument for extrensiimators (see e.g. Newey and
McFadden 1994). Given (a) compactness of the parameter spadee @mntinuity of the GMM objective, and
(c) the existence of moments as in Forman and Sgrensen (2008), wergktrendaw of large numbers for the
objective function on the parameter spacéas> co. The GLD estimator is then consistent under the assumption
that the model is identified, provided that we consistently estimate compardtimatage. The consistency of
our comparative advantage estimates follows from the strong law of largeems given Assumption 3 and the
existence and finiteness Bf; k;; andEg:k; ;. ]

Proposition 4. Under the conditions of Proposition 3 and Assumptions 1, 2, and 3 we have
VN(Oy — 00) % N(0,(AWA)'AW(E+ Q) WAAWA) Y,

where

0 A,
A= E%g (90a sty aiSTz‘}:t) 9

/
= = g (eo, Gists 177, ) & (80, st e, )
T
Q= lim —— Z G.Zs;(H,)Trans(I, S)Z;s(H;) I} Z1s(H;)'Trans(I, S) Zs;(H,)' G}

for a G; matrix of weighted Jacobians gfs;(0), as defined below.

Proof. To get a correction for first stage sampling variation, we use a mean-eapansion of the GMM
criterion. Given continuous differentiability of the moment functign;(6) and the fact thad 5 maximizes
QN (6; W) we must have

= 2QN(éN;VV)

/

b R 1 I T
ZZ 2 7 85 %O | WS35 ng(e N)

i=1 1=2 e8P i=1 1=2 e8P

The criterion functiorg is continuously differentiable. Therefore, by the mean value theoreng éxést random

variablesd y anda;s; such thaqu 0| < ]GN 00l |Gist — Qist] < |aPL® — aise|, @and
. ) L .
g(0n;ist) = <90;azst7 QP ) 708 (9,Gist7aisnff) ~ (0n —69)
7 lo=0y
_G?st ,Gl

ist

o -
~0LS ~ ~ P oLS ~
(Gigi — Gist) + a7 S (GN,aist,a ) (awzz; — %ﬁ;) .

+ % (GN,a aZST t)

P~
=0, P
18t

a=0jst

_G?st EGS

18t
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p —Q;. P
zst 157— - 1ST; oy

I T
— A/ i N 0 oLs_ 4 oLs _ ~
0= NWN Z ; I’Sl]; (T ) [stt + stt(eN 90) + stt( a’LSt) + stt( )]

whereAy = (T =) Yin1 Cis |3P| D sesk Gl
Solving for6 y — 6, and multiplying by\ﬁ, we obtain

VN(ON — 80) =

I T
- ~ 11 . N
I W / W 0 G G oLS ~
- |: N AN} AN N E §: E I‘Sl]tD (T stt + zst( zst alSt) =+ zst(

_1) 157'P _ai”f;t) ’

Note that the se$?; is empty since no country is observed exporting in years before thedirgile year and
Sf; is empty since no country is observed exporting after the final sampleMeagover,

0 .
AN —) A= E89 (90, aist,aisnz:t)

CN"'zzst G’zQstE ;a (907 a, zsrP>

a=0jst

~ o R
G?st G?st = 8&ng (907 Qist, aP)

P
@ 7a1.s7—P
ist

becaus® y anda a25° are consistent anglis the continuously differentiable.
As aresult, We can re-write the sum as

T
N
TR S fspiroy (O Gl = ) + G, )

ZSTP

T
= Y iz (G GRS — ) + Glalalh, —dinr)] + 0p(D)
it

isTl, IST; 4
i=1 t=2 geSF
I T
1 N
= 0D feriry e ol
P 15t p
N i=1 t=2 8685 I|Szt (T 1)
T s
1 N N
— HseS}V—s—G? 1 ESO - _G3 0255 — Gigt),
"N & 2 & Mo e S gy St e €S gy Ty ] e
ELt
using the fact that” = 7f, & 70 . =¢.
The termL; is a vector and a linear function of the entries of the ma&ﬁ%s — A,. This vector can also be
expressed as

L;, = GtVEC(AOLS At),
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and the matrixG; has entries

N
(Gi]; =115(j) € SF. G2 o
J { (J)»t} I Si](Dj)t’ (T—1) (5),5(3):t

N
. F 3
! {8(]) < Si(j)ﬁfﬁ,s(j),t} I Gi(j)’s(j)’ﬁl(wj),s(j),t

for
i(j)=14+(j mod?S), s(j)=1+floor((j —1)/9).

