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Abstract

This paper characterizes the dynamics of comparative advantage and draws implications from these dynamics
for quantitative analysis. In cross-section data, we establish that the distribution of export capabilities across
industries is approximately log normal. This heavy-tailedshape is similar across 90 countries and stable over
40 years. Over time, there is mean reversion in export capability and this mean reversion, rather than indicating
degeneracy, is instead consistent with a stationary stochastic process. We develop a GMM estimator for a
Markov process whose stationary distribution nests many commonly studied distributions, and show that the
Ornstein-Uhlenbeck (OU) special case closely approximates the dynamics of comparative advantage. The OU
process implies a log normal stationary distribution and has a discrete-time representation that can be estimated
with simple linear regression. Incorporating stochastic comparative advantage into the counterfactual analysis
of changes in trade costs, we document the transitory natureof policy effects: churning causes targeted trade-
policy changes to decay markedly, with most impacts fully dissipated within 10 to 20 years. These findings
speak to the importance of incorporating dynamic comparative advantage into quantitative trade analysis.
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1 Introduction

Quantitative analysis in international trade has attained new prominence (Costinot and Rodríguez-Clare 2014).

Equipped with models that permit computational analysis when estimated or calibrated, much current research

in trade focuses on performing counterfactual exercises to evaluate theimpacts of trade reform, technological

advance, and other shocks on national and global welfare. Work along this line has deepened our understanding

of the effects of NAFTA and other trade agreements on real incomes (Caliendo and Parro 2015), the consequences

of the global financial crisis for trade flows (Eaton, Kortum, Neiman, and Romalis 2016), and the mechanisms

through which trade barriers affect the distribution of income within and between nations (Burstein and Vogel

2017), among a rapidly growing set of topics.1

Two advances have helped make the quantitative revolution in trade possible(Arkolakis, Costinot, and

Rodríguez-Clare 2012). One is the formulation of trade models that generate gravity in bilateral trade and realistic

global specialization patterns, while still characterizing national technological capabilities parsimoniously (e.g.,

Eaton and Kortum 2002, Melitz 2003). A second advance is the technical insight that “exact hat algebra” permits

the measurement of discrete differences between actual and counterfactual equilibria (Dekle, Eaton, and Kor-

tum 2007). This approach collapses the time-invariant features of the environment—including country-specific

preference parameters, barriers to trade deriving from geographyand related features, and supplies of fixed fac-

tors—into initial-period shares of consumer expenditure on goods and of producer expenditure on inputs. One

can then conduct counterfactual analysis armed with little more than gravity estimates of trade-cost elasticities

(which embody preference or technology parameters) and data on initial expenditure shares.

The standard approach in quantitative trade analysis is to allow specific features of the environment to vary

selectively—e.g., home bias in consumption (Costinot, Donaldson, Kyle, and Williams 2016), import tariffs

(Caliendo and Parro 2015), or trade imbalances (Eaton, Kortum, Neiman, and Romalis 2016). Comparative

advantage, however, is commonly taken as static, even though it is a primary force responsible for trade in the

first place. This approach leaves relative national-industry productivities in the background to be absorbed into

expenditure shares. Resulting simulations of counterfactual outcomes aretherefore conditional on the implicit

assumption that shocks to comparative advantage over relevant time horizons are either modest or transitory.

Despite the importance of this premise for modern research in trade, the literature lacks an accepted set of facts

about the dynamics of comparative advantage. In this paper, we utilize a workhouse framework in trade, the

Eaton and Kortum (2002) model of Ricardian comparative advantage (EKhereafter), to guide our analysis of

comparative-advantage dynamics and to perform counterfactual exercises that allow us to evaluate how these

1Also see Burstein and Cravino (2015), Caliendo, Parro, Rossi-Hansberg, and Sarte (2017), Arkolakis, Costinot, Donaldson, and
Rodríguez-Clare (2018).
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dynamic properties affect predictions of common quantitative trade models.2

Our motivations for using EK are that it has strong empirical support in cross-section trade data (Chor 2010;

Costinot, Donaldson, and Komunjer 2012) and is a foundational model in quantitative analysis (e.g., Costinot

and Rodríguez-Clare 2014, Di Giovanni, Levchenko, and Zhang 2014, Caliendo and Parro 2015). Additionally,

the EK model presents a framework to recover measures of comparative advantage from the gravity equation of

trade. Using data for 133 industries in 90 countries over the period 1962 to2007, we estimate gravity equations

year by year to extract an exporter-industry fixed effect, which measures the exporting country’s export capability

in an industry in a given year; an importer-industry fixed effect, which captures the importing country’s effective

demand for foreign goods in an industry in a given year; and an exporter-importer component, which accounts for

bilateral trade frictions (Head and Mayer 2014).3 In the EK model, the exporter-industry fixed effect embodies

national average factor prices and the location parameter of a country’sproductivity distribution for an industry.

By taking the deviation of a country’s log export capability from the global industry mean, we obtain a measure of

a country’s absolute advantage in an industry. Further normalizing this value by its country-wide mean removes

the effects of country-level productivity and economy-wide factor prices. We use export capability under this

double normalization to measure comparative advantage.

After estimating the gravity model, our analysis proceeds in three parts. First,we document the dynamic

empirical properties of comparative advantage. For this purpose, we jointly analyze the time series and the cross-

sectional distribution at given moments in time. Strikingly, the cross-industry distribution of absolute advantage

for a country in a given year (national industry export capability relative to the global industry mean) is similar

across countries (except for the intercept). Its shape is approximately log normal with ratios of the mean to the

median of about 11. Importantly, this log-normal shape is stable over time.4 Temporal stability in the distribution

of export advantage makes a second empirical regularity all the more surprising: there is continual and rapid

turnover in countries’ top export industries. Among the goods that account for the top 5% of a country’s current

absolute-advantage industries, 60% were not in the top 5% two decades earlier.5 Such churning is consistent with

mean reversion in comparative advantage. In an OLS regression of the ten-year change in log export capability on

2Despite our chosen link to EK, the gravity model that we employ is consistentwith a large class of trade models (Anderson 1979,
Arkolakis, Costinot, and Rodríguez-Clare 2012), of which EK is just oneexample. The Krugman (1980), Heckscher-Ohlin (Deardorff
1998), Melitz (2003), and Anderson and van Wincoop (2003) models also yield gravity specifications and give alternative interpretations
of the exporter-industry fixed effects that we use as measures of absolute advantage in our analysis.

3On decomposing sources of changes in bilateral trade, see also Gaubert and Itskhoki (2015). We estimate the gravity equation using
both OLS and methods developed by Silva and Tenreyro (2006) and Eaton, Kortum, and Sotelo (2012) to correct for zero bilateral trade
flows.

4In our data, the median share for the top good (out of 133) in a country’s total exports is 23%, for the top 3 goods is 46%, and for the
top 7 goods is 64%. See Easterly and Reshef (2010) and Freund and Pierola (2013) on export concentration in low-income countries, and
Hidalgo and Hausmann (2009) and Hausmann and Hidalgo (2011) on thelink between export concentration and export composition.

5On changes in export diversification over time see Imbs and Wacziarg (2003), Cadot, Carrére, and Strauss Kahn (2011), and Sutton
and Trefler (2016).
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its initial log value and industry-year and country-year fixed effects—to which we refer as a decay regression—we

estimate mean reversion at the rate of about one-third per decade.

Levchenko and Zhang (2013) also find evidence of mean reversion in comparative advantage, in their case

for 19 aggregate manufacturing sectors. One may be tempted to see mean reversion as evidence of convergence

in sectoral productivities across countries, possibly indicating the degeneracy of comparative advantage. Such an

interpretation, however, would be subject to the Quah (1993, 1996) critique of cross-country growth regressions:

mean reversion in a variable alone is uninformative about the dynamics of its distribution. Depending on the

stochastic process, mean reversion may alternatively coexist with a cross-section distribution that is degenerate,

non-stationary, or stationary and stable. We find that the latter is the case for comparative advantage. Stability of

the heavy-tailed distribution of export advantage over time suggests that, far from being degenerate, a country’s

distribution of comparative advantage is stationary.

In the second part of our analysis, we estimate a stochastic process that can account for the combination

of a stable cross-industry distribution for national export advantage withchurning in national industry export

ranks. As a mean-reverting AR(1) specification, our OLS decay regression is a discrete-time analogue of a

continuous-time Ornstein-Uhlenbeck (OU) process, which is the unique Markov process that has a stationary

normal distribution (Karlin and Taylor 1981). The OU process is governed by two parameters, which we recover

from our OLS estimates. Thedissipation rateregulates the speed at which absolute advantage reverts to its long-

run mean and determines the shape of its stationary distribution; theinnovation intensityscales the stochastic

shocks to absolute advantage and determines how frequently industries reshuffle along the distribution. Our esti-

mates of the dissipation rate are similar across countries and industries, whichconfirms that the heavy-tailedness

of export advantage is close to universal. To relax the assumption of log normality, which is implied by the OU

process, we estimate via GMM ageneralized logistic diffusion(GLD) for absolute advantage, which has the OU

process as a limiting case. The GLD adds an additional parameter to estimate—thedecay elasticityallows the

rate of mean reversion to differ from above and from below the mean. Thestationary distribution for the GLD is

a generalized gamma distribution, which unifies the extreme-value and gamma families and nests many common

distributions (Crooks 2010), including those used to study city size (Gabaixand Ioannides 2004, Luttmer 2007)

and firm size (Sutton 1997, Gabaix 1999, Cabral and Mata 2003).

Our estimation approach targets moments of the stochastic process directly. Weapply statistical insights from

Forman and Sørensen (2008) to our Markov process and develop a GMM time-series estimator of the three global

parameters of the GLD: the dissipation rate, the innovation intensity, and the decay elasticity. Beyond earlier ap-

plications of the Forman and Sørensen (2008) method, we show that it is possible to perform unit-level estimation

in the presence of an aggregate stochastic process and recover country-wide productivity as a by-product. We
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then predict the cross-section distribution of absolute advantage, which isnot targeted in our estimation. Based

on just the three parameters (for all industries in all countries and in all years), the predicted values match the

individual cross-section distributions with considerable accuracy. Theobserved churning of industry export ranks

within countries over time is matched by the model-predicted transition probabilities between percentiles of the

cross-section distribution, except in the very low tail of the distribution. Thisexercise also reveals that while

the data select the GLD over the more restrictive OU form, the two models yield very similar predictions for

period-to-period transition probabilities between quantiles of the distribution of export advantage. Thus, in many

applications, the OU process may be sufficient to quantify export dynamics.

In the third part of our analysis, we incorporate our findings on the dynamics of comparative advantage

into a quantitative EK trade model. We go beyond conventional exact hat algebra, which presumes time-invariant

absolute advantage parameters for each country, and account for thedynamic evolution of comparative advantage.

Taking as given our parameter estimates, we solve for counterfactual EKequilibria under a stipulated policy shock

for a large set of simulated comparative advantage realizations. We show inthis context that a country’s self trade

(its expenditure on own production) can be recovered from gravity estimates in the EK model, without requiring

industry-level production data (after standardizing by country-wide output), so that quantitative analysis can be

conducted largely with trade data. To illustrate the procedure, we conductcounterfactual exercises in which we

permanently reduce the trade costs faced by China’s top-5 export industries or top-50 export industries (out of

133) by 10% in 1990 and assess mean simulated outcomes over the ensuing 20years. The experiments are akin

to selective reductions of trade barriers on imports from China by the restof the world.

For each of the two policy shocks (falling trade barriers for China’s top-5 or top-50 industries in 1990),

we consider three scenarios. In one, which follows standard practice inthe literature (e.g., Alvarez and Lucas

2007; Dekle, Eaton, and Kortum 2007), we hold all fundamentals—including comparative advantage—fixed at

their 1990 levels and compute a counterfactual equilibrium resulting from thechange in selected trade costs.

Not surprisingly, China’s real wages and total exports rise (permanently). In alternative scenarios, we allow

comparative advantage to be stochastic by initializing the series at 1990 levelsand then allowing the series to

evolve over time according to our estimated GLD process. With stochastic comparative advantage, the change in

equilibrium outcomes due to a reduction in trade costs is a random variable. Tocharacterize the effect of a trade-

cost reduction, we solve for equilibrium outcomes across many simulated paths of comparative advantage, where

for each simulation we obtain outcomes, first, without the change in trade costs, and next, with the change. We

define the treatment effect, or more precisely the treatment-effect path, to be the mean percentage difference in

outcomes with and without the trade-cost reduction across simulations at each moment in time. Under stochastic

comparative advantage, the mean treatment effect of reduced trade costs on total exports dissipates over time.
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Because in expectation China’s initial top export industries steadily lose theirtop ranking—and because heavy

tails in export advantage mean that top industries matter for aggregate outcomes disproportionately—trade-cost

reductions for these industries steadily lose their importance in the aggregate. When China’s top-5 1990 export

industries are treated, the impacts on China’s real wages and total exportson average fully dissipate within

approximately 15 years; when China’s top-50 1990 export industries are treated, the impact on China’s total

exports on average dissipates by almost 10% after 10 years and by more than 50% after 20 years, while some

real wage impact is lasting.

The need to reconcile dynamics with well defined cross-sectional distributions arises in many fields. To

study economic growth, for example, Quah develops a kernel estimator andanalyzes non-parametrically the

transitions of countries between percentiles in the cross-country income distribution; his estimates provide evi-

dence of an evolving bimodal cross-sectional distribution of incomes among105 countries, beyond conventional

patterns of convergence or divergence.6 Taking this kernel estimator to study the evolution of revealed compara-

tive advantage, Proudman and Redding (2000) document for the exports of G-5 countries to the OECD between

1970 and 1993 high degrees of turnover but no marked change in the concentration of comparative advantage.

Non-parametric estimation can help identify non-monotonicities in transitions frominitial conditions, but a para-

metric specification is essential for calibrating economic models. We thereforeintroduce the GLD as a stochastic

process that generates a unified family of common cross-sectional distributions and use the estimates to check

its predicted transitions against non-parametric kernel measures of the frequencies: except for deviations in the

lower-most decile of the comparative advantage distribution, the GLD fits transitions remarkably well.

In macroeconomic labor studies, as another example, Postel-Vinay and Robin (2002) estimate the cross

sectional distribution of French wages and back out consistent dynamicsfrom the cross-sectional estimates;

Guvenen, Ozkan, and Song (2014) characterize non-parametrically the short-term transitions in the distribution

of U.S. household incomes and calibrate a stochastic process that is consistent with these moments. In the

literature on firm sizes, Arkolakis (2016) uses data on the cross section of U.S. firm sales and Brazilian exports

to the United States to calibrate parameters of a stochastic process for firm productivity. Similarly, Gaubert and

Itskhoki (2015) estimate the equilibrium distribution of French firms’ domestic and export sales to calibrate a

consistent stochastic process for productivity; they find that industry-level comparative advantage accounts for

70 percent and granular sales shocks at dominant firms for another 30percent of the variation in export shares.

Most papers across these fields have in common that they rely on properties of the stationary distribution to

calibrate a suitable stochastic process. Instead, we directly estimate the stochastic process itself and then use

the predicted stationary distribution to assess the fit of our estimates to the cross section. While entry, exit and

6Using Quah’s kernel estimator for regional economics, Overman andIoannides (2001) estimate the dynamics of the U.S. city size
distribution and document that U.S cities in a second tier below the top-ten citiesexhibit more size turnover than the largest cities.
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switching between macroeconomic regimes complicate the stochastic process beyond our GLD in those lines of

research, extensions of our proposed GMM approach may also permit the estimation of stochastic processes in

other fields.

A broader literature on export dynamics includes reduced-form analysis that characterizes sources of ex-

port growth and parametric approaches that are amenable to simulation. Estimates of the exact importance of

supply-side exporter components at the industry level differ between varying reduced-form approaches (Daruich,

Easterly, and Reshef 2016, Egger and Nigai 2016), but have in commonthat exporter components account for a

substantive part of export growth. Lederman, Pienknagura, and Rojas (2015) point out that export-market exit

and re-entry patterns at the product level are suggestive of a latent comparative advantage beyond manifest com-

parative advantage in current exports, especially in small countries. Through gravity estimation we separate the

supply-side components from both bilateral trade cost and demand-side factors in importer markets, and then

focus on the realized comparative-advantage contribution to export growth. Exploring sources of comparative

advantage empirically, Cameron, Proudman, and Redding (2005) tie trade growth to technology and human cap-

ital for the United Kingdom and argue that international trade raises rates of UK productivity growth through

technology transfer but not innovation. Cai, Li, and Santacreu (2018)estimate the rate of cross-border patent

citations to quantify a multi-sector endogenous growth model, in which knowledge flows across borders are in-

dependent of trade but relative sectoral productivities change the allocation of labor to innovative activity; they

show in simulations with data on 28 countries and 19 sectors that a reduction in trade costs leads to a realloca-

tion of innovative activity to sectors with stronger comparative advantage and dynamic gains from trade that are

multiple times larger than the static gains from specialization.

In addition to knowledge flows that are independent of trade in Cai, Li, andSantacreu (2018), alternative

theoretical approaches model the origins of sectoral comparative advantage in production with an instantaneous

flow of knowledge across borders but varying adoption depending onrelative local factor supplies (Acemoglu

and Zilibotti 2001), or with exogenous comparative advantage in innovationand an endogenous home market

effect in demand (Somale 2017), or with sectoral productivity growth thatresults from investments in innovation

by incumbent firms with heterogenous innovation capabilities in the presence of varying knowledge spillovers

across borders and within and between sectors (Sampson 2017). While multi-sector models of trade are im-

portant to address comparative advantage, single-sector models that study growth through learning in the pres-

ence of trade—such as Basu and Weil (1998), Lucas and Moll (2014), Perla and Tonetti (2014) and Sampson

(2016)—explain the flow of knowledge and technology adoption across countries, or—in Perla, Tonetti, and

Waugh (2015)—within countries and across firms, or both—in Buera and Oberfield (2016). While we analyze

only the stochastic and stationary properties of comparative advantage, our estimates of the stable cross-sectional
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concentration and the simultaneous churning of comparative advantages can serve as an empirical benchmark to

discipline the study of knowledge flows in the presence of trade.

In Section 2 we present a theoretical motivation for our gravity specification. In Section 3 we describe the data

and gravity model estimates, and document stationarity and heavy tails in export advantage as well as churning

in top export goods. In Section 4 we introduce a stochastic process that generates a cross-sectional distribution

consistent with heavy tails and embeds innovations consistent with churning,and we derive a GMM estimator

for this process. In Section 5 we present estimates and evaluate the fit of the model. In Section 6 we turn to

simulations that use our estimates and perform counterfactual policy exercises. In Section 7 we conclude.

2 Theoretical Motivation

We use the EK model to motivate our definitions of export capability and absolute advantage, and describe our

approach for extracting these measures from the gravity equation of trade.

2.1 Export capability, absolute advantage, and comparativeadvantage

In EK, an industry consists of many product varieties. The productivityq of a source-countrys firm that

manufactures a variety in industryi is determined by a random draw from a Fréchet distribution with CDF

FQ(q) = exp{−(q/q
is
)−θ} for q > 0. The location parameterq

is
determines the typical productivity level of a

firm in the industry while the shape parameterθ controls the dispersion in productivity across firms. Consumers,

who have CES preferences over product varieties within an industry, buy from the firm that delivers a variety

at the lowest price. With marginal-cost pricing, a higher productivity drawmakes a firm more likely to be the

lowest-cost supplier of a variety to a given market.

Comparative advantage stems from the location of the industry productivity distribution, given byq
is

, which

may vary by country and industry. In a country-industry with a higherq
is

, firms are more likely to have a high

productivity draw, such that in this country-industry a larger fraction offirms succeeds in exporting to multiple

destinations. Consider the many-industry version of the EK model in Costinot,Donaldson, and Komunjer (2012).

Exports by source countrys to destination countryd in industryi can be written as,

Xisd =

(

wsτisd/qis

)−θ

∑

ς

(

wςτiςd/qiς

)−θ
µidEd, (1)

wherews is the unit production cost in source countrys, τisd is the iceberg trade cost betweens andd in industry

i, µid is the Cobb-Douglas share of industryi in destinationd expenditure, andEd is national expenditure in
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countryd.7 Taking logs of (1), we obtain a gravity equation for bilateral trade

lnXisd = kis +mid − θ ln τisd, (2)

wherekis ≡ θ ln(q
is
/ws) is source countrys’s log export capabilityin industry i, which is a function of the

country-industry’s efficiency (q
is

) and the country’s unit production cost (ws),8 and

mid ≡ ln

[

µidEd

/∑

ς

(

wςτiςd/qiς

)−θ
]

is the log of effective import demand by countryd in industryi, which depends on national expenditure on goods

in the industry divided by an index of the toughness of industry competition in the country.9

Looking forward to the estimation, the presence of the importer-industry fixed effectmid in (2) implies that

export capabilitykis is only identified up to an industry normalization. We therefore re-express export capability

as the deviation from its global industry mean(1/S)
∑S

ς=1 kiς , whereS is the number of source countries.