We can now re-write the sum as

1 N ~ R . =3 . R
Vi Z Z Z W [G?st + G7 (a25° — aist) + Gist(@%fit — Qigrp )
i=1 1=2 scsP * |7

T T
N 1 A )
YN G+ —— GVDveg AP - A 1).
ISET—1) " JND il ved Ay W+ on(l)

i=1 1=2 e8P

2l

The first term is asymptotically normal under the results of Forman and Sar€@008). The second term is
asymptotically normal becauge?-s is asymptotically normal by Lemma 3. O]

For an adaption of the GMM generated-variable correction to secogd-§1aS estimation, see the Online
Supplement (Section S.2).

E Simulations

We perform simulations to explore how churning in comparative advantiégys atandard counterfactual ex-
ercises in international trade. Answering this question requires a morkvéaveimulation procedure than is
common in the literature (see Alvarez and Lucas (2007) and Dekle, Eatdrkatum (2007)). Typical coun-
terfactual exercises solve for changes in equilibrium outcomes as foaatiochanges in trade costs, so the
treatment effect is deterministic. To answer our question of interest, wetoesccount for stochastic compar-
ative advantage. Equilibrium outcomes are random variables drivehuoyiag in comparative advantage and
their stochastic properties depend on exogenous changes in trade costs

Our approach measures the average treatment effect of a givegechmatrade costs. For this purpose,
we repeatedly simulate the economy—drawing samples of comparative agivéatsed on our estimated GLD
process—and calculate the cross-simulation average of the changeomestattributable to a change in trade
costs. There are three steps: (1) simulate many sample paths for congathiantage; (2) for each sample
and year, solve for equilibrium outcomes with and without the change in trasts and compute the percent
difference; and (3) for each year, average this percent differemer all simulations. This appendix describes
the procedure and the data requirements.

E.1 Inference of self trade

In order to perform the counterfactual analysis for the global econsiasting from initial conditions in 1990, we
need a balanced dataset of comparative advantage estimates and elastexpenditure across a consistent
set of importers and exporters in 1990. In particular, we need to cahgistimates of self trade by industry.
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We do not have production data at the level of industries that we use intpgieal analysis, so we cannot
compute industry-level self trade from production data. Instead, we ih&distribution of self trade at the
industry level using our estimated fixed effects and discipline aggredateasie using country-level production
data. The set of importers that we analyze is smaller than the set of espsdere build our dataset using the
sample of importers from our empirical analysis and aggregate all remaioumgrees (including countries that
are exporters but not importers in our estimation as well as countries exicftaim the estimation) into a single
rest-of-world entity. In the process, we need to construct self-tratilmates also for this rest-of-world entity.

Our simulations are based on the following CES demand system for the éxperny destination market
on goods from source counteywithin industry: during yeatt:

—0

(wsth’sdt /Qist)
—g MidtEat, (E.22)

Z< <w§tTi<dt /gigt)

wherep;q; is the Cobb-Douglas expenditure share of destination industry:.
In our empirical analysis, we assume that trade costs take the following keay-lfiarm

Xisdt =

—OInTieqy = —cq + r/sdtbit + visqr  fOr s =#£d,

wherecy; is an unobserved destination-year component of trade costs thatesteslosednessf the destina-
tion market. This parameter determingsaggregate self-trade share, which we will infer from production.data
The terme;sq; captures unobserved idiosyncratic trade costs that we assume aregreames source countries
within any given industry, destination, and year, conditional on the graewgariate vector ;.

For self trade, there are no trade costgy; = 1. Both this restriction and the lack of self-trade data imply
that we must exclude self trade from gravity regressiirisor s # d, our specification of trade costs implies the
following regression at the industry-year level across sources estthdtions:

In Xisar = kist + miar + rhgbit + visar, (E.23)

where
kist =0 ln(gist/MSt)

is our measure of export capability and

—0
Mgt = —Cqt + In |:Midtydt/ ZC (wdn(dt/gigt) :|

is our measure of import propensity. We will use our estimates of these ffeatiszo infer self trade by industry.
The normalization; 43, = 1 implies that industry-level self trade is directly related to the gravity fixedcceffe

53The normalization of;;; = 1 means that the regression equation does not hold for self-tradevatises. The logarithm for self
trade satisfies
In Xiqat = Kiae + mids + car
instead of the gravity specification. Given the normalizatiom;@f = 1, the model implies a structural relationship between self trade,
export capability, import propensity, and closedness. Intuitively, trenalizationr;,; = 1 means that trade costs are defined relative
to internal trade costs. That is, normalizing, forces estimation to be in units relative (within an industry across soutcee
destination’s local covariates (such as common language or intertehchs.

66



estimates (export capabilitiés;; and import propensities:;4;) by

(wdt / th) B

Xiddt = —5 WidtYar = €

> (wgt zcdt/qm)

The self trade of a country in industiyis increasing in the country-industry’s export capability and import
propensity, and in the country’s closednegs As a country closes to trade, it reallocates expenditure from the
products of other countries towards its own products. Note that, althoegivthfixed effects are only identified
up to a global normalization (and we normalize import propensities in the UnitéesStezero), the sum of fixed
effects is always identified. As a result, we can infer industry-leveltsadfe from fixed effect estimates up to a
destination market'’s closednesg.

Closedness is common across industries within a destination market, so anyiidushare of self trade can
be recovered using

kidgs+mias+cat

Xiddi ekidttmidttca iartmiar

Zz‘ Xiddi - ZZ ekidt+miai+cat - ZZ ekidt+miar
That is, we can compute the distribution of self trade across industrieglgifemm our estimates of export
capabilities and import propensities.
We then use aggregate production data to discipline the overall level dfagddf, which is

> Xiaar =EBar =YY Xisar

i s#d

Expenditure is related to aggregate production throbigh= Yy — TBg whereTBy, = ), Zd/;ﬁd Xidart —
> ZS# X,.q: is the trade balance. We therefore have

> XNigar =Yar — > > Xiaar.
i

i d'#d

Self trade equals total aggregate production net of exports. We usb@Mata on production from 1977 to
2004 as well as WIOD data for China and Taiwan in 1995. We calculateeggtg exports from the trade flow
data we used in our empirical analysis.

From the individual self-trade shares by industry and country-le@letrade, we compute industry-level self
trade as

zdt+mzdt

iddt
Xidar = Xi E Xidar = Yo — E E Xidd't
g E X iddt v E ekzdt+7nzdt v

i d'Ad
Note that the inclusion of the closedness parameter in our specificatioradler ¢osts allows us to rationalize
any level of aggregate self trade because

E Xigar = E ekidetmiartear — pcdr § ekidetmiar

E.1.1 Accounting for missing gravity fixed effect estimates

Some estimates of gravity fixed effects (export capabilities and import psdjfes) are missing. We use the
following interpolation and extrapolation procedure to fill in the missing estimates.
First, we calculate country-year means of export capabiliti¢$) > °._, k;. as well as import propensities
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(1/1)>,_; mis. Note thatm;ys; = 0 due to our omission of the U.S. importer fixed effect in gravity regres-
sions. These country-year means capture overall economic growth @itlomntry over time. Time interpolation
and extrapolation without accounting for these aggregate trends care¢eepatterns of inferred comparative ad-
vantage and inferred self trade driven by patterns of missing obsarsatiparticularly in the early and late parts
of the samplé?

Second, to account for aggregate trends, we remove country-yeanrsraed calculate the residuélg, —
(1/1)> ", kise andmge — (1/1) Y., mis. We interpolate and extrapolate these residuals over years within
each industry-countr§? Finally, we add back in the country-year means to obtain interpolated fixedt ef
estimates.

E.1.2 Constructing a rest-of-world aggregate

We can perform those calculations only for the set of importers in our estimséimple. To balance global
trade, we need an aggregate entity for the rest of the world (ROW). Bogarate a rest-of-world entity into
our counterfactual analysis, we require estimates of rest-of-worldraelé. We use the following aggregation
procedure based on constructing synthetic gravity covariates for sti@frevorld entity that best explain the
observed aggregate trade flows.

Order the sample so that the fifgt countries are the importer subsample. For the remaisiing/ countries,
we cannot infer self trade because we cannot identify importer fixedtsff Define the aggregate exports from
ROW (indexed withs = 0) as

s
Xioagr = Z X;et foreach d=1,....M
s=M-+1

and aggregate imports to ROW (indexed witk= 0) by

s
Xisor = Y Xisar foreach s=1,... M.
d=M+1

Sectoral self trade of ROW is defined as

s s
Xior =D Y Xisar:

s=M+1 d=M+1

This quantity is unobserved because we do not know industry-leverad# for the countries within the ROW
aggregate. However, instead of having to infer self trade fofall M ROW countries, we only need to infer
self trade for the aggregate ROW entity.