Exponentiating this value, we measureabsolute advantageof source countrys in industryi as

Ais ≡
exp {kis}

exp
{

1
S

∑S
ς=1 kiς

} =
(q

is
/ws)

θ

exp
{

1
S

∑S
ς=1 ln(qiς/wς)θ

} . (3)

The normalization in (3) differences out both worldwide industry supply conditions, such as shocks to global

total factor productivity, and worldwide industry demand conditions, suchas variation in the expenditure share

µid. WhenAis rises for country-industryis, we say that countrys’s absolute advantage has increased in industry

i even though it is only strictly the case that its export capability has risen relative to the global geometric mean

for i. In fact,s’s export capability ini may have gone up relative to some countries and fallen relative to others.

We use the deviation from the industry geometric mean to define absolute advantage because it simplifies the

specification of a stochastic process for export capability. Rather than specifying export capability itself, we

7In our simulations we allow for trade imbalances so thatEd = Yd −TBd, whereYd is national income andTBd is the trade balance.
8Our assumption that unit production costsws are country specific and not also industry specific allows us to difference out this term

in the country normalization of export advantage that we apply below. Thepresence of industry specific production costs would imply
that export capabilitykis depends on endogenously determined factor prices. Although in this case we could no longer interpret export
capability as a primitive, it would retain an interpretation as a reduced-formdeterminant of comparative advantage.

9Any trade model that has a gravity structure will generate exporter-industry fixed effects and a reduced-form expression for export
capability (kis). In the Armington (1969) model, as applied by Anderson and van Wincoop (2003), export capability is a country’s
endowment of a good relative to its remoteness from the rest of the world. In Krugman (1980), export capability equals the number
of varieties a country produces in an industry times effective industry marginal production costs. In Melitz (2003), export capability
is analogous to that in Krugman adjusted by the Pareto lower bound for productivity in the industry. In a Heckscher-Ohlin model
(Deardorff 1998), export capability reflects the relative size of a country’s industry based on factor endowments and industry-specific
factor intensities. The common feature of these models is that export capability is related to a country’s productive potential in an
industry, be it associated with resource supplies, a home-market effect, or the distribution of firm-level productivity.
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model its deviation from a worldwide industry trend, which frees us from having to model the global trend

component.

To relate our use of absolute advantageAis to conventional approaches, average (2) over destinations and

define (harmonic) log exports from source countrys in industryi at the country’s industry trade costs as

ln X̄is ≡ kis +
1

D

D∑

d=1

mid −
1

D

D∑

d=1

θ ln τisd, (4)

whereD is the number of destination markets. We say that countrys has a comparative advantage over country

ς in industryi relative to industryj if the following familiar condition holds:

X̄is/X̄iς

X̄js/X̄jς
=

Ais/Aiς

Ajs/Ajς
> 1. (5)

Intuitively, absolute advantage defines country relative exports, oncewe neutralize the distorting effects of trade

costs and proximity to market demand on trade flows, as in (4). In practice, alarge number of industries and

countries makes it cumbersome to conduct double comparisons of country-industry is to all other industries

and all other countries, as suggested by (5). The definition in (3) simplifiesthis comparison in thewithin-

industry dimensionby setting the “comparison country” in industryi to be the global mean across countries

in i. In the final estimation strategy that we develop in Section 4, we will further normalize the comparison

in thewithin-country dimensionby estimating the absolute advantage of the “comparison industry” for country

s, consistent with an arbitrary stochastic country-wide growth process. Demeaning in the industry dimension

and then estimating the most suitable normalization in the country dimension makes ourempirical approach

consistent with both worldwide stochastic industry growth and stochastic national country growth.

Our concept of export capabilitykis can be related to the deeper origins of comparative advantage by treating

the country-industry specific location parameterq
is

as the outcome of an exploration and innovation process. In

Eaton and Kortum (1999, 2010), firms generate new ideas for how to produce existing varieties more efficiently.

The efficiencyq of a new idea is drawn from a Pareto distribution with CDFG(q) = (q/xis)
−θ, wherexis > 0

is the minimum efficiency. New ideas arrive in continuous time according to a Poisson process, with intensity

rateρis (t). At datet, the number of ideas with at least efficiencyq is then distributed Poisson with parameter

Tis (t) q
−θ, whereTis (t) is the number of previously discovered ideas that are available to producers and that

is in turn a function ofxθis and past realizations ofρis (t).10 SettingTis(t) = q
is
(t)θ, this framework yields

10Eaton and Kortum (2010) allow costly research effort to affect the Poisson intensity rate and assume that there is “no forgetting”
such that all previously discovered ideas are available to firms. In our simple sketch, we abstract away from research effort and treat
the stock of knowledge available to firms in a country (relative to the mean across countries) as stochastic. Buera and Oberfield (2016)
microfound the innovation process in Eaton and Kortum (2010) by allowingagents to transmit ideas within and across borders through
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identical predictions for the volume of bilateral trade as in equation (1). Ourempirical approach is to treat the

stock of ideas available to a country in an industryTis (t)—relative to the global industry mean stock of ideas

(1/S)
∑S

ς=1 Tiς (t)—as following a stochastic process.

2.2 Estimating the gravity model

Allowing for measurement error in trade data or unobserved trade costs,we can introduce a disturbance term into

the gravity equation (2), converting it into a linear regression model. With dataon bilateral industry trade flows

for many importers and exporters, we can obtain estimates of the exporter-industry and importer-industry fixed

effects from an OLS regression. The gravity model that we estimate is

lnXisdt = kist +midt + r′sdtbit + visdt, (6)

where we add time subscriptt. We include dummy variables to measure exporter-industry-yearkist and importer-

industry-yearmidt terms. The regressorsrsdt are the determinants of bilateral trade costs, andvisdt is a residual

that is mean independent ofrsdt. The variables we use to measure trade costsrsdt in (6) are standard gravity

covariates, which do not vary by industry.11 However, we allow the coefficient vectorbit on these variables to

differ by industry and by year.12 Absent annual measures of industry-specific trade costs for all years, we model

these costs via the interaction of country-level gravity variables and time-and-industry-varying coefficients.

The values we use for empirical analysis are deviations of estimated exporter-industry-year dummies from

global industry means. The measure of absolute advantage in (3) for source countrys in industryi becomes

Aist =
exp {kOLS

ist }
exp

{
1
S

∑S
ς=1 k

OLS
iςt

} =
exp {kist}

exp
{

1
S

∑S
ς=1 kiςt

} , (7)

wherekOLS
ist is the OLS estimate ofkist in (6).

As is well known (Silva and Tenreyro 2006, Head and Mayer 2014), thelinear regression model (6) is

inconsistent with the presence of zero trade flows, which are common in bilateral data. We recast EK to allow for

zero trade by following Eaton, Kortum, and Sotelo (2012), who posit that ineach industry in each country only

a finite number of firms make productivity draws, meaning that in any realizationof the data there may be no

trade. A Fréchet distribution for country-industry productivity emerges as an equilibrium outcome in this environment, where the location
parameter of this distribution reflects the current stock of ideas in a country.

11These include log distance between the importer and exporter, the time difference (and time difference squared) between the importer
and exporter, a contiguity dummy, a regional trade agreement dummy,a dummy for both countries being members of GATT, a common
official language dummy, a common prevalent language dummy, a colonial relationship dummy, a common empire dummy, a common
legal origin dummy, and a common currency dummy.

12We estimate (6) separately by industry and by year. Since in each year theregressors are the same across industries for each bilateral
exporter-importer pair, there is no gain to pooling data across industries inthe estimation.
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firms from countrys that have sufficiently high productivity to profitably supply destination market d in industry

i. Instead of augmenting the expected log trade flowE [lnXisd] from gravity equation (2) with a disturbance,

Eaton, Kortum, and Sotelo (2012) consider the expected share of country s in the market for industryi in country

d,E [Xisd/Xid], and write this share in terms of a multinomial logit model. This approach requiresthat one know

total expenditure in the destination market,Xid, including a country’s spending on its own goods. Since total

spending is unobserved in our data, we invoke independence of irrelevant alternatives and specify the dependent

variable as the expectation for the share of source countrys in import purchases by destinationd in industryi:

E

[

Xisdt
∑

ς 6=dXiςdt

]

=
exp {kist − r′sdtbit}

∑

ς 6=d exp
{
kiςt − r′ςdtbit

} . (8)

Since estimation of (8) is well approximated the Poisson pseudo-maximum-likelihood (PPML) gravity model

(Silva and Tenreyro 2006), we re-estimate exporter-industry-year fixed effects by applying PPML.13

Our baseline measure of absolute advantage uses regression-based estimates of exporter-industry-year fixed

effects, which may be imprecise when a country exports a good to few destinations in a given year. As an

alternative measure of export performance, we use the Balassa (1965) revealed comparative advantage (RCA)

index:

RCAist ≡
∑

dXisdt/
∑

ς

∑

dXiςdt
∑

ι

∑

dXιsdt/
∑

ι

∑

ς

∑

dXιςdt
. (9)

The RCA index does not correct for trade costs or proximity to market demand; it uses just raw trade data.

Throughout our analysis we will employ OLS and PPML gravity-based measures of absolute advantage (7)

alongside the Balassa RCA index (9). Reassuringly, our results for the three measures are quite similar.

3 Data and Main Regularities

The data for our analysis are World Trade Flows from Feenstra, Lipsey, Deng, Ma, and Mo (2005), and their

extension to 2007, which are based on SITC revision 1 industries for 1962 to 1983 and SITC revision 2 industries

for 1984 to 2007. We create a consistent set of country aggregates in these data by maintaining as single units

countries that split up or unite over the sample period.14 To further maintain consistency in the countries present,

we restrict the sample to nations that trade in all years and that exceed a minimalsize threshold, which leaves 116

country units.15 The switch from SITC revision 1 to revision 2 in 1984 led to the creation of manynew industry

13We thank Sebastian Sotelo for estimation code.
14These countries are the Czech Republic, the Russian Federation, and Yugoslavia. We join East and West Germany, Belgium and

Luxembourg, as well as North and South Yemen.
15This reporting restriction leaves 141 importers (97.7% of world trade) and 139 exporters (98.2% of world trade) and is roughly

equivalent to dropping small countries from the sample. For consistency in terms of country size, we drop countries with fewer than 1
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categories. To maintain a consistent set of SITC industries over the sample period, we aggregate industries to a

combination of two- and three-digit categories.16 These aggregations and restrictions leave 133 industries in the

data. In an extension of our main analysis, we limit the sample to SITC revision 2 data for 1984 forward, so we

can check the sensitivity of our results to industry aggregation by using two-digit (60 industries) and three-digit

definitions (225 industries), which bracket the industry definitions that weuse for the full-sample period.17

A further set of country restrictions is required to estimate importer and exporter fixed effects. For coefficients

on exporter-industry dummies to be comparable over time, it is important to require that destination countries

import a product in all years. Imposing this restriction limits the sample to 46 importers, which account for an

average of 92.5% of trade among the 116 country units. In addition, we need that exporters ship to overlapping

groups of importing countries. As Abowd, Creecy, and Kramarz (2002)show, such connectedness assures that

all exporter fixed effects are separately identified from importer fixed effects. This restriction leaves 90 exporters

in the sample that account for an average of 99.4% of trade among the 116 country units. Using our sample of

90 exporters, 46 importers, and 133 industries, we estimate the gravity equation (6) separately by industryi and

yeart and then extract absolute advantageAist given by (7). Data on gravity variables are from CEPII.org.

3.1 Stable heavy tails in export advantage

Figure 1 depicts the full distribution of absolute advantage across industries for 12countries in 2007.18 The plots

show the log number of industries for exporters that have at least a given level of absolute advantage in yeart

against the corresponding log level of industry absolute advantagelnAist. By design, the plots characterize the

cumulative distributions of absolute advantage by country and by year (Axtell 2001, Luttmer 2007). Plots for 28

countries in 1967, 1987 and 2007 are shown in AppendixFigures A1, A2 andA3. While the lower cutoff for

million inhabitants in 1985, reducing the sample to 116 countries (97.4% of world trade).
16There are 226 three-digit SITC industries that appear in all years, which account for 97.6% of trade in 1962 and 93.7% in 2007.

Some three-digit industries frequently have their trade reported only at the two-digit level (which accounts for the just reported decline
in trade shares for three-digit industries). We aggregate over these industries, creating 143 industry categories that are a mix of SITC
two and three-digit industries. From this group we drop non-standard industries: postal packages (SITC 911), special transactions (SITC
931), zoo animals and pets (SITC 941), non-monetary coins (SITC 961), and gold bars (SITC 971). We further exclude uranium (SITC
286), coal (SITC 32), petroleum (SITC 33), natural gas (SITC 341), and electrical current (SITC 351), which violate the Abowd, Creecy,
and Kramarz (2002) requirement of connectedness for estimating identified exporter fixed effects in many years.

17In an earlier version of our paper, we estimated OLS gravity equations for four-digit SITC revision 2 products (682 industries).
PPML estimates at the four-digit level turn out to be quite noisy, owing to the many exporters in industries at this level of disaggregation
that ship goods to no more than a few importers. Consequently, we exclude data on four-digit industries from the analysis.

18In the Online Supplement (Table S1), we show the top two products in terms of lnAist for select countries and years. To remove the
effect of national market size and make values comparable across countries, we normalize log absolute advantage by its country mean,
which produces a double log difference—a country-industry’s log deviation from the global industry mean less the country-wide average
across all industries—and captures comparative advantage. The magnitudes of export advantage are enormous. In 2007, comparative
advantage in the top product is over 300 log points in 88 of the 90 exporting countries. To verify that our measure of export advantage
does not peg obscure industries as top industries, in the Online Supplement (Figure S1) we plotlnAist against the log of the share of the
industry in national exportsln(Xist/(

∑
ι Xιst)). In all years, there is a strongly positive correlation between log absoluteadvantage and

the log industry share of national exports (0.77 in 1967, 0.78 in 1987, and 0.83 in 2007).
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Figure 1:Cumulative Probability Distribution of Absolute Advantage for Select Countries in 2007
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries in
2005-2007 and CEPII.org; three-year means of OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the frequency of industries (the cumulative probability 1− FA(a) times the total number of industriesI = 133)
on the vertical axis plotted against the level of absolute advantagea (such thatAist ≥ a) on the horizontal axis. Both axes have a log
scale. The fitted Pareto and log normal distributions are based on maximumlikelihood estimation by countrys in yeart = 2007 (Pareto
fit to upper five percentiles only).
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absolute advantage shifts right over time, the shape of the cross-section CDF is remarkably stable across countries

and years. This shape stability of the cross-sectional absolute advantage distribution suggests that comparative

advantage is trend stationary, a robust feature that we will revisit undervarying perspectives.

The figures also graph the fit of absolute advantage to a Pareto distributionand to a log normal distribution

using maximum likelihood, where each distribution is fit separately for each country in each year. The Pareto

and the log normal are common choices in the literatures on the distribution of city and firm sizes (e.g., Sutton

1997). For the Pareto distribution, the cumulative distribution plot is linear in thelogs, whereas the log normal

distribution generates a relationship that is concave to the origin.

The cumulative distribution plots clarify that the empirical distribution of absoluteadvantage is not Pareto.

The log normal, by contrast, fits the data closely. The concavity of the data plots indicate that gains in absolute

advantage fall off progressively more rapidly as one moves up the rankorder of absolute advantage, a feature

characteristic of the log normal. The upper tails of the distribution are heavy.Across all countries and years, the

ratio of the mean to the median is 11.1 for absolute advantage based on our baseline OLS estimates of export

capability, 23.5 for absolute advantage based on PPML estimates, and 1.2 for the Balassa RCA index.19 Though

overall the log normal approximates the shape of the distribution for absoluteadvantage, for some countries the

number of industries in the upper tail drops too fast, relative to strict log normality. These discrepancies motivate

our specification of a generalized logistic diffusion for absolute advantage in Section 4.

To make sure that our findings are not the byproduct of incompletely modelled zero bilateral trade in the

gravity estimation, we also show plots based on PPML estimates of export capability, with similar results. To

verify that the graphed cross-section distributions are not a byproduct of specification error in estimating the

gravity model, we repeat the plots using the Balassa RCA index in 1987 and 2007, again with similar results.

And to verify that the patterns we uncover are not a consequence of industry aggregation, we construct plots at

the three-digit level based on SITC revision 2 data in 1987 and 2007, yetagain with similar results.20

Figures A1, A2andA3 in the Appendix provide visual evidence that the heavy-tailed shape of thedistribution

of absolute advantage for individual countries are stable over time. To substantiate this property of the data, we

pool industry-level measures of comparative advantage across countries and plot the percentiles of this global

distribution in each year, as shown inFigure 2 for OLS-based measures of export capability and for Balassa

RCA indexes.21 The plots for the 5th/95th, 20th/80th, 30th/70th, and 45th/55th percentiles are, with minor

fluctuation, parallel to the horizontal axis. This is a strong indication that the global distribution of comparative

advantage is stationary. If it were the case that comparative advantage degenerated, the percentile lines would

19To compute the reported mean-median ratios, we omit outliers and weight by industry counts within country-years.
20Each of these additional sets of results is available in the Online Supplement: Figures S2 and S3 for the PPML estimates, Figures S4

and S5 for the Balassa measure, and Figures S6, S7, S8 and S9 for thetwo- and three-digit industry definitions under SITC revision 2.
21The Online Supplement (Figure S10) shows percentile plots for PPML-based measures of export capability.
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Figure 2:Percentiles of Comparative Advantage Distributions by Year
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from
1962-2007; OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: We obtain log comparative advantage as the residuals from OLS projections on industry-year and source country-year effects (δit
andδst) for (a) OLS gravity measures of log absolute advantagelnAist and (b) the log Balassa index of revealed comparative advantage
lnRCAist = ln(Xist/

∑
ς Xiςt)/(

∑
ι Xιst/

∑
ι

∑
ς Xιςt).

slope downward from above the mean and upward from below the mean, asthe distribution became increasingly

compressed over time, a pattern clearly not in evidence. If, instead, the distribution of comparative advantage

was non-stationary, we would see the upper percentile lines drifting upward and the lower percentile lines drifting

downward. There is mild drift only in the extreme tails of the distribution, the1st and99th percentiles, and there

only during the early 2000s, a pattern which stalls or reverses after 2005.

Before examining the time series of export advantage in more detail, we consider whether a log normal

distribution of absolute advantage could be an incidental consequence ofthe gravity estimation. The exporter-

industry fixed effects are estimated sample parameters, which by the CentralLimit Theorem converge to being

normally distributed around their respective population parameters as the sample size becomes large. However,

normality of this log export capability estimator does not imply that the cross-sectional distribution of absolute

advantage becomes log normal. If no other element but the residual noise from gravity estimation generated log

normality in absolute advantage, then the cross-sectional distribution of absolute advantage between industries

in a country would be degenerate around a single mean. The data are clearly in favor of non-degeneracy for

the distribution of absolute advantage.Figure 1 and its counterparts (Figures A1, A2andA3 in the Appendix)

document that industries within a country differ markedly in terms of their mean export capability.22

22The distribution of Balassa revealed comparative advantage is also approximately log normal, which indicates that non-regression
based measures of comparative advantage exhibit similar distributionalpatterns.
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Figure 3:Absolute Advantage Transition Probabilities
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from
1962-2007; OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the percentiles of productsis that are currently among the top 5% of products, 20 years earlier. The sample
is restricted to products (country-industries)is with current absolute advantageAist in the top five percentiles (1 − FA(Aist) ≥ .05),
and then grouped by frequencies of percentiles twenty years prior, where the past percentile is1 − FA(Ais,t−20) of the same product
(country-industry)is. For the classification of less developed countries (LDC) see the Supplementary Material (Section S.1).

3.2 Churning in export advantage

The stable distribution plots of absolute advantage give an impression of little variability. The strong concavity

in the cross-sectional plots is present in all countries and in all years. Yet, this cross-sectional stability masks

considerable turnover in industry rankings of absolute advantage behind the cross-sectional distribution. Of the

90 exporters, 68 have a change in the top comparative-advantage industry between 1987 and 2007.23 Over

this period, Canada’s top good switches from sulfur to wheat, China’s from fireworks to telecommunications

equipment, India’s from tea to precious stones, and Poland’s from barley to furniture. Moreover, most new top

products in 2007 were not the number one or two good in 1987 but from lower down the ranking.

To characterize churning in industry export advantage, inFigure 3 we calculate the fraction of top products

in a given year that were also top products in the past. For each country ineach year, we identify where in the

distribution the top 5% of absolute-advantage products (in terms ofAist) were 20 years earlier. We then average

across outcomes for the 90 export countries. The fraction of top 5% products in a given year that were also top

5% products two decades before ranges from a high of 42.9% in 2002 to alow of 36.7% in 1997. Averaging over

all years, the share is 40.2%, indicating a 60% chance that a good in the top 5% in terms of absolute advantage

today was not in the top 5% two decades before. On average, 30.6% of new top products come from the 85th to

95th percentiles, 15.5% come from the 60th to 85th percentiles, and 11.9% comefrom the bottom six deciles.

23Evidence of this churning is seen in the Online Supplement (Table S1).
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Outcomes are similar when we limit the sample to developing economies.

Turnover in top export goods suggests that over time export advantagedissipates—countries’ strong indus-

tries weaken and their weak industries strengthen—as would be consistentwith mean reversion. We test for mean

reversion in export capability by specifying the AR(1) process

kOLS
is,t+10 − kOLS

ist = ρ kOLS
ist + δit + δst + εis,t+10, (10)

wherekOLS
ist is the OLS estimate of log export capability from gravity equation (6). In (10), the dependent variable

is the ten-year change in export capability and the predictors are the initial value of export capability and dummies

for the industry-yearδit and for the country-yearδst. We choose a long time difference for export capability—a

full decade—to help isolate systematic variation in country export advantages. Controlling for industry-year fixed

effects converts export capability into a measure of absolute advantage;controlling additionally for country-year

fixed effects allows us to evaluate the dynamics of comparative advantage.The coefficientρ captures the fraction

of comparative advantage that decays over ten years. The specification in (10) is similar to the productivity

convergence regressions reported in Levchenko and Zhang (2013), except that we use trade data to calculate

country advantage in an industry, examine industries at a considerably more disaggregate level, and include both

manufacturing and nonmanufacturing industries in the analysis. Because we estimate log export capabilitykOLS
ist

from the first-stage gravity estimation in (6), we need to correct the standard errors in (10) for the presence of

generated variables. To do so, we apply a generated-variable correction (see Appendix D).

Table 1 presents coefficient estimates for equation (10). The first three columnsreport results for log export

capability based on OLS, the next three for log export capability based onPPML, and the final three for the log

Balassa RCA index. Estimates forρ are uniformly negative, consistent with mean reversion in export advan-

tage. We soundly reject the hypothesis that there is no decay (H0: ρ = 0) and also the hypothesis that there is

instantaneous dissipation (H0: ρ = −1) at conventional levels of significance. Estimates for the full sample of

countries and industries in columns 1, 4, and 7 are similar in value, equal to−0.35 when using OLS log export

capability,−0.32 when using PPML log export capability, and−0.30 when using log RCA. These magnitudes

indicate that over the period of a decade the typical country-industry sees approximately one-third of its compar-

ative advantage (or disadvantage) erode. In columns 2, 5, and 8, we present comparable results for the subsample

of developing countries. Decay rates for this group are larger than the worldwide averages in columns 1, 4,

and 7, indicating that in less-developed economies mean reversion in comparative advantage is more rapid. In

columns 3, 6, and 9, we present results for nonmanufacturing industries(agriculture, mining, and other primary

commodities). For PPML export capability and Balassa RCA, decay rates for the nonmanufacturing industries

are similar to those for the full sample of industries.
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Table 1: OLS ESTIMATES OFCOMPARATIVE ADVANTAGE DECAY, 10-YEAR TRANSITIONS

OLS gravityk PPML gravityk lnRCA
All LDC Nonmanf. All LDC Nonmanf. All LDC Nonmanf.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Decay Regression Coefficients
Decay rateρ -0.349 -0.454 -0.450 -0.320 -0.358 -0.322 -0.303 -0.342 -0.293

(0.002)∗∗∗ (0.002)∗∗∗ (0.003)∗∗∗ (0.0002)∗∗∗ (0.0003)∗∗∗ (0.0003)∗∗∗ (0.01)∗∗∗ (0.013)∗∗∗ (0.012)∗∗∗

Var. of residuals2 2.089 2.408 2.495 2.709 3.278 3.123 2.318 2.849 2.561
(0.024)∗∗∗ (0.026)∗∗∗ (0.042)∗∗∗ (0.013)∗∗∗ (0.018)∗∗∗ (0.021)∗∗∗ (0.006)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗

Implied Ornstein-Uhlenbeck (OU) Parameters
Dissipation rateη 0.276 0.292 0.280 0.198 0.179 0.173 0.222 0.199 0.195

(0.003)∗∗∗ (0.003)∗∗∗ (0.005)∗∗∗ (0.0009)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.006)∗∗∗ (0.006)∗∗∗ (0.006)∗∗∗

Intensity of innovationsσ 0.558 0.644 0.654 0.623 0.703 0.670 0.570 0.648 0.596
(0.003)∗∗∗ (0.004)∗∗∗ (0.006)∗∗∗ (0.001)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗ (0.005)∗∗∗ (0.009)∗∗∗ (0.006)∗∗∗

Observations 324,978 202,010 153,768 320,310 199,724 149,503 324,983 202,014 153,773
AdjustedR2 (within) 0.222 0.267 0.262 0.282 0.290 0.266 0.216 0.224 0.214

Yearst 36 36 36 36 36 36 36 36 36
Industriesi 133 133 68 133 133 68 133 133 68
Source countriess 90 62 90 90 62 90 90 62 90

Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and CEPII.org; OLS and
PPML gravity measures of export capability (log absolute advantage)k = lnA from (8).
Note: Reported figures for ten-year changes. Variables are OLS and PPML gravity measures of log absolute advantagelnAist and the log Balassa index of revealed comparative
advantagelnRCAist = ln(Xist/

∑
ς Xiςt)/(

∑
ι Xιst/

∑
ι

∑
ς Xιςt). OLS estimation of the ten-year decay rateρ from

kis,t+10 − kist = ρ kist + δit + δst + ǫis,t+10,

conditional on industry-year and source country-year effectsδit andδst for the full pooled sample (column 1-2) and subsamples (columns 3-6). The implied dissipation rateη and
squared innovation intensityσ2 are based on the decay rate estimateρ and the estimated variance of the decay regression residualŝ2 by (13). Less developed countries (LDC)
as listed in the Supplementary Material (Section S.1). Nonmanufacturing merchandise spans SITC sector codes 0-4. Robust standard errors, clustered at the industry level and
corrected for generated-regressor variation of export capabilityk, for ρ ands2, applying the multivariate delta method to standard errors forη andσ. ∗ marks significance at ten,
∗∗ at five, and∗∗∗ at one-percent level.
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As an additional robustness check, we re-estimate (10) for the period 1984-2007 using data from the SITC

revision 2 sample, reported in AppendixTable A1. Estimated decay rates are comparable to those inTable 1. At

either the two-digit level (60 industries) or three-digit level (224 industries), the decay-rate estimates based on

PPML export capability and RCA indexes are similar to those for the baseline combined two- and three-digit level

(133 industries), with estimates based on OLS export capability being somewhat more variable. Because these

additional samples use data for the 1984-2007 period and the original sample uses the full 1962-2007 period,

these results also serve as a robustness check on the stability in coefficient estimates over time.24

3.3 Comparative advantage as a stochastic process

On its own, mean reversion in log export capability is uninformative about thedynamics of its distribution.25

While mean reversion is consistent with a stationary cross-sectional distribution, it is also consistent with a

non-ergodic distribution or a degenerate comparative advantage that collapses at a long-term mean of one (log

comparative advantage of zero). Degeneracy in comparative advantage is an interpretation that has arisen from

the findings in Levchenko and Zhang (2013) of cross-country convergence in industry productivities. Yet, the

combination of mean reversion inTable 1and temporal stability of the cumulative distribution plots inFigure 1

suggests a balance between random innovations to export capability and the deterministic dissipation of these

capabilities, a balance characteristic of a stochastic process that generates a stationary cross-sectional distribution.

The decay regression in (10) is consistent with the discretized version ofa commonly studied stochastic

process, the Ornstein-Uhlenbeck (OU) process, which belongs to the family of diffusions (Markov processes for

which all realizations of the random variable are continuous functions of timeand past realizations). The OU

process is the unique non-degenerate diffusion that has a stationary normal distribution (Karlin and Taylor 1981).

Consider log comparative advantageln Âis(t)—export capability normalized by industry-year and country-year

means. Suppose that in continuous time comparative advantageÂis(t) follows an OU process given by

d ln Âis(t) = −ησ2

2
ln Âis(t) dt+ σ dW Â

is (t), (11)

whereW Â
is (t) is a Wiener process that induces stochastic innovations in comparative advantage.26 The parameter

24Our finding that decay rates imply incomplete mean reversion is further evidence against absolute advantage being incidental. Sup-
pose that the cumulative distribution plots of log absolute advantage reflected random variation in export capability around a common
expected value for each country in each year due to measurement error in trade data. If this measurement error were classical, all within-
country variation in the exporter-industry fixed effects would be the result of iid disturbances that were uncorrelated across time. We
would then observe no temporal connection between these distributions. When estimating the decay regression in (10), mean reversion
would be complete, yielding a value ofρ close to−1. The coefficient estimates are inconsistent with such a pattern.

25A case in point is Quah’s (1993, 1996) critique of using cross-countryregressions to test for convergence in rates of economic growth.
26To relate equation (11) to trade theory, our specification for the evolution of export advantage is analogous to the equation of motion

for a country’s stock of ideas in the dynamic EK model of Buera and Oberfield (2016). In their model, each producer in source country
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η regulates the rate at which comparative advantage reverts to its global long-run mean and the parameterσ

scales time and therefore the Brownian innovationsdW Â
is (t).

27 Because comparative advantage reflects a double

normalization of export capability, it is natural to consider a global mean of zero for ln Âis(t). As mentioned,

the OU process has a stationary normal distribution, so its specification for log comparative advantageln Âis(t)

implies thatÂis(t) has a stationary log normal distribution.

In (11), we refer to the parameterη as thedissipation rateof comparative advantage because it contributes to

the speed at whichln Âis(t) would collapse to a degenerate level of zero if there were no stochastic innovations.

The parametrization in (11) implies thatη alone determines the shape of the stationary distribution, whileσ is

irrelevant for the cross section. Our parametrization treatsη as a normalized rate of dissipation that measures

the “number” of one-standard deviation shocks that dissipate per unit oftime. We refer toσ as theinnovation

intensity. It plays a dual role:σ governs volatility by scaling the Wiener innovations, and helps regulate the speed

at which time elapses in the deterministic part of the diffusion.

To connect the continuous-time OU process in (11) to our decay regression in (10), we use the fact that

the discrete-time process that results from sampling an OU process at a fixed time interval∆ is a Gaussian

first-order autoregressive process with autoregressive parameterexp{−ησ2∆/2} and innovation variance(1 −
exp{−ησ2∆})/η (Aït-Sahalia, Hansen, and Scheinkman 2010, Example 13). Applying this insight to the first-

difference equation above, we obtain our decay regression:

kis(t+∆)− kis(t) = ρ kis(t) + δi(t) + δs(t) + εis(t, t+∆), (12)

which implies for the reduced-form decay parameter that

ρ ≡ −(1− exp{−ησ2∆/2}) < 0,

for the unobserved country fixed effectδs(t) ≡ lnZs(t+∆) − (1+ρ) lnZs(t), whereZs(t) is an arbitrary

time-varying country-specific shock, and for the residualεist(t, t+∆) ∼ N
(
0, (1− exp{−ησ2∆})/η

)
.28 An

s draws a productivity from a Pareto distribution, where this productivity combines multiplicatively with ideas learned from other firms,
either within the same country or in different countries. Learning—or exposure to ideas—occurs at an exogenous rateαs(t) and the
learning of one producer from another depends on the parameterβ, which captures the transmissibility of ideas between producers. In
equilibrium, the distribution of productivity across suppliers within a countryis Fréchet, with location parameter equal to a country’s
current stock of ideas. The OU process in (11) emerges from the equation of motion for the stock of ideas in Buera and Oberfield (2016,
equation (4)) as the limiting case with the transmissibility parameterβ → 1, provided that the learning rateαs(t) is subject to random
shocks and producers in a country only learn from suppliers within the same country. In Section 7, we discuss how equation (11) could
be extended to allow for learning across national borders.

27Among possible parameterizations of the OU process, we choose (11) because it is related to our later extension to a generalized
logistic diffusion and clarifies that the parameterσ is irrelevant for the shape of the cross-sectional distribution. We deliberately specify
η andσ to be invariant over time, industry and country and in Section 5 assess the fit under this restriction.

28For theoretical consistency, we state the country fixed effectδs(t) as a function of the shockZs(t), which we will formally define as
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OU process withρ ∈ (−1, 0) generates a log normal stationary distribution in the cross section, with a shape

parameter of1/η and a zero mean.

The reduced-form decay coefficientρ in (12) is a function of both the dissipation rateη and the intensity of

innovationsσ and may differ across samples because either or both of those parametersvary. This distinction is

important becauseρ may vary even if the shape of the distribution of comparative advantage does not change.29

From OLS estimation of (12), we can obtain estimates ofη andσ2 using the solutions,

η =
1− (1 + ρ̂)2

ŝ2
(13a)

σ2 =
ŝ2

1− (1 + ρ̂)2
ln (1 + ρ̂)−2

∆
, (13b)

whereρ̂ is the estimated decay rate andŝ2 is the estimated variance of the decay regression residual.

Table 1 shows estimates ofη andσ2 implied by the decay regression results, with standard errors obtained

using the multivariate delta method.30 The estimate ofη based on OLS export capability, at0.28 in column 1

of Table 1, is larger than those based on PPML export capability, at0.20 in column 4, or the log RCA index, at

0.22 in column 7, implying that the distribution of OLS export capability will be more concave to the origin. But

estimates generally indicate strong concavity, consistent with the visual evidence inFigure 1. To gain intuition

aboutη, suppose the intensity of innovations of the Wiener process is unity (σ = 1). Then a value ofη equal to

0.28 means that it will take 5.0 years for half of the initial shock to log comparative advantage to dissipate (and

16.4 years for 90% of the initial shock to dissipate). Alternatively, ifη equals0.20 it will take 6.9 years for half

of the initial shock to decay (and 23.0 years for 90% of the initial shock to dissipate).31

To see how the dissipation rate and the innovation intensity affect the reduced-form decay parameterρ, we

contrastη andσ2 estimates across subsamples. First, compare the estimate forρ in the subsample of developing

economies in column 2 ofTable 1 to that in the full sample of countries in column 1. The larger estimate

of ρ in the former sample (−0.45 in column 2 versus−0.35 in column 1) implies thatreduced-formmean

reversion is relatively rapid in developing countries. However, this result is silent about how the shape of the

distribution of comparative advantage varies across nations. The similarity inthe estimated dissipation rate

η between the developing-country sample(η = 0.29) and the full-country sample(η = 0.28) indicates that

a country-wide stochastic trend in equation (14) below and then identify in subsequent GMM estimation.
29The estimated value ofρ is sensitive to the time interval△ that we define in (12), whereas the estimated value ofη is not. At shorter

time differences—for which there may be relatively more noise in exportcapability—the estimated magnitude ofσ is larger and therefore
the reduced-form decay parameterρ is as well. However, the estimated intrinsic speed of mean reversionη is unaffected. In unreported
results, we verify these insights by estimating the decay regression in (10)for time differences of 1, 5, 10, and 15 years.

30Details on the construction of standard errors forη andσ2 are available in the Online Supplement (Section S.3).
31In the absence of shocks and forσ = 1, log comparative advantage follows the deterministic differential equationd ln Âis(t) =

−(η/2) ln Âis(t) dt by (16) and It̄o’s lemma, with the solutionln Âis(t) = ln Âis(0) exp{−(η/2)t}. Therefore, the number of years
for a dissipation ofln Âis(0) to a remaining levelln Âis(T ) is T = 2 log[ln Âis(0)/ ln Âis(T )]/η.
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comparative advantage is similarly heavy-tailed in the two groups. The largerreduced-form decay rateρ for

developing countries results from a larger intensity of innovations (σ = 0.64 in column 2 versusσ = 0.56 in

column 1, where this difference is statistically significant). While a one-standard-deviation shock to comparative

advantage in a developing country dissipates at roughly the same rate as in an industrialized country, because the

magnitude of this shock is larger for the developing country, its observed rate of decay will be faster.

Second, compare nonmanufacturing industries in column 3 to the full sample ofindustries in column 1.

Whereas the average nonmanufacturing industry differs from the average overall industry in the reduced-form

decay rateρ (−0.45 in column 3 versus−0.35 in column 1), it shows no difference in the estimated dissipation

rateη (0.28 in column 1 versus0.29 in column 3), implying that comparative advantage has comparably heavy

tails inside and outside manufacturing. However, the intensity of innovationsσ is larger for nonmanufacturing

(0.65 in column 3 versus0.56 in column 1), due perhaps to higher volatility associated with resource discover-

ies. These nuances regarding the shape of and the convergence speed toward the cross-sectional distribution of

comparative advantage are undetectable when one considers the reduced-form decay rateρ alone.32

The diffusion model in (11) and its discrete-time analogue in (12) reveal a deep connection between heavy

tails in export advantage and churning in industry export ranks. Random innovations in absolute advantage cause

industries to change positions in the cross-sectional distribution of comparative advantage for a country at a rate

of innovation precisely fast enough so that the deterministic dissipation of absolute advantage creates a stable,

heavy-tailed distribution of export prowess. We turn next to a generalization of the OU process and a more

rigorous characterization of the dynamic behavior.

4 The Diffusion of Comparative Advantage

Over time, the stochastic process must match the cumulative distributions inFigure 1. Figures A1 throughA3 in

the Appendix show for more countries, and over time in 1967, 1987 and 2007, that the cross-sectional distribu-

tions of absolute advantage shift right for each country, consistent withthe series being non-stationary. Yet, the

cross-section distributions preserve their shape across periods, suggesting that once we adjust absolute advantage

for country-wide productivity growth, the resulting series is stationary. We define this series to begeneralized

comparative advantage, written in continuous time as

Âis(t) ≡
Ais(t)

Zs(t)
, (14)

32AppendixTable A1 shows results for two- and three-digit industries for the subperiod 1984-2007. Whereas reduced-form decay rates
ρ increase in magnitude as one goes from the two- to the three-digit level, dissipation ratesη remain stable. The difference in reduced-
form decay ratesρ is driven by a higher intensity of innovationsσ among the more narrowly defined three-digit industries. Intuitively,
the magnitude of shocks to comparative advantage is larger in the more disaggregated product groupings.
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whereAis(t) is observed absolute advantage andZs(t) is an unobserved country-wide stochastic trend (an arbi-

trary country-specific shock to absolute advantage).33

The appealing simplicity of the OU process notwithstanding, a concern for empirically characterizing com-

parative advantage over time is the strict log-linearity of the deterministic dissipation component: by (11) the

change in log comparative advantage depends linearly on the log level of comparative advantage. In order to

allow the deterministic component to vary with the level of comparative advantage more generally, we replace

the termln Âis(t) with a common transformation:

d ln Âis(t) = −ησ2

2

Âis(t)
φ − 1

φ
dt+ σ dW Â

is (t). (15)

By L’Hôpital’s rule, the generalized term[Âis(t)
φ−1]/φ simplifies toln Âis(t) asφ approaches zero.34 Next, we

use (15) to derive a generalized diffusion, which guides the specification and estimation of a stochastic process

for comparative advantage that is less restrictive than the OU.

4.1 Generalized logistic diffusion

Using Itō’s lemma, we can restate the diffusion of log comparative advantage (15) as the relative change in

comparative advantage with

dÂis(t)

Âis(t)
=

σ2

2

[

1− η
Âis(t)

φ − 1

φ

]

dt+ σ dW Â
is (t), (16)

a diffusion for the real parameters(η, σ, φ). The variableW Â
is (t) is the Wiener process. The diffusion (16) nests

the OU process asφ → 0 (with η finite). For the special case ofφ = 1, the process is known as the stochastic

logistic equation or ordinary logistic diffusion (Leigh 1968). We thereforecall (16) ageneralized logistic diffusion

(GLD). While we intentionally stay within the family of diffusions, the GLD allows usto test the OU process

against well-defined alternatives, to evaluate the fit of the model to the data,and to characterize the dynamic

implications of the model—all of which we undertake in Section 5.35 The GLD also allows us to make the

33This measure satisfies the properties of comparative advantage in (5),which compares country and industry pairs.
34The generalized term is a common choice in many fields. In econometrics,it is known as the Box-Cox transformation (Box and

Cox 1964), in macroeconomics and decision theory a similar generalization of log utility is called the isoelastic utility function or CRRA
(constant relative risk aversion) utility (Pratt 1964), and in statistical mechanics it is referred to as Tsallis entropy (Tsallis 1988).