To do so, we can choose the “location” of this synthetic ROW country relédieachs = 1, ..., M (captured
by its bilateral gravity covariates) in order to rationalize the observed R@yvegate trade flows. As before,
we assume an idiosyncratic component for trade costs and choose CES$ dexpand for the synthetic ROW
country. The gravity equation (2) therefore holds for each= 1, ..., M. As a result, flows from ROW to each

54f we were to use time extrapolation without adjusting for country trends, ding estimates that are missing for multiple observations
at the start or end of the sample would be constant. As a result, thosetestin@uld be systematically above trend or systematically
below trend.

%5The exercise is within industry-country because we use time interpolatissitie alternatives include averaging over years in either
the industry or country dimension, or using a forecasting approadhasi&alman filtering to obtain maximum likelihood estimates of
missing observations.
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d=1,..., M satisfy
In Xioar — miae = kiot + TogPit + vioat,

where the gravity covariate vectey,; represents how “far” the synthetic ROW country is from each impafter
We are free to choose this vector to best explain the ROW aggregate imports.

We choose to construct the synthetic country’s gravity covariates agghtee average of the covariates of
the underlying countries

S
Todt = Z Codt T'sdt

s=1+M

whereZSS:1 4+ Cst = 1. Note that we can incorporate the constraint by writing

S

rodt = TM+1,dt + Z Codt (Tsdt — Tar41,dt)-
s=M+2

We then use a regression to find the weights that best explain the obtmiedows. Define

_ /
Yidt = In Xiodt — Midt — T'hy1,qePit

and
— /
Tisdt = (rgdt — I‘MJrLdt) b;; foreachs = M + 2,...,8.
Then regresg;qg: ONX;q: = (i am42.4t, - - - Tisar) for each countryl = 1,..., M and yeart using variation
across. Note that
/
Kiot + vioar = In Xioat — miar — Togqbit
/
= Yidt — Xt Cat
= constany; + residualy,,

whereCiy = (Cars2.4ts - - - Csar)' 1S the vector of coefficients from this regression. We can therefore ihée
export capability of ROW in industryto be

M

1 .
kiot = i Z(constan;t + residualy;).
d=1
Similarly, we can infer import propensities and trade costs from a regreffsioeachs = 1, ..., M andt)
of In Xisor — Kist — 1 p74 1 /Dit ON (¥ — ¥ 3y )bis ford = M +2,..., S using variation across>® From
this regression we obtain
M
1 .
mior = 17 z;(constan;t + residualy;).
S=

Having values folk;o; andm;q:, we use the previous procedure to compute industry-level self-tradessfor
the ROW aggregate using production data for the ROW. Combined with theddfidustry-level self trade for
the sample of importers, we have a complete set of trade flows (including ae¢f) tfor all years, industries,
and country pairgsd) with s,d = 0,..., M. This information is sufficient to conduct counterfactual analysis

%When there are industries with missing export capability, those industrigsfrym the regression. If we wanted to impose the
same weights between the two regressions (so that we could interprebtieelpre more directly as defining a synthetic country whose
characteristics are a weighted average of the underlying countriespwie stack the data and run a single regression.
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since we only need initial expenditure shares and initial comparative tdy@(which we calculate from inter-
polated export capabilities) to be able to simulate complete GLD paths for caimpadvantage and calculate
counterfactuals using exact hat algebra methods.

E.2 Solving for equilibrium

In any yeart and for given trade cost§{Tisa:}/_;}}sa, productivities{{g, t}{zl}}le, preference weights
i}, 315, endowment§ Ly }5_,, and trade balancd§B,; }4_,, acompetitive equilibriunts a collection
of wages{ws }¥_,, incomes{Y; }2¥ ;, and expenditure§E, }5_, such that:

i. the labor market in source countsyclears

—0
wstTisdt/Qist>
—5 MidatEay  and

Wt Lt = Z (
d Yo <w§tTi<dt/ Qm)

ii. the goods market in each destination countiglears
watLar = Yar = Egt + TBqgs.
Denote the industry-level expenditure share with

—0
(wstTisdt /gist)

—6"
> (wctT isdt/ ql-gt)

Tisdt =

For any quantityz, let & = 2//x denote the proportional change to some counterfactuaFrom observed
equilibrium expenditure shares éfr;.q: }i 5.4, We can solve for the percent change in equilibrium wages due
to the combination of a change in productiviti@st}i,s and a change in trade cogt84 }i s by finding the
change in wage§uws, } s such that

Wyt Yot = § TisdtTisdt Midt(WarYar — TBat),
d

where the change in industry-level trade shares is
o\t
<wst7—isdt/gist)
A A A _9 '
Zg Ticdt (wgtTigdt/Qigt)

Note that we can compute all necessary initial equilibrium quantities (inconaelg alances, and preferences)
from (square) expenditure matrices across indust{i&s,; }:sq4, as