35Returning to the connection between our approach and the dynamic EK model in Buera and Oberfield (2016)—also see footnotes 10
and 26—the specification in (16) is equivalent to their equation of motion forthe stock of ideas (Buera and Oberfield 2016, equation (4))
under the assumptions that producers only learn from suppliers within their national borders and the learning rateαs (t) is constantly
growing across industries, countries, and over time but subject to idiosyncratic shocks. The parameterφ in (16) is equivalent to the value
β − 1 in their model, whereβ captures the transmissibility of ideas between producers. Our finding, discussed in Section 5, thatφ is
small and negative implies that the value ofβ in the Buera and Oberfield (2016) model is large (but just below1, as they require).
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deterministic dissipation of comparative advantage depend on the current level of comparative advantage, so as

to provide additional realism for our simulations in Section 6.

The term(σ2/2)[1 − η{Âis(t)
φ − 1}/φ] in (16) is a deterministic drift that regulates the relative change

in comparative advantage d̂Ais(t)/Âis(t). It involves constant parameters (η, σ, φ) and a level-dependent com-

ponentÂis(t)
φ, whereφ is the elasticity of the mean reversion with respect to the current level of absolute

advantage, which we call thedecay elasticity. For the OU process (φ → 0), the relative change in absolute

advantage is neutral with respect to the current level. Ifφ > 0, then the drift component̂Ais(t)
φ leads to a faster

than neutral mean reversion from above than from below the mean, indicating that the loss of absolute advantage

in a currently strong industry tends to occur more rapidly than the buildup of absolute disadvantage in a currently

weak industry. Conversely, ifφ < 0 then mean reversion tends to occur more slowly from above than below the

mean. The parametersη andσ in (16) inherit their interpretations from the OU process in (11) as the dissipation

rate and the innovation intensity. As before, the innovation intensityσ regulates the speed of convergence to the

stationary distribution but has no effect on its shape. Under the GLD, the dissipation rateη and decay elasticity

φ jointly determine the heavy tail of the cross-sectional distribution, to which we turn now.

4.2 Cross-sectional distribution of comparative advantage

For real parameters(η, σ, φ), the GLD (16) has a stationary distribution that is generalized gamma. We provide a

derivation in Appendix A and restrict our discussion here to a descriptionof the main properties. The generalized

gamma distribution unifies the gamma and extreme-value distributions, as well as many others (Crooks 2010), and

has the log normal, the Pareto, and other commonly used distributions as special or limiting cases. To motivate

our choice of the GLD, and hence of the generalized gamma as the cross-sectional distribution for comparative

advantage, consider the graphs inFigure 1 (as well asFigures A1 throughA3 in the Appendix). These figures

are broadly consistent with comparative advantage being log normal in the cross section. But they also indicate

that for many countries the number of industries drops off more quickly or more slowly in the upper tail than the

log normal distribution can capture. The generalized gamma distribution accommodates such kurtosis.36

Formally, after arbitrarily much time has passed under the GLD, a cross section of the data has the generalized

gamma pdf for a realization̂ais of the random variable comparative advantageÂis, given by:

fÂ(âis
∣
∣θ̂, κ, φ) =

1

Γ(κ)

∣
∣
∣
∣

φ

θ̂

∣
∣
∣
∣

(
âis

θ̂

)φκ−1

exp

{

−
(
âis

θ̂

)φ
}

for âis > 0, (17)

36Our implementation of the generalized gamma uses three parameters, as inStacy (1962). In their analysis of the firm size distribution,
Cabral and Mata (2003) also use a version of the generalized gamma distribution.
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whereΓ(·) denotes the gamma function and(θ̂, κ, φ) are real parameters with37

θ̂ =
(
φ2/η

)1/φ
> 0 and κ = 1/θ̂φ > 0.

The generalized gamma nests the ordinary gamma distribution forφ = 1 and the log normal or Pareto

distributions whenφ tends to zero.38 A non-degenerate stationary distribution exists only ifη > 0.39

4.3 Cross-sectional distributions of absolute advantage

Absolute advantage, defined as in (3), is measurable by exporter-industry-year fixed effects estimated from the

gravity model in (6). By contrast, generalized comparative advantage, as defined in (14), has an unobserved

country-specific stochastic trendZs(t), and lacks a direct empirical counterpart. We therefore need to identify

Zs(t) in estimation. Intuitively, identification ofZs(t) is possible because we can observe the evolving position

of the cumulative absolute advantage distribution over time and, as we now show, the evolving position is the

only difference between the cumulative distributions of absolute and comparative advantage.

The stationary distribution of absolute advantage is closely related to that of comparative advantage under the

maintained assumption that comparative advantageÂis(t) follows a generalized logistic diffusion given by (16).

As stated before, the GLD of comparative advantage implies that the stationary distribution of comparative ad-

vantageÂis(t) is generalized gamma with the CDF

FÂ(âis
∣
∣θ̂, φ, κ) = G

[(
âis

θ̂

)φ

;κ

]

,

whereG[x;κ] ≡ γx(κ;x)/Γ(κ) is the ratio of the lower incomplete gamma function and the gamma function. We

show in Appendix A.3 that then the cross-sectional distribution of absolute advantageAis(t) is also generalized

gamma, but with the CDF

FA(ais
∣
∣θs(t), φ, κ) = G

[(
ais
θs(t)

)φ

;κ

]

37We allowφ to take any real value (see Crooks 2010), including a strictly negativeφ for a generalized inverse gamma distribution.
Crooks (2010) shows that this generalized gamma distribution (Amorosodistribution) nests the Fréchet, Weibull, gamma, inverse gamma
and numerous other distributions as special cases and yields the normal,log normal and Pareto distributions as limiting cases.

38As φ goes to zero, it depends on the limiting behavior ofκ whether a log normal distribution or a Pareto distribution results (Crooks
2010, Table 1). The parameter restrictionφ = 1 clarifies that the generalized gamma distribution results when one takes an ordinary
gamma distributed variable and raises it to a finite power1/φ.

39In the estimation, we will impose the constraint thatη > 0. If η were negative, comparative advantage would collapse over time for
φ < 0 or explode forφ ≥ 0. We do not constrainη to be finite.
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for the strictly positive parameters

θ̂ =
(
φ2/η

)1/φ
, θs(t) = θ̂Zs(t) and κ = 1/θ̂φ.

These cumulative distribution functions follow from Kotz, Johnson, and Balakrishnan (1994, Ch. 17, Section 8.7).

The cross-section distributions of comparative and absolute advantage differ only in the scale parameter.

For comparative advantage, the scale parameterθ̂ is time invariant; for absolute advantage, the scale parameter

θ̂Zs(t) is time varying but country specific. Empirically,θ̂Zs(t) increases over time so that, visually, the plotted

cumulative distributions of absolute advantage shift rightward over time (as can bee seen from a comparison of

the cumulative distribution plots for 1967, 1987 and 2007 in AppendixFigures A1, A2andA3).

This connection between the cumulative distributions of absolute and comparative advantage allows us to

estimate a GLD for generalized comparative advantage based on data for absolute advantage alone. The mean of

the log of the distribution of absolute advantage is as a function of the model parameters, enabling us to identify

the trend from the relationEst[ln Âis(t)] = Est[lnAis(t)]− lnZs(t), which follows by definition (14).40 As we

show in Appendix B, if comparative advantageÂis(t) follows the GLD (16), then the country specific stochastic

trendZs(t) can be identified from the first moment of the logarithm of absolute advantageusing

Zs(t) = exp

{

Est[lnAis(t)]−
ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ

}

, (18)

whereΓ′(κ)/Γ(κ) is the digamma function. Crucially, we can obtain detrended comparative advantage measures

based on the sample analog of equation (18):

Âis(t) = exp






lnAis(t)−

1

I

I∑

j=1

lnAjs(t) +
ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ






, (19)

which permits us to use (the observed series of) absolute advantageAis(t) to estimate the GLD of (the unobserved

series) comparative advantageÂis(t).

4.4 A GMM estimator

The generalized logistic diffusion model (16) has no known closed-formtransition density whenφ 6= 0. We

therefore cannot evaluate the likelihood of the observed data and cannot perform maximum likelihood estimation.

However, an attractive feature of the GLD is that it can be transformed intoa stochastic process that belongs to the

40The expectations operatorEst[·] denotes the conditional expectation for source countrys at timet.
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Pearson-Wong family, for which closed-form solutions of the conditionalmoments do exist.41 As documented

in detail in Appendix C, we construct a consistent GMM estimator based on theconditional moments of a

transformation of comparative advantage, using results from Forman andSørensen (2008).

Formally, if comparative advantagêAis(t) follows the generalized logistic diffusion (16) with real parameters

η, σ, φ (η > 0), then the transformed variable

B̂is(t) = [Âis(t)
−φ − 1]/φ (20)

follows the diffusion

dB̂is(t) = −σ2

2

[(
η − φ2

)
B̂is(t)− φ

]

dt+ σ

√

φ2B̂is(t)2 + 2φB̂is(t) + 1 dW B̂
is (t)

and belongs to the Pearson-Wong family (see Appendix C.1 for the derivation). As elaborated in Appendix C.2,

it is then possible to recursively derive then-th conditional moment of the transformed processB̂is(t) and to

calculate a closed form for the conditional moments of the transformed process at timetτ given the information

set at timetτ−1. If we use these conditional moments to forecast them-th power ofB̂is(tτ ) with time tτ−1

information, the resulting forecast errors are uncorrelated with any function of pastB̂is(tτ−1). We can therefore

construct a GMM criterion for estimation. Denote the forecast error with

Uis(m, tτ−1, tτ ) = B̂is(tτ )
m − E

[

B̂is(tτ )
m
∣
∣
∣B̂is(tτ−1)

]

.

This random variable represents an unpredictable innovation in them-th power ofB̂is(tτ ). As a result, the

forecast errorUis(m, tτ−1, tτ ) is uncorrelated with any measurable transformation ofB̂is(tτ−1).

A GMM criterion function based on these forecast errors is

gisτ (η, σ, φ) ≡ [h1(B̂is(tτ−1))Uis(1, tτ−1, tτ ), . . . , hM (B̂is(tτ−1))Uis(M, tτ−1, tτ )]
′,

where eachhm is a row vector of measurable functions specifying instruments for them-th moment condition.

This criterion function has mean zero due to the orthogonality between the forecast errors and the timetτ−1

instruments. Implementing GMM requires a choice of instruments. Computational considerations lead us to

choose polynomial vector instruments of the formhm(B̂is(t)) = (1, B̂is(t), . . . , B̂is(t)
K−1)′ to constructK

instruments for each of theM moments that we include in our GMM criterion.42 In the estimation, we useK = 2

41Pearson (1895) first studied the family of distributions now called Pearson distributions. Wong (1964) showed that the Pearson
distributions are stationary distributions of a specific class of stochastic processes, for which conditional moments exist in closed form.

42We work with a suboptimal estimator because the optimal-instrument GMM estimator considered by Forman and Sørensen (2008)
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instruments andM = 2 conditional moments, providing us withK ·M = 4 equations and overidentifying the

three parameters(η, σ, φ). Appendix C.3 gives further details on our GMM routine.

Standard errors of our estimates need to account for the preceding estimation of our absolute advantage

lnAis(t) measures. Newey and McFadden (1994) present a two-step estimation method for GMM, which ac-

counts for generated (second-stage) variables that are predicted (from a first stage). However, our absolute ad-

vantagelnAis(t) measures are not predicted variables but parameter estimates from a gravity equation:lnAis(t)

is a normalized version of the estimated exporter-industry-year fixed effect in equations (6) and (8). Whereas

the Newey-McFadden results require a constant number of first-stage parameters, the number of parameters we

estimate in our first stage increases with our first-stage sample size. Moreover, the moments in GMM time series

estimation (just as the variables in OLS decay estimation in Section 3.2) involve pairs of parameter estimates

from different points in time—lnAis(t) and lnAis(t + ∆)—and thus require additional treatments of induced

covariation in the estimation. In Appendix D, we extend Newey and McFadden(1994), which leads to an al-

ternative two-step estimation method to compute standard errors. We then use the multivariate delta method to

calculate standard errors for transformed functions of the estimated parameters.

5 Estimates

Following the GMM procedure described in Section 4.4, we estimate the dissipation rateη, innovation intensity

σ, and decay elasticityφ in the diffusion of comparative advantage, subject to an estimated country-specific

stochastic trendZs(t). The trend allows absolute advantage to be non-stationary but, because itis common to

all industries in a country, the trend has no bearing on comparative advantage. Estimating the GLD permits us

to test the strong distributional assumptions implicit in the OLS estimation of the discretized OU process and to

evaluate the fit of the model, with or without the OU restrictions applied.

5.1 GMM results for the Generalized Logistic Diffusion

Table 2 presents our baseline GMM estimation results using moments on five-year intervals. We move to a five-

year horizon, from the ten-year horizon in the OLS decay regressionsin Table 1, to allow for a more complete

description of the time-series dynamics of comparative advantage. For robustness, we also report GMM results

using moments on ten-year intervals (see the Online Supplement, Table S3). Similar to the OLS decay regres-

sions, we use measures of export advantage based on OLS gravity estimates of export capability, PPML gravity

requires the inversion of a matrix for each observation. Given our large sample, this task is numerically expensive. Also, we found local
minima in our GMM criterion. At the cost of additional computation, we use a global optimization algorithm to find our estimates ofφ,
η, andσ2. Specifically, we use Matlab’s Genetic Algorithm included in the Global Optimization Toolbox.
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Table 2: GMM ESTIMATES OFCOMPARATIVE ADVANTAGE DIFFUSION, 5-YEAR TRANSITIONS

OLS gravityk PPML gravityk lnRCA
All LDC Nonmanf. All LDC Nonmanf. All LDC Nonmanf.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Estimated Generalized Logistic Diffusion Parameters
Dissipation rateη 0.256 0.270 0.251 0.180 0.166 0.147 0.212 0.194 0.174

(0.004)∗∗∗ (0.006)∗∗∗ (0.005)∗∗∗ (0.006)∗∗∗ (0.004)∗∗∗ (0.005)∗∗∗ (0.006)∗∗∗ (0.012)∗∗∗ (0.008)∗∗∗

Intensity of innovationsσ 0.739 0.836 0.864 0.767 0.863 0.852 0.713 0.789 0.722
(0.010)∗∗∗ (0.017)∗∗∗ (0.017)∗∗∗ (0.037)∗∗∗ (0.03)∗∗∗ (0.045)∗∗∗ (0.051)∗∗∗ (0.082)∗∗∗ (0.042)∗∗∗

Elasticity of decayφ -0.041 -0.071 -0.033 -0.009 -0.002 -0.006 0.006 -0.011 -0.045
(0.017)∗∗ (0.027)∗∗∗ (0.018)∗ (0.035) (0.028) (0.038) (0.053) (0.083) (0.039)

Implied Parameters
Log gen. gamma scaleln θ̂ 121.94 56.50 164.79 900.95 6,122.90 1,425.40 -1,410.50 708.56 99.83

(71.526)∗ (32.175)∗ (120.946) (4581.812) (113520.900) (11449.450) (14980.320) (7069.866) (126.167)

Log gen. gamma shapelnκ 5.017 3.991 5.439 7.788 10.873 8.360 8.641 7.467 4.464
(0.842)∗∗∗ (0.76)∗∗∗ (1.077)∗∗∗ (8.062) (31.199) (12.926) (17.289) (15.685) (1.714)∗∗∗

Mean/median ratio 8.203 8.203 8.293 16.897 20.469 31.716 10.256 13.872 25.286

Observations 392,850 250,300 190,630 389,290 248,360 187,390 392,860 250,300 190,630
Industry-source obs.I × S 11,542 7,853 5,845 11,531 7,843 5,835 11,542 7,853 5,845
Root mean sq. forecast error 1.851 2.028 1.958 1.898 2.026 2.013 1.7601.930 1.965
Min. GMM obj. (× 1,000) 3.27e-13 7.75e-13 7.37e-13 2.56e-12 7.82e-12 5.53e-12 6.79e-12 2.16e-11 1.65e-11

Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and CEPII.org; OLS and
PPML gravity measures of export capability (log absolute advantage)k = lnA from (8).
Note: GMM estimation at the five-year horizon for the generalized logistic diffusion of comparative advantagêAis(t),

d ln Âis(t) = −
ησ2

2

Âis(t)
φ − 1

φ
dt+ σ dW Â

is (t)

using absolute advantageAis(t) = Âis(t)Zs(t) based on OLS and PPML gravity measures of export capabilityk from (6) and (8), and the Balassa index of revealed comparative
advantageRCAist = (Xist/

∑
ς Xiςt)/(

∑
ι Xιst/

∑
ι

∑
ς Xιςt). Parametersη, σ, φ are estimated under the constraintsln η, lnσ2 > −∞ for the mirror Pearson (1895)

diffusion of (20), while concentrating out country-specific trendsZs(t). The implied parameters are inferred asθ̂ = (φ2/η)1/φ, κ = 1/θ̂φand the mean/median ratio is given
by (A.10). Less developed countries (LDC) as listed in the Supplementary Material (Section S.1). The manufacturing sector spans SITC one-digit codes 5-8, the nonmanufacturing
merchandise sector codes 0-4. Robust errors in parentheses (corrected for generated-regressor variation of export capabilityk): ∗ marks significance at ten,∗∗ at five, and∗∗∗ at
one-percent level. Standard errors of transformed and implied parameters are computed using the multivariate delta method.

29



estimates of export capability, and the Balassa RCA index.

The key distinction between the OU process in (11) and the GLD in (15) is the presence of the decay elas-

ticity φ, which allows for asymmetry in mean reversion from above versus below themean. Using OLS gravity

estimates of comparative advantage (columns 1 to 3 inTable 2), the GMM estimate ofφ is negative and statisti-

cally significantly different from zero at conventional levels. Negativityin φ implies that comparative advantage

reverts to the long-run mean more slowly from above than from below. Industries that randomly churn into the

upper tail of the cross section will tend to retain their comparative advantagefor longer than those below the

mean, affording high-advantage industries with opportunities to reach higher levels of comparative advantage as

additional innovations arrive. Thus, we reject log normality in favor of thegeneralized gamma distribution.

The rejection of log normality, however, is not robust across measures of comparative advantage. InTable 2,

using PPML gravity estimates of comparative advantage (columns 4 to 6) or theBalassa RCA index (columns 7 to

9) produces GMM estimates ofφ that are not statistically significantly different from zero at conventionallevels

and small in magnitude.43 These results are an initial indication that imposing log normality on comparative

advantage may not strongly misrepresent reality. A second indication is thatGMM estimates of the dissipation

rateη for the GLD inTable 2 are similar to those derived from the OLS decay regression inTable 1. In both

sets of results,η takes a value of about one-quarter for OLS gravity comparative advantage, about one-sixth for

PPML gravity comparative advantage, and about one-fifth for the Balassa RCA index.

To make precise comparisons of parameter estimates under alternative distributional assumptions for com-

parative advantage, inTable 3 we report GMM results (for OLS gravity estimates of comparative advantage)

with and without imposing the restriction thatφ = 0. Without this restriction (columns 1, 3, 5 and 7), we allow

comparative advantage to have a generalized gamma distribution; with this restriction (columns 2, 4, 6, and 8),

we impose log normality. Estimates for the dissipation rateη and the innovation intensityσ are nearly identical

in each pair of columns. Parameter stability implies that the special case of the OUprocess captures the broad

persistence and overall variability of comparative advantage. Becausethe decay elasticityφ also determines the

shape of the stationary distribution of the GLD, two processes that have identical values ofη but distinct val-

ues ofφ will differ in the shape of their generalized gamma distributions. We see inTable 3 that the implied

mean/median ratios are modestly higher for columns whereφ is unrestricted (and found to be small and negative)

versus columns in whichφ is set to zero. The estimated mean-median ratio increases from6.2 − 7.0 under the

constrained estimation of the OU process to8.2 − 8.3 under the unconstrained case. The extension to a GLD

thus appears to help explain the export concentration in the upper tail documented in subsection 3.1 above.

Table 3 also allows us to see the impact on the GMM parameter estimates of altering the time interval on

43As shown in AppendixTable A2, we obtain similar results for the 1984 to 2007 period when we use two- or three-digit SITC revision
2 industries, thus establishing the robustness of the GMM results under alternative industry aggregation.
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Table 3: GMM ESTIMATES OFCOMPARATIVE ADVANTAGE DIFFUSION, UNRESTRICTED ANDRESTRICTED

OLS gravityk, 5-year transitions OLSk, 10-yr. trans.
Full sample LDC exp. Non-manuf. Full sample

φ ∈ R φ = 0 φ ∈ R φ = 0 φ ∈ R φ = 0 φ ∈ R φ = 0
(1) (2) (3) (4) (5) (6) (7) (8)

Estimated Generalized Logistic Diffusion Parameters
Dissipation rateη 0.256 0.263 0.270 0.274 0.251 0.256 0.264 0.265

(0.004)∗∗∗ (0.003)∗∗∗ (0.006)∗∗∗ (0.003)∗∗∗ (0.005)∗∗∗ (0.004)∗∗∗ (0.004)∗∗∗ (0.003)∗∗∗

Intensity of innovationsσ 0.739 0.736 0.836 0.831 0.864 0.860 0.569 0.568
(0.01)∗∗∗ (0.008)∗∗∗ (0.017)∗∗∗ (0.012)∗∗∗ (0.017)∗∗∗ (0.014)∗∗∗ (0.007)∗∗∗ (0.006)∗∗∗

Elasticity of decayφ -0.041 -0.071 -0.033 -0.029
(0.017)∗∗ (0.027)∗∗∗ (0.018)∗ (0.014)∗∗

Implied Parameters
Log gen. gamma scaleln θ̂ 121.940 56.502 164.790 202.430

(71.526)∗ (32.175)∗ (120.946) (131.469)

Log gen. gamma shapelnκ 5.017 3.991 5.439 5.781
(0.842)∗∗∗ (0.76)∗∗∗ (1.077)∗∗∗ (0.968)∗∗∗

Mean/median ratio 8.203 6.691 8.203 6.222 8.293 7.036 7.281 6.588

Observations 392,850 392,850 250,300 250,300 190,630 190,630 335,820 335,820
Industry-source obs.I × S 11,542 11,542 7,853 7,853 5,845 5,845 11,213 11,213
Root mean sq. forecast error 1.851 1.726 2.028 1.821 1.958 1.859 1.8761.799
Min. GMM obj. (× 1,000) 3.27e-13 2.87e-12 7.75e-13 2.08e-11 7.37e-13 8.99e-12 3.03e-12 5.92e-12

Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and CEPII.org; OLS gravity
measures of export capability (log absolute advantage)k = lnA from (6).
Note: GMM estimation at the five-year (ten-year) horizon for the generalizedlogistic diffusion of comparative advantagêAis(t),

d ln Âis(t) = −
ησ2

2

Âis(t)
φ − 1

φ
dt+ σ dW Â

is (t)

using absolute advantageAis(t) = Âis(t)Zs(t), unrestricted and restricted toφ = 0. Parametersη, σ, φ are estimated under the constraintsln η, lnσ2 > −∞ for the mirror
Pearson (1895) diffusion of (20), while concentrating out country-specific trendsZs(t). The implied parameters are inferred asθ̂ = (φ2/η)1/φ, κ = 1/θ̂φand the mean/median
ratio is given by (A.10). Less developed countries (LDC) as listed in the Supplementary Material (Section S.1). The manufacturing sector spansSITC one-digit codes 5-8, the
nonmanufacturing merchandise sector codes 0-4. Robust errors inparentheses (corrected for generated-regressor variation of export capabilityk): ∗ marks significance at ten,∗∗

at five, and∗∗∗ at one-percent level. Standard errors of transformed and implied parameters are computed using the multivariate delta method.
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which moment conditions are based. Columns 7 and 8 show results for ten-year intervals, which compare to

the preceding columns whose results are for five-year intervals.44 Whereas estimates for the dissipation rateη

are nearly identical for the two time horizons, estimates for the innovation intensity σ become smaller when

we move from five- to ten-year intervals. Similar to attenuation bias driving estimates of persistence to zero in

auto-regression models, measurement error may deliver larger values of σ at shorter horizons.45

5.2 Model fit I: Matching dynamic transition probabilities

We next evaluate the performance of the model by assessing how well the GLD replicates the churning of export

industries in the data. Using estimates based on the five-year horizon from column 1 inTable 2, we simulate

trajectories of the GLD. In the simulations, we predict the model’s transition probabilities over the one-year

horizon across percentiles of the cross-section distribution. We deliberately use a shorter time horizon for the

simulation than the five-year horizon used for estimation to assess moments that we did not target in GMM. We

then compare the model-based predictions to the empirical transition probabilitiesat the one-year horizon.

Figure 4 shows empirical and model-predicted conditional cumulative distribution functions for annual tran-

sitions of comparative advantage. We select percentiles in the start year:the 10th and 25th percentile, the median,

the 75th, 90th and 95th percentile. The left-most upper panel inFigure 4, for example, considers industries that

were at the 10th percentile of the cross-section distribution of comparativeadvantage in the start year; panel

Figure 4c shows industries that were at the median of the distribution in the start year. Each curve in a panel

then plots the conditional CDF for the transitions from the given percentile in the start year to any percentile of

the cross section one year later. By design, data that are re-sampled under an iid distribution would show up

at a 45-degree line, while complete persistence of comparative advantagewould make the CDF a step function.

To characterize the data, we use three windows of annual transitions: themean annual transitions during the

years 1964-67 at the beginning of our sample period, the mean annual transitions during the years 1984-87 at the

middle of our sample, and the mean annual transitions during the years 2004-07 at the end of the sample. These

transitions are shown in gray. Our GLD estimation constrains parameters to beconstant over time, so the model

predicted transition probabilities give rise to a time-invariant CDF shown in blue.

The five-year GLD performs well in capturing the annual dynamics of comparative advantage for most in-

dustries. AsFigure 4 shows, the model-predicted conditional CDF’s tightly fit their empirical counterparts for

industries at the median and higher percentiles in the start year. It is only in the lower tail, in particular around

the 10th percentile, that the fit of the GLD model becomes less close, though the model predictions are more

44The Online Supplement (Table S3) presents GMM results for moments on ten-year intervals using PPML gravity estimates of
comparative advantage and the Balassa RCA index.

45In the limit whenσ becomes arbitrarily large, the GLD would exhibit no persistence, converging to an iid process.
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Figure 4:Diffusion Predicted Annual Transitions
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from
1962-2007 and CEPII.org; OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: Predicted cumulative distribution function of comparative advantageÂis,t+1 after one year, given the percentile (10th, 25th, me-
dian, 75th, 90th, 95th) of current comparative advantageÂis,t. Predictions based on simulations using estimates from Table 2 (column 1).
Observed cumulative distribution function from mean annual transitions during the periods 1964-1967, 1984-1987, and 2004-2007.

comparable to the data in later than in earlier periods. Country-industries in thebottom tail have low trade vol-

umes, especially in the early sample period, meaning that estimates of the empiricaltransition probabilities in the

lower tail are not necessarily precisely estimated and may fluctuate more overtime. Figure 4 indicates that the

dynamic fit becomes relatively close for percentiles at around the 25th percentile. The discrepancies in the lowest

tail notwithstanding, for industries with moderate to high trade values, which account for the bulk of global trade,

the model succeeds in matching empirical transition probabilities.

The transition probabilities implied by the GLD also allow us to assess how well a simple OU process

approximates trade dynamics. In a statistical horse race between the unconstrained GLD and the OU process,

the former wins—at least for OLS gravity estimates of comparative advantage—because we reject thatφ = 0 in

Table 3, columns 1 to 3. Yet, estimating the GLD is substantially more burdensome than estimating the simple

discretized linear form of the OU process. For both empirical and theoretical modeling, it is helpful to understand

how much is lost by imposing log normality on comparative advantage.

FollowingFigure 4, we simulate trajectories of the GLD, once from estimates withφ unconstrained and once

from estimates withφ = 0, using coefficients from columns 1 and 2 inTable 3. The simulations predict the tran-
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Figure 5:Diffusion Predicted Annual Transitions, Constrained and Unconstrained φ
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from
1962-2007; OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: Predicted cumulative distribution function of comparative advantageÂis,t+1 after one year, given the percentile (10th, 25th, me-
dian, 75th, 90th, 95th) of current comparative advantageÂis,t. Predictions based on simulations using estimates from Table 2 (column 1)
and Table 3 (column 2,φ = 0). Observed cumulative distribution function from mean annual transitions during the period 2006-2009.

sition probabilities over the one-year horizon across percentiles of the cross-section distribution.Figure 5 shows

the empirical cumulative distribution functions for annual transitions of comparative advantage over the full sam-

ple period 1962-2007 (in gray) and compares the empirical distribution to thetwo model-predicted cumulative

distribution functions (light and dark blue), where the fit of the unconstrained GLD model (dark blue) is the same

as depicted inFigure 4 above. As inFigure 4, each panel inFigure 5 considers industries that were at a given

percentile of the cross-section distribution of comparative advantage in thestart year. Each curve in a panel shows

the conditional CDF for the transitions from the given percentile in the start year to any percentile of the cross

section one year later. For all start-year percentiles, the model-predictedtransitions hardly differ between the

constrained specification (light blue) and the unconstrained specification(dark blue). When alternating between

the two models, the shapes of the model-predicted conditional CDF’s are very similar, even in the upper tail. In

the lower tail, where the GLD produces the least tight dynamic fit, the constrained OU specification performs no

worse than the unconstrained GLD. The simple OU process thus appears toapproximate the empirical dynamics

of trade in a manner that is very close to the GLD extension.
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5.3 Model fit II: Matching the empirical cross-section distribution

Next, we evaluate the fit of our GLD by examining how well the GMM parameter estimates describe the cross-

section distribution of comparative advantage. We have given the GMM estimator a heavy burden: to fit the

export dynamics across 90 countries for 46 years using only three time-invariant parameters(η, σ, φ), conditional

on stochastic country-wide growth trends. Because the moments we use in GMM estimation reflect the time-

series behavior of country-industry exports, our estimator fits the diffusion of comparative advantage but not its

stationary cross-section distribution. We can therefore use the stationarygeneralized gamma distribution implied

by the GLD to assess how well our model captures the stability of the heavy tailsof export advantage observed in

the repeated cross-section data. For this comparison, we use the benchmark estimates fromTable 2 in column 1.

(We obtain similar results forφ constrained to zero in column 2 ofTable 3.)

For each country in each year, we project the cross-section distributionof comparative advantage implied

by the parameters estimated from the diffusion and compare it to the empirical distribution. To implement this

validation exercise, we need a measure ofÂist in (14), the value of which depends on the unobserved country-

specific stochastic trendZst. This trend accounts for the observed horizontal shifts in distribution of log absolute

advantage over time, which may result from country-wide technological progress, factor accumulation, or other

sources of aggregate growth. In the estimation, we concentrate outZst by (18), which allows us to estimate its

realization for each country in each year. Combining observed absolute advantageAist with the stochastic-trend

estimate allows us to compute realized values of comparative advantageÂist.

To gauge the goodness of fit of our specification, we first plot our empirical measure of absolute advantage

Aist. To do so, following the earlier exercise inFigure 1, we rank order the data and plot for each country-

industry observation the level of absolute advantage (in log units) againstthe log number of industries with

absolute advantage greater than this value, which is equal to the log of one minus the empirical CDF. To obtain

the simulated distribution resulting from the parameter estimates, we plot the globaldiffusion’s implied stationary

distribution for the same series. The diffusion implied values are constructed, for each level ofAist, by evaluating

the log of one minus the predicted generalized gamma CDF atÂist = Aist/Zst. The implied distribution thus

uses the global diffusion parameter estimates (to project the scale and shape of the CDF) as well as the identified

country-specific trendZst (to project the position of the CDF).

Figure 6 compares plots of the actual data against the GLD-implied distributions for four countries in three

years, 1967, 1987, 2007.Figures A4, A5 andA6 in the Appendix present plots in these years for the 28 coun-

tries that are also shown inFigures A1, A2andA3.46 While Figures A1 to A3 depicted Pareto and log normal

46Because the country-specific trendZst shifts the implied stationary distribution horizontally, we clarify fit by cutting the depicted
part of that single distribution at the lower and upper bounds of the specific country’s observed support in a given year.
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Figure 6:Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage
for Select Countries in 1967, 1987 and 2007
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from
1962-2007 and CEPII.org; OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the observed and the predicted frequency of industries (the cumulative probability1 − FA(a) times the total
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maximum likelihood estimates of each individual country’s cross-sectional distribution by year (number of pa-

rameters estimated= number of countries× number of years), our exercise now is vastly more parsimonious and

based on a fit of the time-series evolution, not the observed cross sections. Figure 6 and AppendixFigures A4

to A6 show that the empirical distributions and the GLD-implied distributions have the same concave shape and

horizontally shifting position. Considering that the shape of the distribution depends on only two parameters for

all country-industries and years, the GLD-predicted distributions are remarkably accurate. There are important

differences between the actual and predicted plots in only a few countriesand a few years, including China in

1987, Russian Federation in 1987 and 2007, Taiwan in 1987, and Vietnamin 1987 and 2007. Three of these

cases involve countries transitioning away from central planning, suggesting periods of economic disruption.

There are other, minor discrepancies between the empirical distributions and the GLD-implied distributions

that merit further attention. In 2007 in a handful of countries in East and Southeast Asia—China, Japan, Rep.

Korea, Malaysia, Taiwan, and Vietnam—the empirical distributions exhibit lessconcavity than the generalized

gamma distributions (or the log normal for that matter). These countries show more mass in the upper tail of

comparative advantage than they ought, implying that they excel in too many industries, relative to the norm.

It remains to be investigated whether these differences in fit are associated with conditions in the countries

themselves or with the particular industries in which these countries tend to specialize.

The noticeable deviations for some countries in certain years notwithstanding, across countries and for the

full sample period the percentiles of the country-level distributions of comparative advantage are remarkably

stable for each of our three measures of comparative advantage. This stability suggests that there is a unifying

global and stationary distribution of comparative advantage. Our estimates of the GLD time series imply shape-

parameter values of a generalized gamma CDF, and those predicted shape parameters tightly fit the relevant

percentiles of the global comparative-advantage distribution.47

6 Simulations

Having established the dynamic properties of comparative advantage, we next consider their relevance for quan-

titative trade analysis. We examine how accounting for these dynamics affects the results of a common type of

counterfactual exercise. A distinguishing feature of quantitative trade models is that they allow for shocks that are

asymmetric across industries—the existence of such shocks is in part whatmotivates multi-sector trade models

in the first place. If there is churning in comparative advantage, the impactsof such industry-specific treatments

may be fleeting. This impermanence arises because prominent industries thatare treated today are likely to be-

47The Online Supplement (Figure S11) shows percentile plots for OLS- andPPML-based measures of export capability over time and
the fit of our according GLD estimates to those percentiles.
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come less prominent tomorrow, and the heavy tails of the distribution can dictate that it is mostly shocks to the

prominent industries that matter in the aggregate.48 The long-run effect of a permanent reduction in trade costs

may therefore differ substantially from the short-run effect.

6.1 Counterfactual exercises

As an application, we consider a counterfactual in which China’s top export industries in 1990—either its top-5

or top-50 industries—have their export costs reduced permanently by 10%, which is equivalent to countries in the

rest of the world lowering their barriers on selected imports from China. Inthe presence of stochastic comparative

advantage, the change in equilibrium outcomes due to this reduction in trade costs becomes a random variable.

Unlike standard counterfactuals considered in the trade literature (e.g., Alvarez and Lucas 2007 and Dekle, Eaton,

and Kortum 2007), we must now solve for equilibrium repeatedly across many simulated potential paths for

comparative advantage in order to characterize the effect of a trade-cost reduction.

To measure the “typical” impact of a change in trade costs, we compute an average treatment effect, or more

precisely an average path for the treatment effect. Specifically, we solvefor the counterfactual equilibrium at

each moment in time across 10,000 simulated paths of comparative advantage, with and without the change in

trade costs. For each simulated path of comparative advantage, we computethe percent difference in equilibrium

outcomes between the counterfactual with the trade-cost reduction and thecounterfactual without the trade-cost

reduction. This percent change measures the effect of the trade-cost drop conditional on the simulated path of

comparative advantage. Our measure of the average treatment effect isthen the average of this percent change

over many simulations.

To prepare our simulations of comparative-advantage paths for a balanced group of countries and industries,

we need to construct a set of unobserved variables that are now required because we vary the productivity funda-

mentals of the EK model, consistent with a GLD of comparative advantage. Appendix E presents the procedure

in detail. We need to infer self trade at the level of industries and countries tocompute industry-level expenditure

for our balanced group of importers and exporters. Existing data sets donot offer production information at the

level of disaggregated industries. However, we show that a country-industry’s share in the country’s total self

trade can be inferred from gravity fixed-effect estimates under the EK model. We can then combine the estimates

of the shares of self trade with the observed country-level self trade level using UNIDO and WIOD data and

obtain measures of self trade at the level of industries and countries in the base year 1990. To account for a

48The importance of shocks to prominent industries, or firms, for aggregate outcomes has been called “granularity.” While most results
on granularity are stated for power-law distributions, they arguably carry over to our case of a log normal cross sectional distribution of
industry capabilities. Gabaix (2011, p. 744) states: “Though the benchmark case of Zipf’s law is empirically relevant, and theoretically
clean and appealing, many arguments [about granularity] do not depend on it. . . . For instance, if the distribution of firm sizes were
lognormal with a sufficiently high variance, then quantitatively very little wouldchange.”
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few missing gravity fixed-effect estimates, we interpolate and extrapolate to balance the group of importers and

exporters. To balance global trade, we need a rest-of-world entity in addition, for which we also have to construct

self trade by industry. We follow the same idea as for the gravity-sample countries and construct self trade from

available gravity estimates. We consider the rest of the world a synthetic entity,and predict a complete hypothet-

ical set of bilateral gravity covariates (distance, common language, commonborder, and so forth) as if the rest of

the world were a single entity. For this purpose, we linearly project exporter capabilities, import propensities and

trade costs for the single rest-of-world entity on convex combinations of thecovariates for the countries behind

the rest-of-world entity; from those projections we obtain synthetic gravity fixed-effect estimates, form which we

then build self trade shares and ultimately industry-level self trade in the restof the world as described above.

Given simulated comparative advantages (and the resulting Fréchet location parameters) and given trade cost

changes, we then solve for equilibrium year by year and path by path in wages, expenditure shares by industry

and country, and prices. For given realizations of comparative advantage, we can now characterize the difference

between the initial (in 1990) and the counterfactual equilibrium using the exact hat algebra of Dekle, Eaton, and

Kortum (2007) path by path.

To isolate how churning in comparative advantage influences the effect of a reduction in trade costs, we con-

sider three scenarios for relative industry productivity. The first, which we call thestatic equilibrium, represents

the usual exercise in the trade literature. We hold all fundamentals—includingcomparative advantage—fixed at

their 1990 levels and compute a counterfactual equilibrium in which the only change is the reduction in trade

costs. The second scenario, which we describe as thetransition path, initializes comparative advantage at 1990

levels, and then allows it to evolve stochastically over time according to our estimated GLD process. This ex-

ercise permits us to see how churning in comparative advantage affects equilibrium outcomes over time relative

to the standard counterfactual captured by our static-equilibrium scenario. Finally, we consider asteady state

scenario, in which we sample initial conditions from the stationary distribution ofcomparative advantage and

then again allow comparative advantage to evolve stochastically over time according to our GLD process.

Drawing initial values from the distribution for each simulation eliminates the influence of initial condi-

tions—that is China’s top export industries in 1990 will not be its top industrieswhen averaging over many draws

from the distribution—and allows us to characterize long-run outcomes in the presence of stochastic comparative

advantage. We emphasize that this long-run equilibrium is far from static. Comparative advantage continues to

evolve dynamically. Averaging over many initial draws and the period-by-period change in comparative advan-

tage following each draw causes the average treatment effect to be stable. Even though for each simulation the

equilibrium differs period by period, on average there is no variation in thetreatment effect across time. For

all simulations, we hold trade balances fixed at their 1990 levels in order to isolate the importance of stochastic
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comparative advantage.

Figure 7 shows the average percent change in equilibrium outcomes due to a reduction in Chinese export

costs in each of these relative productivity scenarios. The first row shows the effect on real wages in China, the

second row shows the effect on exports in treated industries, and the final row shows the effect on aggregate

Chinese exports. The left column shows the impact of a narrow trade-cost reduction that affects only the top-5

export industries in 1990, while the right column shows the impact of a broadtrade-cost reduction that affects

the top-50 industries (out of 133). Within each panel, the black dashed linecorresponds to the static equilibrium,

the light blue dash-dot line corresponds to the transition path, and the solid blue line corresponds to the steady

state. Whereas static-equilibrium values are constant over time, steady-state values appear to be constant because

of the averaging over simulations. The transition path shows the average path from the initial static equilibrium

to the steady-state equilibrium, or how long it takes for the dynamic evolution of comparative advantage to wash

out the impact of initial conditions on the average treatment effect.