Tisdt =

ZS Xisdt

Ew=Y_> Xiat» Ya=>_ Y Xisat, TBa =Yy —Eq, and piq = o
i s % d

Similar to Dekle, Eaton, and Kortum (2007), we use the tatonnement algoritiivarez and Lucas (2007) to
solve for the equilibrium change in wages each period while accountingpfozero trade balances.
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E.3 Counterfactuals

We want to assess how churning in comparative advantage influencesrtleisions from common counter-
factual exercises under trade-cost changes. In particular, wadesrhow a 10% decrease in trade costs for
top comparative advantage industries in 1990 China impacts the equilibrilmaga and exports from China.
In our exercise, we hold trade balances fixed at their 1990 levels frantywyears of simulations and solve
for equilibrium outcomes for the whole world under various comparativaridge scenarios—that is, different
stochastic processes for comparative advantage.

We consider three comparative advantage scenarios:

1. Static Equilibrium : hold the distribution of comparative advantage fixed (in all industries andtdes)
at 1990 levels.

2. Transition Path: initialize comparative advantage at 1990 levels and allow the distribution teecgeer
time based on our estimated GLD process.

3. Steady State sample initial comparative advantages from the stationary distribution implie@LLy
estimates and then allow it to evolve over time.

The first scenario, static equilibrium, captures a typical exercise in the tit@dature—productivities are
held fixed and not allowed to evolve stochastically. The second scetrangijtion path, allows us to visualize
how our estimated GLD process implies transition dynamics—how the influenoéiaf comparative advan-
tages changes as churning leads to convergence to the stationary tilistrddcomparative advantage. The third
scenario, steady state, allows us to remove the effect of initial conditiohenViwe sample from the stationary
distribution in this third scenario and simulate comparative advantage over tiemegnverge to the stationary
distribution (for a sufficiently large number of simulations). This scenanuuwas the long-run impact of a per-
manent trade cost change since the distribution of comparative advaotagegges to the stationary distribution
in the long run, while the influence of initial conditions fades.

To assess the average impact of a given trade cost change, we sintailgeeraimber of paths for comparative
advantage. For eaghand simulation samplg we compute the change in equilibrium wage“éi)}s where the
superscript indexes the simulation sample. We can then compute the impliec¢chaegl wages, and the level
of trade flows as

ol _ ol
G i

Pt L | Sl Gsard ) 200

and )
Gy e (wg)ﬁsdt / ng) NO)
isdt — - ) —g Midt (wdt Yar — TBdt) .
Zg Ticdt (wgt Tigdt/gigt)
For each source country, we aggregate these trade flows acrtissiias markets and industries to get exports
in those “treated™ industries (those where trade costs are reduceld|so to get the level of total exports.
We compute these quantities for each simulation sarmptel, . .., J for a baseline counterfactual;{;; =

1), where trade costs do not change (but equilibrium does changedsevamparative advantages change) and for
a treatment counterfactual where trade costs also change=£ 0.9). We then compute the percent difference
between the two counterfactuals to get the within-samjteatment effect of the trade cost change. Finally, we
average over samples to get a measure of the average treatmentfdfiedrade cost change across simulations
within a given productivity scenario (static equilibrium, transition, or stedales
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F Additional Evidence

In this Appendix, we report additional evidence to complement the repbingidgs in the text.

F.1 Cumulative probability distribution of absolute advantage

Figures A1, A2 andA3 extendFigure 1 in the text and plot, for 28 countries in 1967, 1987 and 2007, the log
number of a source countrys industries that have at least a given level of absolute advantageiin ggainst
that log absolute advantage levelA;,; for industriesi. The figures also graph the fit of absolute advantage in
the cross section to a Pareto distribution and to a log normal distribution usirighomaxikelihood, where each
cross sectional distribution is fit separately for each country in eadh(geeh that the number of parameters
estimated equals the number of parameters for a distribwtiomumber of countriesx number of years). In
the Online Supplement (Section S.6) we show comparable cumulative probdistityputions of log absolute
advantage for PPML-based exporter capability, the Balassa RCA iaddxarying industry aggregates of OLS-
based exporter capability.

F.2 GLD predicted cumulative probability distributions of a bsolute advantage

Figures A4, A5andA6 present plots for the same 28 countries in 1967, 1987 and 2007 as bkéova (inFig-
ures Al, A2andA3), using log absolute advantage from OLS-based exporter capabitityres A4 throughA6
contrast graphs of the actual data with the GLD implied predictions and shuse dit.

F.3 Comparative advantage at varying industry aggregates

As a robustness check, we restrict the sample to the period 1984-200ihestry aggregates from the SITC
revision 2 classification. Data in this late period allow us to construct varyhgsiny aggregates. We first obtain
gravity-based estimates of log absolute advantage from OLS (6) at thedeéfidustry aggregates. Following
our benchmark specifications in the text, we then estimate the decay regrgdgdiat ten-year intervals and the
GLD model (C.17) using GMM at five-year intervals.

For the decay regressiofable Al repeats in columns 1, 4 and 7 the estimates fli@fle 1 for our bench-
mark industry-level aggregates at the SITC 2-3 digit level (133 indgjtdering the full sample period 1962-
2007. Table Al presents in the remaining columns estimates for the SITC revision 2 two-digit(Bén-
dustries) and the three-digit level (224 industries) during the late pe88d-2007. At the two-digit level (60
industries), the ten-year decay rate for absolute advantage usingualiries and industries is0.26, at the
three-digit level (224 industries) it is0.37. When using PPML-based log absolute advantage or the log RCA
index, decay rates vary less across aggregation levels, ranging-fodih at the two-digit level for PPML-based
log absolute advantage te0.34 at the three-digit level for log RCA. The qualitative similarity in decay rates
across definitions of export advantage and levels of industry aggregaiggest that our results are neither the
byproduct of sampling error nor the consequence of industry defigition

For the GLD model under the GMM procedure, Table A2 confirms thatteesemain largely in line with
those inTable 2 before, for the benchmark aggregates at the SITC 2-3 digit leveli(fB&tries) during 1962-
2007. The benchmark estimates are repeated in columns 1, 4 and 7. Inegheathmns,Table A2 presents
estimates for the SITC revision 2 two-digit level (60 industries) and the -thigielevel (224 industries) during
the late period 1984-2007.

Estimates of the dissipation rateare slightly larger during the post-1984 period than over the full sample
period and, similar to the implieg estimate in the decay regressions above, become smaller as we move from
broader to finer classifications of industries. Estimates of the elasticity afydeare statistically significantly
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Figure Al: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1967
Argentina Australia Brazil Canada China Czech Rep. Egypt

Indonesia

€L

[ — T

South Africa

Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)20r 133 time-consistent industries in 90 countries from 1965-1967GEPIl.org; three-year
means of OLS gravity measures of export capability (log absolute éaty@yt = In A from (6).

Note The graphs show the frequency of industries (the cumulative pildlpab — F4 (a) times the total number of industrigds= 133) on the vertical axis plotted against the
level of absolute advantage(such that4;s: > a) on the horizontal axis. Both axes have a log scale. The fitted Pareto @mbimal distributions are based on maximum
likelihood estimation by country in yeart = 1967 (Pareto fit to upper five percentiles only).



v,

Figure A2: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1987
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@B)20r 133 time-consistent industries in 90 countries from 1985-198[7GEPII.org; three-year
means of OLS gravity measures of export capability (log absolute éaty@yt = In A from (6).

Note The graphs show the frequency of industries (the cumulative pildlpab — F4 (a) times the total number of industrigds= 133) on the vertical axis plotted against the
level of absolute advantage(such that4;s: > a) on the horizontal axis. Both axes have a log scale. The fitted Pareto @mbimal distributions are based on maximum
likelihood estimation by country in yeart = 1987 (Pareto fit to upper five percentiles only).
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Figure A3: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 2007

Argentina Australia Brazil Canada China Czech Rep. Egypt
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated througB)20r 133 time-consistent industries in 90 countries from 2005-20@7GEPII.org; three-year
means of OLS gravity measures of export capability (log absolute éaty@yt = In A from (6).

Note The graphs show the frequency of industries (the cumulative pildlpab — F4 (a) times the total number of industrids= 133) on the vertical axis plotted against the
level of absolute advantage(such that4;s: > a) on the horizontal axis. Both axes have a log scale. The fitted Pareto @mbimal distributions are based on maximum
likelihood estimation by country in yeart = 2007 (Pareto fit to upper five percentiles only).
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Figure A4:Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage in 1967
Argentina Australia Brazil Canada China Czech Rep. Egypt

France Germany Hungary Indonesia Japan Rep. Korea

Malaysia Mexico Poland Romania Russian Fed.
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@B)Z0r 133 time-consistent industries in 90 countries from 1962-20d7CGEPII.org; OLS gravity
measures of export capability (log absolute advantage)in A from (6).