We see immediately that the short-run impact of the trade cost reduction, as captured by the static equilibrium,

can differ substantially from the long-run impact, as captured by the steady-state scenario. Consider first the

narrow trade-cost reduction in the left column. On impact, China’s real wage rises, exports of treated industries

increase, and aggregate exports expand. This initial impact is shown bothby the values for the static equilibrium

in all periods and by the values of the transition path in the initial period. Understochastic comparative advantage,

the treatment effect on macro outcomes decays over time: in the transition-pathscenario, the real wage and

aggregate exports decline. The effect on both outcomes becomes negligible in the long run, convergence to

which is largely complete after 10 years and fully complete after 20 years. When the shock initially arrives, it

is targeted towards high comparative-advantage industries which make up alarge portion of Chinese exports.

However, churning in comparative advantage implies that the reduction in trade costs becomes less targeted over

time. An industry that was initially in the top of the comparative advantage distribution will tend to shuffle

to a new position in the distribution, which makes long-run rankings independent of initial rankings. It is this

reshuffling that makes the steady-state scenario immune to the treatment, since the initial draw of comparative

advantage pays no heed to the industries that topped China’s export rankings in 1990. Note that, although the

effect is fleeting at the macro level, there is a permanent effect on exports within those industries for which trade

costs were reduced. In fact, the impact on exports within these industries isincreasing over time, since the decline

of the real wage implies falling export prices and hence rising exports.

Consider next the broad trade-cost reduction in the right column. The impact of the falling trade costs on

treated-industry exports in the second row and on aggregate exports in the third row are qualitatively similar to

those for the more targeted reduction in industry trade costs in the left column.The impact on exports by treated
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Figure 7:Simulated Outcomes in China after 10-percent Export Trade Cost Reduction

Top-5 Industries’ Export Cost Reduction Top-50 Industries’ Export Cost Reduction
Real Wage in China

0
.0

02
5

.0
05

.0
07

5
.0

1
.0

12
5

.0
15

P
er

ce
nt

ag
e 

C
ha

ng
e 

fr
om

 B
as

el
in

e

1990 1995 2000 2005 2010
Calendar year

0
.2

5
.5

.7
5

1
1.

25
1.

5
P

er
ce

nt
ag

e 
C

ha
ng

e 
fr

om
 B

as
el

in
e

1990 1995 2000 2005 2010
Calendar year

Chinese Exports from Top Industries

0
10

20
30

40
50

60
70

P
er

ce
nt

ag
e 

C
ha

ng
e 

fr
om

 B
as

el
in

e

1990 1995 2000 2005 2010
Calendar year

0
10

20
30

40
50

60
70

P
er

ce
nt

ag
e 

C
ha

ng
e 

fr
om

 B
as

el
in

e

1990 1995 2000 2005 2010
Calendar year

Chinese Exports from All Industries

0
.0

2
.0

4
.0

6
.0

8
.1

P
er

ce
nt

ag
e 

C
ha

ng
e 

fr
om

 B
as

el
in

e

1990 1995 2000 2005 2010
Calendar year

Static Equilibrium
Transition Path Steady State

0
2

4
6

8
10

P
er

ce
nt

ag
e 

C
ha

ng
e 

fr
om

 B
as

el
in

e

1990 1995 2000 2005 2010
Calendar year

Static Equilibrium
Transition Path Steady State

Note: Simulations of GLD after a variable trade cost reduction by 10% for Chinese exports (but not Chinese imports) in top-5 (left
column) or top-50 (right column) industries by comparative advantagein 1990 China. Graphs show the average over 10,000 simulations
for percentage deviations in equilibrium outcomes between a counterfactual with reduced trade costs and a counterfactual with constant
trade costs (Baseline). TheStatic Equilibriumcurves show the counterfactual impact of the trade cost reduction if comparative advantage
remained at the 1990 equilibrium levels in all countries. TheTransition Pathcurves show the average counterfactual effect of the trade
cost reduction starting from observed 1990 comparative advantagesand simulating forward under the estimated GLD. TheSteady State
curves show the counterfactual effect of the trade cost reduction when initial conditions are drawn from the stationary comparative
advantage distribution implied by the estimated GLD. To isolate the effects of theGLD, all computations take the empirically observed
Chinese trade balance as exogenous and compute the implied Chinese wages and price levels.
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industries rises over time, while the macro impact on aggregate exports dissipates over time. By contrast, the

path for the real wage differs sharply between the two experiments. Whereas real-wage impacts decay over time

when the narrow set of industries is treated, real-wage impacts actually increase over time when the broad set

of industries is treated. Next, we unpack the forces behind these rich transition dynamics, which are of course

absent in conventional applications of quantitative trade analysis.

6.2 The dissipation of treatment effects in a quantitative trade model

To obtain intuition as to why these treatment effects decay over time, assume thats is a small country and

therefore has a negligible influence on competitiveness indices and on aggregate expenditure in countryd. Let

Xisd be observed expenditure by destination countryd on goods from source countrys in industryi in 1990 and

πisd ≡ Xisd/
∑

ς Xiςd be the expenditure share within industryi. Let a hat on a variable denote the ratio of the

counterfactual outcome and the variable’s observed 1990 level. We denote the permanent change in trade costs

with τ̂isd ≡ τ̂isdt since it is constant over time. Counterfactual trade flows relative to their initial levels satisfy

X̂isdt =
(τ̂isdŵst)

−θÂist

Φ̂idt

Êdt,

whereÂist = q̂θ
ist

is the change in comparative advantage andΦ̂idt ≡
∑

s πisd(τ̂isdŵst)
−θÂist is the change in

competitiveness in industryi within destinationd.

Given that countrys is small,Φ̂idt = 1 andÊdt = 1, so the counterfactual level of exports at timet is

X ′
st =

∑

d 6=s

∑

i

πisd(τ̂isdŵst)
−θÂistµidEd

whereµid =
∑

ς Xiςd/
∑

ι

∑

ς Xιςd is the (constant) Cobb-Douglas expenditure share. Using the sample analog

of the expectations operatorE[·] ≡ (1/I)
∑

i(·) over industries, we can invoke the properties of the covariance

to decompose exports as

X ′
st =

∑

d 6=s






E

[

πisdτ̂
−θ
isd

]

E

[

Âist

]

︸ ︷︷ ︸

Direct effect on impact

+Cov
(

πisdτ̂
−θ
isd , Âist

)

︸ ︷︷ ︸

Change in direct effect







ŵ−θ
st
︸︷︷︸

Indirect wage effect

µidEd,

whereCov(·) is the associated covariance operator.

There are two effects that determine the counterfactual level of exports. The first is a direct effect, which is

summarized by the expression in brackets. The product of expectations inside the brackets captures the direct
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effect on impact and the covariance term captures the change in the direct effect over time. The product of expec-

tations in the bracket is a constant because the change in trade costsτ̂isd is constant over time, and so are initial

expenditure sharesπisd; mean comparative advantageE[Âist] is also constant since the distribution of compar-

ative advantage is stationary. The covariance term in the brackets is equal to zero on impact because initially

there is no change in productivities and therefore no correlation with the term πisdτ̂
−θ
isd . However, industries with

high comparative advantage will tend to lose comparative advantage over time. These industries will also have

reduced trade costs and high initial expenditure shares. As a result, this covariance term—the change in the direct

effect—is negative and increasingly negative over time, which implies that theoverall direct effect is strongest

on impact and decays over time.

The second effect—captured by the term outside of the brackets—is an indirect general-equilibrium effect

that operates through the wage. Through the direct effect, a trade-cost reduction drives up exports and therefore

increases the demand for labor in countrys. If this increase in labor demand is large, the wage will rise. But

a rising wage increases the cost of countrys exports and leads to an offsetting reduction in exports. That is, if

the trade-cost change affects a large portion of the economy, it will lead toa rising wage in general equilibrium,

which will dampen the increase in exports. Over time, as the direct effect decays due to churning, the wage will

tend to fall and this indirect wage effect will tend to raise exports. These dynamics are such that exports can rise

or fall over time, depending on the relative importance of the direct and indirect effects. Since the change in trade

costs underlying the results in the left column ofFigure 7 is narrowly limited to the top-5 industries in 1990, the

indirect wage effect is small. The dynamics are driven primarily by decay inthe direct effect due to churning in

comparative advantage. As a result, the impact of the trade-cost reduction mainly reflects the direct effect and

decays over time as comparative advantage churns.

By contrast, the right column ofFigure 7 (for the broad reduction in trade costs that affects the top-50

industries in 1990) shows how outcomes can change when the secondaryindirect effect on the wage is large.

This shock impacts a large portion of industries, so it has a non-negligible indirect wage effect. The implied

increase in demand for labor within China drives up the wage and, because so many industries are treated,

continues to do so even as churning in comparative advantage alters the composition of top industries. Although

rising wages imply rising prices, because China is an open economy with an aggregate self-trade share less than

one, the net result is an increase in the real wage. The real wage riseson impact, and rises further over time.

Aggregate exports therefore increase on impact and then decay by about 75% in the long run. Over time, the

combination of decay in the direct effect (due to churning in comparative advantage) and the lack of decay in the

offsetting indirect wage effect creates a hump shape in the time path of aggregate exports.

This conceptual exercise demonstrates that our main conclusion—namely that the effects from permanent
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changes in trade costs can be fleeting—is robust to the industry-wide breadth of the change in trade costs, despite

the presence of general equilibrium effects that generate rich transitiondynamics. These transition dynamics are

missing from standard quantitative trade analysis, as is a mechanism that would generate differences between

impacts in the static equilibrium.

In summary, our simulation results show that conclusions from standard counterfactual exercises in trade

can change significantly once we account for randomness in comparative advantage. The effect of an uneven

reduction in industry trade costs—which describes many trade liberalization episodes—can be transitory given

the perpetual churning in comparative advantage. When performing counterfactual analysis in quantitative trade

models, it is therefore crucial to account for the dynamics of comparativeadvantage.

7 Conclusion

Quantitative analysis of global general equilibrium models is a vibrant areaof research, due in part to the success

of the Eaton and Kortum (2002) model of Ricardian trade. The primitives in the EK model are the parameters

of the distribution for industry productivity, which pin down country export capabilities and hence comparative

advantage. Despite the importance of these primitives in driving internationaltrade, much current analysis of

changes in trade policy leaves comparative advantage in the backgroundby treating it as static. Our goals in this

paper are, first, to characterize the dynamic empirical properties of comparative advantage; second, to show that

these properties are consistent with a unifying family of estimable stochastic processes; and third, to demonstrate

how the stochastic nature of comparative advantage materially affects the counterfactual policy exercises that

have become central to quantitative trade modeling.

Our analysis starts from two strong empirical regularities in trade that economists have studied mostly in

isolation. Many papers have noted the tendency for countries to concentrate their exports in a relatively small

number of industries. Our first contribution is to show that this concentrationarises from a heavy-tailed distri-

bution of industry export capability that is approximately log normal and whose shape is stable across countries,

industries, and time. Likewise, the trade literature has detected in various forms a tendency for mean reversion

in national industry productivities. Our second contribution is to establish that mean reversion in export capabil-

ity, rather than indicative of convergence in productivities and degeneracy in comparative advantage, is instead

consistent with a stationary stochastic process, whose properties are common across borders and industries. In

literatures on the growth of cities and the growth of firms, economists have used stochastic processes to study the

determinants of the long-run distribution of sizes. Our third contribution is to develop an analogous empirical

framework for identifying the parameters that govern the stationary distribution of export capability. One result of

this analysis is that log normality offers a reasonable approximation and a discrete-time version for the analogous
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stochastic process can be estimated with straightforward linear regression. A fourth contribution is to quantify

the time horizon at which policy or cost shocks to a country’s exports dissipate: even substantive interventions

in targeted industries become largely irrelevant for export flows in a matter of a decade. Allowing comparative

advantage to be stochastic differs strongly from most current approaches in the literature. Our fifth contribution

is to show that when one incorporates stochastic comparative advantage into standard counterfactual exercises

the impact of industry-specific treatments (such as changes in trade policy that favor some industries over others)

can be fleeting, with initial impacts decaying substantially within 10 to 20 years.

In the stochastic process that we estimate, country export capabilities evolve independently across industries,

subject to controls for aggregate country growth, and independently across countries, subject to controls for global

industry growth. Recent work in trade theory examines how innovations to productivity are transmitted across

space and time. Our analysis can be extended straightforwardly to allow forsuch interactions. The Ornstein-

Uhlenbeck process generalizes to a multivariate diffusion, in which stochastic innovations to an industry in one

country also affect related industries in the same economy or the same industry in a nation’s trading partners.

Because of the linearity of the discretized OU process, it is feasible to estimatesuch interactions while still

identifying the parameters that characterize the stationary distribution of comparative advantage. An obvious

next step is to model diffusions that allow for such intersectoral and international productivity linkages.
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Appendix

A Generalized Logistic Diffusion

The principal insights of Subsections 4.1 and 4.3 are based on the followingrelationship.

Lemma 1. The generalized logistic diffusion

dÂis(t)

Âis(t)
=

σ2

2

[

1− η
Âis(t)

φ − 1

φ

]

dt+ σ dW Â
is (t) (A.1)

for real parameters(η, σ, φ) has a stationary distribution that is generalized gamma with a probability density
fÂ(âis

∣
∣θ̂, κ, φ) given by(17)and the real parameters

θ̂ =
(
φ2/η

)1/φ
> 0 and κ = 1/θ̂φ > 0.

A non-degenerate stationary distribution exists only ifη > 0.

Equation (A.1) restates equation (16) from the text.

A.1 Derivation of the generalized logistic diffusion

We now establish Lemma 1. As a starting point, note that the ordinary gamma distribution is known to be the sta-
tionary distribution of the stochastic logistic equation (Leigh 1968). We generalize this ordinary logistic diffusion
to yield a generalized gamma distribution as the stationary distribution in the cross section. Our (three-parameter)
generalization of the gamma distribution relates back to the ordinary (two-parameter) gamma distribution through
a power transformation. Take an ordinary gamma distributed random variable X with two parameters̄θ, κ > 0
and the density function

fX(x
∣
∣θ̄, κ) =

1

Γ(κ)

1

θ̄

(x

θ̄

)κ−1
exp

{

−x

θ̄

}

for x > 0. (A.2)

Then the transformed variablêA = X1/φ has a generalized gamma distribution under the accompanying param-
eter transformation̂θ = θ̄1/φ because

fÂ(â|θ̂, κ, φ) = ∂
∂â Pr(Â ≤ â) = ∂

∂â Pr(X
1/φ ≤ â)

= ∂
∂â Pr(X ≤ âφ) = fX(âφ

∣
∣θ̂φ, κ) · |φâφ−1|

=
âφ−1

Γ(κ)

∣
∣
∣
∣

φ

θ̂φ

∣
∣
∣
∣

(
âφ

θ̂φ

)κ−1

exp

{

− âφ

θ̂φ

}

=
1

Γ(κ)

∣
∣
∣
∣

φ

θ̂

∣
∣
∣
∣

(
â

θ̂

)φκ−1

exp

{

−
(
â

θ̂

)φ
}

,

which is equivalent to the generalized gamma probability density function (17), whereΓ(·) denotes the gamma
function andθ̂, κ, φ are the three parameters of the generalized gamma distribution in our context (â > 0 can be
arbitrarily close to zero).

The ordinary logistic diffusion of a variableX follows the stochastic process

dX(t) =
[
ᾱ− β̄ X(t)

]
X(t) dt+ σ̄ X(t) dW (t) for X(t) > 0, (A.3)
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whereᾱ, β̄, σ̄ > 0 are parameters,t denotes time,W (t) is the Wiener process (standard Brownian motion)
and a reflection ensures thatX(t) > 0. The stationary distribution of this process (the limiting distribution of
X = X(∞) = limt→∞X(t)) is known to be an ordinary gamma distribution (Leigh 1968):

fX(x
∣
∣θ̄, κ) =

1

Γ(κ)

∣
∣
∣
∣

1

θ̄

∣
∣
∣
∣

(x

θ̄

)κ−1
exp

{

−x

θ̄

}

for x > 0, (A.4)

as in (A.2) with

θ̄ = σ̄2/(2β̄) > 0, (A.5)

κ = 2ᾱ/σ̄2 − 1 > 0

under the restriction̄α > σ̄2/2. The ordinary logistic diffusion can also be expressed in terms of infinitesimal
parameters as

dX(t) = µX(X(t)) dt+ σX(X(t)) dW (t) for X(t) > 0,

µX(X) = (ᾱ− β̄ X)X and σ2
X(X) = σ̄2X2.

Now consider the diffusion of the transformed variableÂ(t) = X(t)1/φ. In general, a strictly monotone
transformationÂ = g(X) of a diffusionX is a diffusion with infinitesimal parameters

µÂ(Â) =
1

2
σ2
X(X)g′′(X) + µX(X)g′(X) and σ2

Â
(Â) = σ2

X(X)g′(X)2

(see Karlin and Taylor 1981, Section 15.2, Theorem 2.1). Applying this general result to the specific monotone
transformationÂ = X1/φ yields our specification of ageneralized logistic diffusion:

dÂ(t) =
[

α− βÂ(t)φ
]

Â(t) dt+ σÂ(t) dW (t) for Â(t) > 0. (A.6)

with the parameters

α ≡
[
1− φ

2

σ̄2

φ2
+

ᾱ

φ

]

, β ≡ β̄

φ
, σ ≡ σ̄

φ
. (A.7)

The term−βÂ(t)φ now involves a power function and the parameters of the generalized logisticdiffusion col-
lapse to the parameters of the ordinary logistic diffusion forφ = 1.

We infer that the stationary distribution of̂A(∞) = limt→∞ Â(t) is a generalized gamma distribution by (17)
and by the derivations above:

fÂ(â|θ̂, κ, φ) =
1

Γ(κ)

∣
∣
∣
∣

φ

θ̂

∣
∣
∣
∣

(
â

θ̂

)φκ−1

exp

{

−
(
â

θ̂

)φ
}

for x > 0,

with

θ̂ = θ̄1/φ = [σ̄2/(2β̄)]1/φ = [φσ2/(2β)]1/φ > 0,

κ = 2ᾱ/σ̄2 − 1 = [2α/σ2 − 1]/φ > 0 (A.8)

by (A.5) and (A.7).
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A.2 Existence and parametrization

Existence of a non-degenerate stationary distribution withθ̂, κ > 0 circumscribes how the parameters of the
diffusionα, β, σ andφ must relate to each other. A strictly positiveθ̂ implies that sign(β) = sign(φ). Second, a
strictly positiveκ implies that sign(α−σ2/2) = sign(φ). The latter condition is closely related to the requirement
that comparative advantage neither collapse nor explode. If the level elasticity of dissipationφ is strictly positive
(φ > 0) then, for the stationary probability densityfÂ(·) to be non-degenerate, the offsetting constant drift
parameterα needs to strictly exceed the variance of the stochastic innovations:α ∈ (σ2/2,∞). Otherwise
absolute advantage would “collapse” as arbitrarily much time passes, implying industries die out. Ifφ < 0 then
the offsetting positive drift parameterα needs to be strictly less than the variance of the stochastic innovations:
α ∈ (−∞, σ2/2); otherwise absolute advantage would explode.

Our preferred parametrization of the generalized logistic diffusion is (A.1)in Lemma 1 for real parameters
η, σ, φ. That parametrization can be related back to the parameters in (A.6) by settingα = (σ2/2) + β and
β = ησ2/(2φ). In this simplified formulation, the no-collapse and no-explosion conditions are satisfied for the
single restriction thatη > 0. The reformulation in (A.1) also clarifies that one can view our generalization of the
drift term [Âis(t)

φ − 1]/φ as a conventional Box-Cox transformation ofÂis(t) to model the level dependence.
The non-degenerate stationary distribution accommodates both the log normaland the Pareto distribution as

limiting cases. Whenφ → 0, bothα andβ tend to infinity; ifβ did not tend to infinity, a drifting random walk
would result in the limit. A stationary log normal distribution requires thatα/β → 1, soα → ∞ at the same
rate withβ → ∞ asφ → 0. For existence of a non-degenerate stationary distribution, in the benchmark case
with φ → 0 we need1/α → 0 for the limiting distribution to be log normal. In contrast, a stationary Pareto
distribution with shape parameterp would require thatα = (2−p)σ2/2 asφ → 0 (see e.g. Crooks 2010, Table 1;
proofs are also available from the authors upon request).

A.3 From comparative to absolute advantage

If comparative advantagêAis(t) follows a generalized logistic diffusion by (A.1), then the stationary distribution

of comparative advantage is a generalized gamma distribution with density (17)and parameterŝθ =
(
φ2/η

)1/φ
>

0 andκ = 1/θ̂φ > 0 by Lemma 1. From this stationary distribution of comparative advantageÂis, we can infer
the cross-sectional distribution of absolute advantageAis(t). Note that, by definition (14), absolute advantage is
not necessarily stationary because the stochastic trendZs(t) may not be stationary.

Absolute advantage is related to comparative advantage through a country-wide stochastic trend by defini-
tion (14). Plugging this definition into (17), we can infer that the probability density of absolute advantage must
be proportional to

fA(ais
∣
∣θ̂, Zs(t), κ, φ) ∝

(

ais

θ̂Zs(t)

)φκ−1

exp






−
(

ais

θ̂Zs(t)

)φ





.

It follows from this proportionality that the probability density of absolute advantage must be a generalized
gamma distribution withθs(t) = θ̂Zs(t) > 0, which is time varying because of the stochastic trendZs(t). We
summarize these results in a lemma.

Lemma 2. If comparative advantagêAis(t) follows a generalized logistic diffusion(A.1) with real parameters
η, σ, φ (η > 0), then the cross-sectional distribution of absolute advantageAis(t) is generalized gamma with the
CDF

FA(ais
∣
∣θs(t), φ, κ) = G

[(
ais
θs(t)

)φ

;κ

]

(A.9)
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for the strictly positive parameters

θ̂ =
(
φ2/η

)1/φ
, θs(t) = θ̂Zs(t) and κ = 1/θ̂φ.

Proof. Derivations above establish that the cross-sectional distribution of absolute advantage is generalized
gamma. The cumulative distribution function follows from Kotz, Johnson, andBalakrishnan (1994, Ch. 17,
Section 8.7).

Lemma 2 establishes that the diffusion and cross-sectional distribution of absolute advantage inherit all rel-
evant properties of comparative advantage after adjustment for an (arbitrary) country-level growth trend. Equa-
tion (A.9) predicts cumulative probability distributions of absolute advantage such as those inFigure 1 (and in
AppendixFigures A1, A2andA3). The lower cutoff for absolute advantage shifts right over time, but the shape
of the cross sectional CDF is stable across countries and years. We will document in Appendix B how the trend
can be recovered from estimation of the comparative-advantage diffusion using absolute advantage data.

A.4 Moments and the mean-median ratio

As a prelude to the GMM estimation, ther-th raw moments of the ratiosais/θs(t) andâis/θ̂ are

E

[(
ais
θs(t)

)r]

= E

[(
âis

θ̂

)r]

=
Γ(κ+ r/φ)

Γ(κ)

and identical because both[ais/θs(t)]1/φ and[âis/θ̂]1/φ have the same standard gamma distribution (Kotz, John-
son, and Balakrishnan 1994, Ch. 17, Section 8.7). As a consequence, the raw moments of absolute advantageAis

are scaled by a country-specific time-varying factorZs(t)
r whereas the raw moments of comparative advantage

are constant over time if comparative advantage follows a diffusion with three constant parameters(θ̂, κ, φ):

E
[
(ais)

r
∣
∣Zs(t)

r
]
= Zs(t)

r · E [(âis)
r] = Zs(t)

r · θ̂rΓ(κ+ r/φ)

Γ(κ)
.

By Lemma 2, the median of comparative advantage isâ.5 = θ̂(G−1[.5;κ])1/φ. A measure of concentration
in the right tail is the ratio of the mean and the median, which is independent ofθ̂ and equals

Mean/median ratio=
Γ(κ+ 1/φ)/Γ(κ)

(G−1[.5;κ])1/φ
. (A.10)

We report this measure of concentration to characterize the curvature ofthe stationary distribution.

B Identification of the Generalized Logistic Diffusion

Our implementation of the Generalized Logistic Diffusion requires not only identification of the three time-
invariant real parameters(η, σ, φ)—or equivalently(θ̂, κ, φ)—, but also identification of a stochastic trend: the
country-specific time-varying factorZs(t).

Proposition 1. If comparative advantagêAis(t) follows the generalized logistic diffusion(A.1) with real param-
etersη, σ, φ (η > 0), then the country specific stochastic trendZs(t) is recovered from the first moment of the
logarithm of absolute advantage as:

Zs(t) = exp

{

Est[lnAis(t)]−
ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ

}

(B.11)
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whereΓ′(κ)/Γ(κ) is the digamma function.

Equation (B.11) restates equation (18) from the text. For a proof of Proposition 1, first consider a random
variableX that has a gamma distribution with scale parameterθ and shape parameterκ. For any powern ∈ N

we have

E [ln(Xn)] =
∞

0
ln(xn)

1

Γ(κ)

1

θ

(x

θ

)κ−1
exp

{

−x

θ

}

dx

=
n

Γ(κ)

∞

0
ln(θz)zκ−1e−zdz

= n ln θ +
n

Γ(κ)

∞

0
ln(z)zκ−1e−zdz

= n ln θ +
n

Γ(κ)

∂

∂κ

∞

0
zκ−1e−zdz

= n ln θ + n
Γ′(κ)

Γ(κ)
,

whereΓ′(κ)/Γ(κ) is the digamma function.
From Appendix A (Lemma 1) we know that raising a gamma random variable to thepower1/φ creates a

generalized gamma random variableX1/φ with shape parametersκ andφ and scale parameterθ1/φ. Therefore

E

[

ln(X1/φ)
]

=
1

φ
E [lnX] =

ln(θ) + Γ′(κ)/Γ(κ)

φ

This result allows us to identify the country specific stochastic trendXs(t).
For Âis(t) has a generalized gamma distribution acrossi for any givens andt with shape parametersφ and

η/φ2 and scale parameter(φ2/η)1/φ we have

Est

[

ln Âis(t)
]

=
ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ
.

From definition (14) andÂis(t) = Ais(t)/Zs(t) we can infer thatEst[ln Âis(t)] = Est[lnAis(t)] − lnZs(t).
Re-arranging and using the previous result forE[ln Âis(t) | s, t] yields

Zs(t) = exp

{

Est[lnAis(t)]−
ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ

}

as stated in the text.

C GMM Estimation of the Associated Pearson-Wong Process

GMM estimation of the Generalized Logistic Diffusion requires conditional moments, which we obtain from a
Pearson-Wong transformation.

Proposition 2. If comparative advantagêAis(t) follows the generalized logistic diffusion(A.1) with real param-
etersη, σ, φ (η > 0), then the following two statements are true.

• The transformed variable
B̂is(t) = [Âis(t)

−φ − 1]/φ (C.12)
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follows the diffusion

dB̂is(t) = −σ2

2

[(
η − φ2

)
B̂is(t)− φ

]

dt+ σ

√

φ2B̂is(t)2 + 2φB̂is(t) + 1dW B̂
is (t)

and belongs to the Pearson-Wong family.

• For any timet, time interval∆ > 0, and integern ≤ M < η/φ2, then-th conditional moment of the
transformed procesŝBis(t) satisfies the recursive condition:

E

[

B̂is(t+∆)n
∣
∣
∣B̂is(t) = b

]

= exp {−an∆}
n∑

m=0

πn,mbm −
n−1∑

m=0

πn,mE

[

B̂is(t+∆)m
∣
∣
∣B̂is(t) = b

]

,

(C.13)
for coefficientsan andπn,m (n,m = 1, . . . ,M ) as defined below.

Equation (C.12) restates equation (20) in the text.

C.1 Derivation of the Pearson-Wong transform

To establish Proposition 2, first consider a random variableX with a standard logistic diffusion (theφ = 1 case).
The Bernoulli transformation1/X maps the standard logistic diffusion into the Pearson-Wong family (see e.g.
Prajneshu 1980, Dennis 1989). Similar to our derivation of the generalized logistic diffusion in Appendix A, we
follow up on that transformation with an additional Box-Cox transformation and applyB̂is(t) = [Âis(t)

−φ−1]/φ

to comparative advantage, as stated in (C.12). DefineW B̂
is (t) ≡ −W Â

is (t). ThenÂ−φ
is = φB̂is(t) + 1 and, by

Itō’s lemma,

dB̂is(t) = d
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φ

)
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1

2
(φ+ 1)Âis(t)

−φ−2(dÂis(t))
2
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2
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Âis(t) dt+ σÂis(t) dW Â
is (t)

]

+
1

2
(φ+ 1)Âis(t)

−φ−2σ2Âis(t)
2 dt

= −σ2

2

[(

1 +
η

φ

)

Âis(t)
−φ − η

φ

]

dt− σÂis(t)
−φ dW Â

is (t) +
σ2

2
(φ+ 1)Âis(t)

−φ dt

= −σ2

2

[(
η

φ
− φ

)

Âis(t)
−φ − η

φ

]

dt− σÂis(t)
−φ dW Â

is (t)

= −σ2

2

[(
η

φ
− φ

)

(φB̂is(t) + 1)− η

φ

]

dt+ σ(φB̂is(t) + 1) dW B̂
is (t)

= −σ2

2

[(
η − φ2

)
B̂is(t)− φ

]

dt+ σ

√

φ2B̂is(t)2 + 2φB̂is(t) + 1dW B̂
is (t).

The mirror diffusionB̂is(t) is therefore a Pearson-Wong diffusion of the form:

dB̂is(t) = −q(B̂is(t)− B̄) dt+
√

2q(aB̂is(t)2 + bB̂is(t) + c) dW B̂
is (t),
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whereq = (η − φ2)σ2/2, B̄ = σ2φ/(2q), a = φ2σ2/(2q), b = φσ2/q, andc = σ2/(2q).
To construct a GMM estimator based on this Pearson-Wong representation, we apply results in Forman and

Sørensen (2008) to construct closed form expressions for the conditional moments of the transformed data and
then use these moment conditions for estimation. This technique relies on the convenient structure of the Pearson-
Wong class and a general result in Kessler and Sørensen (1999) on calculating conditional moments of diffusion
processes using the eigenfunctions and eigenvalues of the diffusion’sinfinitesimal generator.49

A Pearson-Wong diffusion’s drift term is affine and its dispersion term isquadratic. Its infinitesimal generator
must therefore map polynomials to equal or lower order polynomials. As a result, solving for eigenfunctions and
eigenvalues amounts to matching coefficients on polynomial terms. This key observation allows us to estimate
the mirror diffusion of the generalized logistic diffusion model and to recover the generalized logistic diffusion’s
parameters.

Given an eigenfunction and eigenvalue pair(hs, λs) of the infinitesimal generator of̂Bis(t), we can follow
Kessler and Sørensen (1999) and calculate the conditional moment of the eigenfunction:

E

[

B̂is(t+∆)
∣
∣
∣B̂is(t)

]

= exp {λst}h(B̂is(t)). (C.14)

Since we can solve for polynomial eigenfunctions of the infinitesimal generator of Bis(t) by matching coef-
ficients, this results delivers closed form expressions for the conditional moments of the mirror diffusion for
B̂is(t).

To construct the coefficients of these eigen-polynomials, it is useful to consider the case of a general Pearson-
Wong diffusionX(t). The stochastic differential equation governing the evolution ofX(t) must take the form:

dX(t) = −q(X(t)− X̄) +
√

2(aX(t)2 + bX(t) + c)Γ′(κ)/Γ(κ) dWX(t).

A polynomialpn(x) =
∑n

m=0 πn,mxm is an eigenfunction of the infinitesimal generator of this diffusion if there
is some associated eigenvalueλn 6= 0 such that

−q(x− X̄)
n∑

m=1

πn,mmxm−1 + θ(ax2 + bx+ c)
n∑

m=2

πn,mm(m− 1)xm−2 = λn

n∑

m=0

πn,mxm

We now need to match coefficients on terms.
From thexn term, we must haveλn = −n[1 − (n − 1)a]q. Next, normalize the polynomials by setting

πm,m = 1 and defineπm,m+1 = 0. Then matching coefficients to find the lower order terms amounts to
backward recursion from this terminal condition using the equation

πn,m =
bm+1

am − an
πn,m+1 +

km+2

am − an
πn,m+2 (C.15)

with am ≡ m[1− (m− 1)a]q, bm ≡ m[X̄ +(m− 1)b]q, andcm ≡ m(m− 1)cq. Focusing on polynomials with
order ofn < (1 + 1/a)/2 is sufficient to ensure thatam 6= an and avoid division by zero.

Using the normalization thatπn,n = 1, equation (C.14) implies a recursive condition for these conditional

49For a diffusion
dX(t) = µX(X(t)) dt+ σX(X(t)) dWX(t)

the infinitesimal generator is the operator on twice continuously differentiable functionsf defined byA(f)(x) = µX(x) d/dx +
1
2
σX(x)2 d2/dx2. An eigenfunction with associated eigenvalueλ 6= 0 is any functionh in the domain ofA satisfyingAh = λh.
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moments:

E [X(t+∆)n) |X(t) = x ] = exp{−an∆}
n∑

m=0

πn,mxm −
n−1∑

m=0

πn,mE [X(t+∆)m |X(t) = x ] .

These moments exist if we restrict ourselves to the firstN < (1 + 1/a)/2 moments.

C.2 Conditional moment recursion

To arrive at the result in the second part of Proposition 2, set the parameters asqs = σ2(η − φ2)/2, X̄s =
φ/(η − φ2), as = φ2/(η − φ2), bs = 2φ/(η − φ2), andcs = 1/(η − φ2). From these parameters, we can
construct eigenvalues and their associated eigenfunctions using the recursive condition (C.15). For any timet,
time interval∆ > 0, and integern ≤ M < η/φ2, these coefficients correspond to then-th conditional moment
of the transformed procesŝBis(t) and satisfy the recursive moment condition

E

[

B̂is(t+∆)n
∣
∣
∣B̂is(t) = b

]

= exp {−an∆}
n∑

m=0

πn,mbm −
n−1∑

m=0

πn,mE

[

B̂is(t+∆)m
∣
∣
∣B̂is(t) = b

]

,

where the coefficientsan andπn,m (n,m = 1, . . . ,M ) are defined above. This equation restates (C.13) in
Proposition 2 and isn-th conditional moment recursion referenced in Subsection 4.4.

In practice, it is useful to work with a matrix characterization of these moment conditions by stacking the
firstN moments in a vectorYis(t):

Π · E
[

Yis(t+∆)
∣
∣
∣B̂is(t)

]

= Λ(∆) ·Π ·Yis(t) (C.16)

with Yis(t) ≡ (1, B̂is(t), . . . , B̂is(t)
M )′ and the matricesΛ(∆) = diag(e−a1∆, e−a2∆, . . . , e−aM∆) andΠ =

(π1,π2, . . . ,πM )′, whereπm ≡ (πm,0, . . . , πm,m, 0, . . . , 0)′ for eachm = 1, . . . ,M . In our implementation of
the GMM criterion function based on forecast errors, we work with the forecast errors of the linear combination
Π · Yis(t) instead of the forecast errors forYis(t). Either estimator is numerically equivalent since the matrix
Π is triangular by construction and therefore invertible.

C.3 GMM minimization problem

To derive the GMM estimator (stated in Subsection 4.4), letTis denote the number of time series observations
available in industryi and countrys. Given sample size ofN =

∑

i

∑

s Tis, our GMM estimator solves the
minimization problem

(η∗, σ∗, φ∗) = arg min
(η,σ,φ)

(

1

N

∑

i

∑

s

∑

τ

gisτ (η, σ, φ)

)′

W

(

1

N

∑

i

∑

s

∑

τ

gisτ (η, σ, φ)

)

(C.17)

for a given weighting matrixW. Being overidentified, we adopt a two-step estimator. On the first step we
compute an identity weighting matrix, which provides us with a consistent initial estimate. On the second step
we update the weighting matrix to an estimate of the optimal weighting matrix by setting the inverse weighting
matrix toW−1 = (1/N)

∑

i

∑

s

∑

τ gisτ (η, σ, φ)gisτ (η, σ, φ)
′, which is calculated at the parameter value from

the first step. Forman and Sørensen (2008) establish asymptotics for a single time series asT → ∞.50 For

50Our estimator would also fit into the standard GMM framework of Hansen (1982), which establishes consistency and asymptotic
normality of our second stage estimator asIS → ∞. To account for the two-step nature of our estimator, we use an asymptotic
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estimation, we impose the constraints thatη > 0 andσ2 > 0 by reparametrizing the model in terms ofln η > −∞
and2 lnσ > −∞. We evaluate the objective function (C.17) at values of(η, σ, φ) by detrending the data at
each iteration to obtain̂AGMM

is (t) from equation (19), transforming these variables into their mirror variables
B̂GMM

is (t) = [ÂGMM
is (t)−φ − 1]/φ, and using equation (C.13) to compute forecast errors. Then we calculate the

GMM criterion function for each industry and country pair by multiplying theseforecast errors by instruments
constructed fromB̂GMM

is (t), and finally sum over industries and countries to arrive at the value of theGMM
objective.

D Correction for Generated Variables in GMM Estimation

D.1 Sampling variation in estimated absolute and comparative advantage

Let ki·t denote the vector of export capabilities of industryi at timet across countries andmi·t the vector of
importer fixed effects. Denote the set of exporters in the industry in that year withSit and the set of destinations,
to which a country-industryis ships in that year, withDist. The set of industries active as exporters from source
countrys in a given year is denoted withIst. Consider the gravity regression (6)

lnXisdt = kist +midt + r′sdtbit + visdt.

Stacking observations, the regression can be expressed more compactlyin matrix notation as

xi··t = JS
itki·t + JD

itmi·t +R··tbit + vi··t,

wherexi··t is the stacked vector oflog bilateral exports,JS
it andJD

it are matrices of indicators reporting the
exporter and importer country by observation,R··t is the matrix of bilateral trade cost regressors andvi··t is the
stacked vector of residuals.

We assume that the two-way least squares dummy variable estimator for each industry time pairit is con-
sistent and asymptotically normal for an individual industryi shipping from source countrys to destinationd at
time t,51 and state this assumption formally.

Assumption 1. If kOLS
i·t is the OLS estimate ofki·t, then

√

D̄it(k
OLS
i·t − ki·t)

d→ N (0,Σit) as D̄it → ∞,

whereD̄it ≡ (1/|Sit|)
∑

s∈Sit
|Dist| is the source-country-average number of countries importing industryi

goods in yeart and

Σit = σ2
it

[

lim
D̄it→∞

1

D̄it

(
JS
it

)′
Mit

(
JS
it

)
]−1

with σ2
it ≡ Eitv

2
isdt,

Mit ≡ I|Sit|D̄it
− [JD

it ,R··t]{[JD
it ,R··t]

′[JD
it ,R··t]}−1[JD

it ,R··t]
′,

andI|Sit|D̄it
the identity matrix.

In finite samples, uncertainty as captured byΣit can introduce sampling variation in second-stage estimation

approximation where each dimension of our panel data gets large simultaneously (see Appendix D).
51This high-level assumption can be justified by standard missing-at-random assumptions on the gravity model.
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becausekOLS
i·t is a generated variable. To perform an according finite sample correction, we use

ΣOLS
it = (σOLS

it )2
[

1

D̄it

(
JS
it

)′
Mit

(
JS
it

)
]−1

with (σOLS
it )2 = (1/|Sit|D̄it)(v

OLS
i··t )

′vOLS
i··t to consistently estimate the matrixΣit.

Our second stage estimation uses demeaned first-stage estimates of export capability. For the remainder of
this Appendix, we definelog absolute advantage andlog comparative advantage in the population as

aist ≡ lnAist = kist −
1

|Sit|
∑

ς∈Sit

kiςt and âist ≡ ln Âist = aist −
1

|Ist|
∑

j∈Ist

ajst. (D.18)

Correspondingly, we denote their estimates withaOLS
ist andâOLS

ist .
For each year, letKOLS

t denote anI × S matrix with entries equal to estimated export capability whenever
available and equal to zero otherwise, letHt record the pattern of non-missing observations andKt collect the
population values of export capability:

[KOLS
t ]is =

{

kOLS
ist s ∈ Sit

0 s /∈ Sit

, [Ht]is =

{

1 s ∈ Sit

0 s /∈ Sit

, [Kt]is =

{

kist s ∈ Sit

0 s /∈ Sit,
.

where[·]is denotes the specific entryis. Similarly, collect estimates of log absolute advantage into the matrix
AOLS

t and estimates of log comparative advantage into the matrixÂOLS
t :

[AOLS
t ]is =

{

lnAOLS
ist s ∈ Sit

0 s /∈ Sit

, [ÂOLS
t ]is =

{

ln ÂOLS
ist s ∈ Sit

0 s /∈ Sit

.

We maintain the OLS superscripts to clarify that absolute advantageAOLS
ist and comparative advantagêAOLS

ist are
generated variables.