Note The graphs show the observed and predicted frequency of indufttreecumulative probability — F4(a) times the total number of industrids= 133) on the vertical
axis plotted against the level of absolute advantageuch thatd,;; > a) on the horizontal axis. Both axes have a log scale. The predictedcefnesps are based on the GMM

estimates of the comparative advantage diffusion (15) in Table 2 (je#easn and¢ in column 1) and the inferred country-specific stochastic trend conmpdme’ s, from (18),
which horizontally shifts the distributions but does not affect their shape.
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Figure A5:Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage in 1987
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@B)Z0r 133 time-consistent industries in 90 countries from 1962-20d7CEPII.org; OLS gravity
measures of export capability (log absolute advant&age)in A from (6).

Note The graphs show the observed and predicted frequency of indu@treecumulative probability — F4 (a) times the total number of industrigs= 133) on the vertical

axis plotted against the level of absolute advantaégich thatd;s: > a) on the horizontal axis, for the year= 1987. Both axes have a log scale. The predicted frequencies are

based on the GMM estimates of the comparative advantage diffusiom(I&ple 2 (parametergsand¢ in column 1) and the inferred country-specific stochastic trend conmpone
In Z5; from (18), which horizontally shifts the distributions but does not affieeir shape.
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Figure A6:Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage in 2007
Argentina Australia Brazil Canada China Czech Rep. Egypt

Germany Hungary Indonesia Japan Rep. Korea
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Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@B)Z0r 133 time-consistent industries in 90 countries from 1962-20d7CGEPII.org; OLS gravity
measures of export capability (log absolute advantage)in A from (6).

Note The graphs show the observed and predicted frequency of indufttreecumulative probability — F4(a) times the total number of industrids= 133) on the vertical
axis plotted against the level of absolute advantageuch thatd,;; > a) on the horizontal axis. Both axes have a log scale. The predictedcefnesps are based on the GMM
estimates of the comparative advantage diffusion (15) in Table 2 (je#easn and¢ in column 1) and the inferred country-specific stochastic trend conmpdme’ s, from (18),
which horizontally shifts the distributions but does not affect their shape.
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Table Al: DECAY REGRESSIONS FORCOMPARATIVE ADVANTAGE, VARYING INDUSTRY AGGREGATES

OLS gravityk PPML gravityk InRCA
2-dgt. 3-dgt. 2-dgt. 3-dgt. 2-dgt. 3-dgt.
1) (2) 3) 4) ©) (6) ) (8) 9)
Decay Regression Coefficients
Decay ratep -0.349 -0.257 -0.370 -0.320 -0.320 -0.343 -0.303 -0.307 -0.326
(0.002y**  (0.003y**  (0.002)** (0.0002y**  (0.0003y**  (0.0003)** (0.01y**  (0.017y**  (0.01)**
Var. of residuals? 2.089 1.463 2.005 2.709 1.889 2.583 2.318 1.678 2.267
(0.024y**  (0.027f**  (0.023)** (0.013y** (0.024y** (0.017y** (0.006y**  (0.009f**  (0.007)**
Implied Ornstein-Uhlenbeck (OU) Parameters
Dissipation rate) 0.276 0.306 0.301 0.198 0.284 0.220 0.222 0.310 0.241
(0.003y**  (0.006f**  (0.004)** (0.0009Y**  (0.004y** (0.001)** (0.006y**  (0.014y**  (0.006)**
Intensity of innovations 0.558 0.441 0.554 0.623 0.52 0.618 0.570 0.486 0.572
(0.003y**  (0.004y**  (0.003)** (0.001)** (0.003)** (0.002)** (0.005y**  (0.008y**  (0.006)**
Observations 324,978 70,609 230,395 320,310 70,457 227,061 324,9886097 230,396
AdjustedR? (within) 0.222 0.241 0.265 0.282 0.315 0.295 0.216 0.233 0.224
Yearst 36 14 14 36 14 14 36 14 14
Industriess 133 60 224 133 60 224 133 60 224
Source countries 90 90 90 90 90 90 90 90 90

Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@8)2@ 90 countries for 133 time-consistent industries from 1962-2f760 time-consistent
industries at the 2-digit SITC level from 1984-2007, and 224 indusaties the 3-digit SITC level from 1984-2007, and CEPIl.org; OL8 BPML gravity measures of export

capability (log absolute advantage)= In A from (6) and (8).

Note Reported figures for ten-year changes. Variables are OLS and.gRiity measures of log absolute advantage!;s; and the log Balassa index of revealed comparative
advantagén RCA s, = In(Xise/ > Xict)/ (30, Xuse/ D2, Do Xuce). OLS estimation of the ten-year decay ratEom

kist+10 — Kist = pkist + dir + 0st + €is,t+10,

conditional on industry-year and source country-year effégtandds: for 1962-2007 (column 1-2) and 1984-2007 (columns 3-6). Thdi@dpmlissipation rate) and squared
innovation intensityr> are based on the decay rate estimatnd the estimated variance of the decay regression residluml (13). Robust standard errors, clustered at the
industry level and corrected for generated-regressor variatiorpairecapabilityk, for p ands?, applying the multivariate delta method to standard errorsfando. * marks

significance at teri;* at five, and™** at one-percent level.
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Table A2: GMM ESTIMATES OF COMPARATIVE ADVANTAGE DIFFUSION, VARYING INDUSTRY AGGREGATES

OLS gravityk PPML gravityk InRCA
2-dgt. 3-dgt. 2-dgt. 3-dgt. 2-dgt. 3-dgt.
@) ) 3 “4) 5) (6) () ) ©)
Estimated Generalized Logistic Diffusion Parameters
Dissipation ratey 0.256 0.297 0.287 0.180 0.289 0.205 0.212 0.332 0.204
(0.004y**  (0.014y**  (0.004)** (0.006y**  (0.107y**  (0.053)** (0.006) ** (0.02)* (0.035)**
Intensity of innovations 0.739 0.558 0.715 0.767 0.613 0.798 0.713 0.574 0.678
(0.01y**  (0.011y**  (0.006)** (0.037y** (0.454) (0.336)* (0.051y** (0.09)* (0.42)
Elasticity of decayp -0.041 -0.070 -0.023 -0.009 -0.035 0.024 0.006 -0.014 -0.008
(0.017y*  (0.024y** (0.01)* (0.035) (0.593) (0.272) (0.053) (0.119) (0.404)
Implied Parameters
Log gen. gamma scale ¢ 121.94 59.09 281.50 900.95 155.22 -239.56 -1,410.50 548.19  1,083.20
(71.526) (31.021y  (161.258) (4581.812)  (3570.434)  (3595.553) (14980.320)  (6069.679)72277.940)
Log gen. gamma shape « 5.017 4.115 6.338 7.788 5.456 5.842 8.641 7.484 8.181
(0.842y**  (0.724y**  (0.875)** (8.062) (33.387) (22.563) (17.289) (17.421) (107.014)
Mean/median ratio 8.203 6.597 6.087 16.897 6.222 10.293 10.256 4.643 12.085
Observations 392,850 96,989 322,860 389,290 96,828 319,140 392,866,9899 322,860
Industry-source obd. x S 11,542 5,332 19,160 11,531 5,331 19,118 11,542 5,332 19,160
Root mean sq. forecast error 1.851 1.690 1.737 1.898 1.664 1.817 1.76Q..560 1.768

Min. GMM obj. (x 1,000) 3.27e-13 1.82e-12 9.14e-13 2.56e-12 3.53e-11 9.91e-12 -B79€l.61e-10 6.01e-11

Source WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated throu@8)2@ 90 countries for 133 time-consistent industries from 1962-2f%760 time-consistent
industries at the 2-digit SITC level from 1984-2007, and 224 indusaties the 3-digit SITC level from 1984-2007, and CEPIl.org; OL8 BPML gravity measures of export
capability (log absolute advantage)= In A from (6) and (8).
Note GMM estimation at the five-year horizon for the generalized logistic dfusf comparative advantag@s(t),
2 4 -

din A;.(t) = f%% dt + o dW/A (1)
using absolute advantagk. (¢) = A, (t)Z,(t) based on OLS and PPML gravity measures of export capakilitpm (6), and the Balassa index of revealed comparative ad-
vantageRCA s = (Xist/ Y- Xict)/ (D0, Xust/ D2, 20 Xuct). Parameters, o, ¢ for 1962-2007 (column 1-2) and 1984-2007 (columns 3-6) are aggitunder the constraints
Inn,Ino? > —oo for the mirror Pearson (1895) diffusion of (20), while concentratingamuntry-specific trendg, (¢). The implied parameters are inferreddas: (¢2/n)1/¢,
K = 1/é¢and the mean/median ratio is given by (A.10). Robust errors in pasesh(corrected for generated-regressor variation of expabiiy k): * marks significance at
ten,”™ at five, and™** at one-percent level. Standard errors of transformed and impliedneders are computed using the multivariate delta method.



negative across all industry aggregates for the OLS-based absdWatietage measures but statistically indistin-
guishable from zero for PPML-based log absolute advantage and tR&€lAgndex, again regardless of industry
aggregation.
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