The two matricesAOLS
t andÂOLS

t are linearly related to the matrix containing our estimates of export capa-
bility KOLS

t . From equation (D.18), the matrixAOLS
t is related toKOLS

t andHt by

vec(AOLS
t ) = Trans(I, S)







IS − [Ht]′1·[Ht]1·
[Ht]1·[Ht]′1·

· · · 0

...
. . .

...

0 · · · IS − [Ht]′I·[Ht]I·
[Ht]I·[Ht]′I·







︸ ︷︷ ︸

≡ZIS(Ht)

vec[(KOLS
t )′]. (D.19)

Herevec(·) stacks the columns of a matrix into a vector andTrans(I, S) is a vectorized-transpose permutation
matrix.52 The functionZIS(Ht) maps the matrixHt into a block diagonalIS × IS matrix, which removes the

52The vectorized-transpose permutation matrix of type(m,n) is uniquely defined by the relation

vec(B) = Trans(m,n)vec(B′) ∀B ∈ R
m×n.

The(ij)-th entry of this matrix is equal to1 if j = 1 +m(i− 1)− (mn− 1)floor((i− 1)/n) and0 otherwise.
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global industry average across countries. The matrix of comparative advantage estimates is then:

vec(ÂOLS
t ) =







II − [H′
t]
′
1·[H

′
t]1·

[H′
t]1·[H

′
t]
′
1·

· · · 0

...
.. .

...

0 · · · II − [H′
t]
′
S·[H

′
t]S·

[H′
t]S·[H

′
t]
′
S·







︸ ︷︷ ︸

≡ZSI(H
′
t)

vec(AOLS
t ) ≡ ZSI(H

′
t)vec(AOLS

t ). (D.20)

The functionZSI(H
′
t) maps the matrixHt into a block diagonalSI × SI matrix, which removes the national

average across industries.
For simplicity, we assume that the sampling variation in export capability estimates is uncorrelated across

industries and years.

Assumption 2. For any(it) 6= (jT ), E(kOLS
i·t − ki·t)(k

OLS
j·T − kj·T )

′ = 0.

We then have the following result.

Lemma 3. Suppose Assumptions 1 and 2 hold and that there is anωit > 0 for each(it) so thatlimD→∞ D̄it/D =
ωit. Then

√
D[vec(AOLS

t )−Trans(I, S)ZIS(Ht)vec[(KOLS
t )′]]

d→ N (0,Trans(I, S)ZIS(Ht)Σ
∗
t ZIS(Ht)

′Trans(I, S)′)

and
√
D{vec(ÂOLS

t )− ZSI(H
′
t)Trans(I, S)ZIS(Ht)vec[(KOLS

t )′]

d→ N (0,ZSI(H
′
t)Trans(I, S)ZIS(Ht)Σ

∗
t ZIS(Ht)

′Trans(I, S)′ZSI(H
′
t)
′)

with

Σ∗
t ≡






ω−1
1t Σ

∗
1t · · · 0

...
. ..

...
0 · · · ω−1

It Σ
∗
It






where thes-th column ofΣ∗
it is equal to countrys’s corresponding column inΣit whenever export capability is

estimated for(ist) and is a vector of zeros otherwise.

Proof. Assumptions 1 and 2 along with̄Dit → D → ∞ for all (it) implies that
√
D(vec[(KOLS

t )′]−vec[K′
t])

d→
N (0,Σ∗

t ). The results then follow from equation (D.19) and equation (D.20).

D.2 Second-stage generated variable correction

We estimate two time series models which both can be implemented as GMM estimators. Forbrevity, we focus on
GLD estimation here. (We present the case of OLS estimation of the decay regression in the Online Supplement
(Section S.2), which simply uses a different GMM criterion and absolute advantage as data instead of comparative
advantage.) GLD estimation is based on a conditional moment of the form:

0 = Eis,t−∆g (θ, âist, âis,t−∆) , (D.21)

whereθ = (η, σ, φ)′ is the vector of parameters. In our overidentified GMM estimator,g is a column vector of
known continuously differentiable functions (moment conditions) for any timelag∆ > 0.
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The moment conditions apply to any instant in continuous time, but our data come indiscrete annual obser-
vations for a finite period of years. To account for missing data, letSP

it ⊂ Sit denote the set of countries that
werepreviouslyobserved to export goodi and that are still exporting goodi at current timet: SP

it ≡ {s ∈ Sit |
∃ τP < t s.t.s ∈ SiτP }. Similarly, letSF

it ≡ {s ∈ Sit | ∃ τF > t s.t.s ∈ SiτF } be current exporter countries
that ship goodi to at least one destination also somefutureyear. Denote the most recent prior period in whichs
exported in industryi by τPist ≡ sup{τP < t | s ∈ SiτP } and the most recent future period in whichs will export
by τFist ≡ inf{τF > t | s ∈ SiτF }. We will use these objects to keep track of timing.

For instance, for eachi = 1, . . . , I, t = 2, . . . , T , ands ∈ SP
it we can design a GMM criterion based on the

following conditional moment:

Ei,s,τPist
g
(

θ, âist, âisτPist

)

= 0.

Our finite sample analog for second-stage estimation is:

1

I(T−1)

I∑

i=1

T∑

t=2

1

|SP
it |
∑

s∈SP
it

gist(θ) with gist(θ) ≡ g
(

θ, âOLS
ist , â

OLS
isτPist

)

,

where|SP
it | is the number of exporters in industryi at timet that were also observed exporting goodi at a previous

time.
The effective sample size for the second stage isN ≡ ∑I

t=1

∑T−1
t=1 |Sit| and the GMM criterion can be

expressed as

QN (θ;W) =




1

N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

gist(θ)





′

W




1

N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

gist(θ)





whereW is a weighting matrix.
In order to get consistency, we assume that all dimensions of our data arelarge asN gets large.

Assumption 3. AsN → ∞ we have

1. D → ∞;

2. ∀(it) ∃ωit > 0 so thatD̄it/D → ωit, N/[I|SP
it |(T−1)] → 1, and|Sit| → ∞;

3. ∀(st) |Ist| → ∞;

4. T → ∞.

LettingD → ∞ andD̄it/D → ωit > 0 ensures that we consistently estimateki·t on the first stage and we
can use Lemma 3 for the first stage sampling distribution of comparative advantage. Then, letting|Sit| → ∞
ensures that we consistently estimate absolute advantage and|Ist| → ∞ lets us consistently estimate comparative
advantage. The asymptotic results of Forman and Sørensen (2008) applyunder the assumption thatT → ∞.

Under the maintained assumptions, we get the following consistency result.

Proposition 3. Suppose that

1. θ ∈ Θ for some compact setΘ;

2. for any∆ > 0, there is a uniqueθ0 ∈ Θ such that

0 = Eg (θ0, âist, âis,t−∆) ;
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3. for any given positive definite matrixW and for eachN , there is a unique minimizer ofQN (θ;W) given
by θ̂N ;

4. bothEitkist andEstkist exist and are finite.

Then, under Assumptions 1 and 3, we haveθ̂N
p→ θ0.

Proof. The proof follows from a standard consistency argument for extremum estimators (see e.g. Newey and
McFadden 1994). Given (a) compactness of the parameter space, (b)the continuity of the GMM objective, and
(c) the existence of moments as in Forman and Sørensen (2008), we get a uniform law of large numbers for the
objective function on the parameter space asN → ∞. The GLD estimator is then consistent under the assumption
that the model is identified, provided that we consistently estimate comparative advantage. The consistency of
our comparative advantage estimates follows from the strong law of large numbers given Assumption 3 and the
existence and finiteness ofEitkist andEstkist.

Proposition 4. Under the conditions of Proposition 3 and Assumptions 1, 2, and 3 we have

√
N(θ̂N − θ0)

d→ N (0, (Λ′WΛ)−1Λ′W(Ξ+Ω)WΛ(Λ′WΛ)−1),

where

Λ = E
∂

∂θ
g
(

θ0, âist, âisτPist

)

,

Ξ = Eg
(

θ0, âist, âisτPist

)

g
(

θ0, âist, âisτPist

)′
,

Ω = lim
N→∞

1

ND

T∑

t=1

GtZSI(H
′
t)Trans(I, S)ZIS(Ht)Σ

∗
t ZIS(Ht)

′Trans(I, S)′ZSI(H
′
t)
′G′

t

for aGt matrix of weighted Jacobians ofgist(θ), as defined below.

Proof. To get a correction for first stage sampling variation, we use a mean-valueexpansion of the GMM
criterion. Given continuous differentiability of the moment functiongist(θ) and the fact that̂θN maximizes
QN (θ;W) we must have

0 =
∂

∂θ
QN (θ̂N ;W)

=




1

N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

∂

∂θ
gist(θ̂N )





′

W




1

N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

gist(θ̂N )



 .

The criterion functiong is continuously differentiable. Therefore, by the mean value theorem, there exist random
variablesθ̃N andãist such that|θ̃N − θ0| ≤ |θ̂N − θ0|, |ãist − âist| ≤ |âOLS

ist − âist|, and

g(θ̂N ; ist) = g
(

θ0, âist, âisτPist

)

︸ ︷︷ ︸

≡G0
ist

+
∂

∂θ
g
(

θ, ãist, ãisτPist

)
∣
∣
∣
∣
θ=θ̃N

︸ ︷︷ ︸

≡G̃1
ist

(θ̂N − θ0)

+
∂

∂a
g
(

θ̃N , a, ãisτPist

)
∣
∣
∣
∣
a=ãist

︸ ︷︷ ︸

≡G̃2
ist

(âOLS
ist − âist) +

∂

∂aP
g
(

θ̃N , ãist, a
P
)
∣
∣
∣
∣
aP=ã

isτP
ist

︸ ︷︷ ︸

≡G̃3
ist

(

âOLS
isτPist

− âisτPist

)

.
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Then,

0 = Λ̃′
NW

1

N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

[

G0
ist + G̃1

ist(θ̂N−θ0) + G̃2
ist(â

OLS
ist −âist) + G̃3

ist(â
OLS
isτPist

−âisτPist
)
]

whereΛ̃N = 1
I(T−1)

∑I
i=1

∑T
t=2

1
|SP

it |

∑

s∈SP
it
G̃1

ist.

Solving forθ̂N − θ0 and multiplying by
√
N , we obtain

√
N(θ̂N − θ0) =

−
[

Λ̃′
NWΛ̃N

]−1
Λ̃′

NW
1√
N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

[

G0
ist + G̃2

ist(â
OLS
ist −âist) + G̃3

ist(â
OLS
isτPist

−âisτPist
)
]

.

Note that the setSP
i1 is empty since no country is observed exporting in years before the first sample year and

SF
iT is empty since no country is observed exporting after the final sample year.Moreover,

Λ̃N
p→ Λ ≡ E

∂

∂θ
g
(

θ0, âist, âisτPist

)

G̃2
ist

p→ G2
ist ≡

∂

∂a
g
(

θ0, a, âisτPist

)
∣
∣
∣
∣
a=âist

G̃3
ist

p→ G3
ist ≡

∂

∂aP
g
(
θ0, âist, a

P
)
∣
∣
∣
∣
aP=â

isτP
ist

becausêθN andâOLS
ist are consistent andg is the continuously differentiable.

As a result, we can re-write the sum as

1√
N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

[

G0
ist + G̃2

ist(â
OLS
ist − âist) + G̃3

ist(â
OLS
isτPist

− âisτPist
)
]

=
1√
N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

[

G0
ist +G2

ist(â
OLS
ist − âist) +G3

ist(â
OLS
isτPist

− âisτPist
)
]

+ op(1)

=
1√
N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

G0
ist + op(1)

+
1√
N

T∑

t=1

I∑

i=1

S∑

s=1

[

1{s ∈ SP
it }

N

I|SP
it |(T−1)

G2
ist + 1{s ∈ S0

iτFist
} N

I|S0
iτFist

|(T−1)
G3

isτFist

]

(âOLS
ist − âist)

︸ ︷︷ ︸

≡Lt

,

using the fact thatτF = τFist ⇔ τP
isτF

= t.

The termLt is a vector and a linear function of the entries of the matrixÂOLS
t − Ât. This vector can also be

expressed as
Lt = Gtvec(ÂOLS

t − Ât),
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and the matrixGt has entries

[Gt]·j = 1
{

s(j) ∈ SP
i(j),t

} N

I
∣
∣
∣SP

i(j),t

∣
∣
∣ (T−1)

G2
i(j),s(j),t

+ 1

{

s(j) ∈ SF
i(j),τF

i(j),s(j),t

}
N

I

∣
∣
∣
∣
SF
i(j),τF

i(j),s(j),t

∣
∣
∣
∣
(T−1)

G3
i(j),s(j),τF

i(j),s(j),t

for
i(j) = 1 + (j mod S), s(j) = 1 + floor((j − 1)/S).

We can now re-write the sum as

1√
N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

[

G0
ist + G̃2

ist(â
OLS
ist − âist) + G̃3

ist(â
OLS
isτPist

− âisτPist
)
]

=
1√
N

I∑

i=1

T∑

t=2

∑

s∈SP
it

N

I|SP
it |(T−1)

G0
ist +

1√
ND

T∑

t=1

Gt

√
Dvec(ÂOLS

t − Ât) + op(1).

The first term is asymptotically normal under the results of Forman and Sørensen (2008). The second term is
asymptotically normal becausêAOLS

t is asymptotically normal by Lemma 3.

For an adaption of the GMM generated-variable correction to second-stage OLS estimation, see the Online
Supplement (Section S.2).

E Simulations

We perform simulations to explore how churning in comparative advantage alters standard counterfactual ex-
ercises in international trade. Answering this question requires a more involved simulation procedure than is
common in the literature (see Alvarez and Lucas (2007) and Dekle, Eaton, and Kortum (2007)). Typical coun-
terfactual exercises solve for changes in equilibrium outcomes as functions of changes in trade costs, so the
treatment effect is deterministic. To answer our question of interest, we need to account for stochastic compar-
ative advantage. Equilibrium outcomes are random variables driven by churning in comparative advantage and
their stochastic properties depend on exogenous changes in trade costs.

Our approach measures the average treatment effect of a given change in trade costs. For this purpose,
we repeatedly simulate the economy—drawing samples of comparative advantage based on our estimated GLD
process—and calculate the cross-simulation average of the change in outcomes attributable to a change in trade
costs. There are three steps: (1) simulate many sample paths for comparative advantage; (2) for each sample
and year, solve for equilibrium outcomes with and without the change in tradecosts and compute the percent
difference; and (3) for each year, average this percent difference over all simulations. This appendix describes
the procedure and the data requirements.

E.1 Inference of self trade

In order to perform the counterfactual analysis for the global economy, starting from initial conditions in 1990, we
need a balanced dataset of comparative advantage estimates and industry-level expenditure across a consistent
set of importers and exporters in 1990. In particular, we need to construct estimates of self trade by industry.
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We do not have production data at the level of industries that we use in the empirical analysis, so we cannot
compute industry-level self trade from production data. Instead, we infer the distribution of self trade at the
industry level using our estimated fixed effects and discipline aggregate self trade using country-level production
data. The set of importers that we analyze is smaller than the set of exporters, so we build our dataset using the
sample of importers from our empirical analysis and aggregate all remaining countries (including countries that
are exporters but not importers in our estimation as well as countries excluded from the estimation) into a single
rest-of-world entity. In the process, we need to construct self-trade estimates also for this rest-of-world entity.

Our simulations are based on the following CES demand system for the expenditure by destination marketd
on goods from source countrys within industryi during yeart:

Xisdt =

(

wstτisdt/qist

)−θ

∑

ς

(

wςtτiςdt/qiςt

)−θ
µidtEdt, (E.22)

whereµidt is the Cobb-Douglas expenditure share of destinationd on industryi.
In our empirical analysis, we assume that trade costs take the following log-linear form

−θ ln τisdt = −cdt + r′sdtbit + visdt for s 6= d,

wherecdt is an unobserved destination-year component of trade costs that captures theclosednessof the destina-
tion market. This parameter determinesd’s aggregate self-trade share, which we will infer from production data.
The termǫisdt captures unobserved idiosyncratic trade costs that we assume are mean zero over source countries
within any given industry, destination, and year, conditional on the gravitycovariate vectorrsdt.

For self trade, there are no trade costs:τidd = 1. Both this restriction and the lack of self-trade data imply
that we must exclude self trade from gravity regressions.53 Fors 6= d, our specification of trade costs implies the
following regression at the industry-year level across sources and destinations:

lnXisdt = kist +midt + r′sdtbit + visdt, (E.23)

where
kist ≡ θ ln(q

ist
/wst)

is our measure of export capability and

midt ≡ −cdt + ln

[

µidtYdt
/∑

ς

(

wςtτiςdt/qiςt

)−θ
]

is our measure of import propensity. We will use our estimates of these fixed effects to infer self trade by industry.
The normalizationτidd = 1 implies that industry-level self trade is directly related to the gravity fixed effect

53The normalization ofτidd = 1 means that the regression equation does not hold for self-trade observations. The logarithm for self
trade satisfies

lnXiddt = kidt +midt + cdt

instead of the gravity specification. Given the normalization ofτidd = 1, the model implies a structural relationship between self trade,
export capability, import propensity, and closedness. Intuitively, the normalizationτidd = 1 means that trade costs are defined relative
to internal trade costs. That is, normalizingτidd forces estimation to be in units relative (within an industry across sources)to the
destination’s local covariates (such as common language or internal distance).
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estimates (export capabilitieskidt and import propensitiesmidt) by

Xiddt =

(

wdt/qidt

)−θ

∑

ς

(

wςtτiςdt/qiςt

)−θ
µidtYdt = ekidt+midt+cdt .

The self trade of a country in industryi is increasing in the country-industry’s export capability and import
propensity, and in the country’s closednesscdt. As a country closes to trade, it reallocates expenditure from the
products of other countries towards its own products. Note that, although the two fixed effects are only identified
up to a global normalization (and we normalize import propensities in the United States to zero), the sum of fixed
effects is always identified. As a result, we can infer industry-level selftrade from fixed effect estimates up to a
destination market’s closednesscdt.

Closedness is common across industries within a destination market, so an industry i’s share of self trade can
be recovered using

Xiddt
∑

iXiddt
=

ekidt+midt+cdt
∑

i e
kidt+midt+cdt

=
ekidt+midt

∑

i e
kidt+midt

.

That is, we can compute the distribution of self trade across industries directly from our estimates of export
capabilities and import propensities.

We then use aggregate production data to discipline the overall level of selftrade, which is

∑

i

Xiddt = Edt −
∑

i

∑

s 6=d

Xisdt.

Expenditure is related to aggregate production throughEdt = Ydt − TBdt whereTBdt ≡ ∑

i

∑

d′ 6=dXidd′t −∑

i

∑

s 6=dXisdt is the trade balance. We therefore have

∑

i

Xiddt = Ydt −
∑

i

∑

d′ 6=d

Xidd′t.

Self trade equals total aggregate production net of exports. We use UNIDO data on production from 1977 to
2004 as well as WIOD data for China and Taiwan in 1995. We calculate aggregate exports from the trade flow
data we used in our empirical analysis.

From the individual self-trade shares by industry and country-level self trade, we compute industry-level self
trade as

Xiddt =
Xiddt
∑

iXiddt

∑

i

Xiddt =
ekidt+midt

∑

i e
kidt+midt



Ydt −
∑

i

∑

d′ 6=d

Xidd′t



 .

Note that the inclusion of the closedness parameter in our specification for trade costs allows us to rationalize
any level of aggregate self trade because

∑

i

Xiddt =
∑

i

ekidt+midt+cdt = ecdt
∑

i

ekidt+midt .

E.1.1 Accounting for missing gravity fixed effect estimates

Some estimates of gravity fixed effects (export capabilities and import propensities) are missing. We use the
following interpolation and extrapolation procedure to fill in the missing estimates.

First, we calculate country-year means of export capabilities(1/I)
∑

i=1 kist as well as import propensities
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(1/I)
∑

i=1mist. Note thatmiUSt = 0 due to our omission of the U.S. importer fixed effect in gravity regres-
sions. These country-year means capture overall economic growth withina country over time. Time interpolation
and extrapolation without accounting for these aggregate trends can generate patterns of inferred comparative ad-
vantage and inferred self trade driven by patterns of missing observations—particularly in the early and late parts
of the sample.54

Second, to account for aggregate trends, we remove country-year means and calculate the residualskist −
(1/I)

∑

i=1 kist andmidt − (1/I)
∑

i=1mist. We interpolate and extrapolate these residuals over years within
each industry-country.55 Finally, we add back in the country-year means to obtain interpolated fixed effect
estimates.

E.1.2 Constructing a rest-of-world aggregate

We can perform those calculations only for the set of importers in our estimation sample. To balance global
trade, we need an aggregate entity for the rest of the world (ROW). To incorporate a rest-of-world entity into
our counterfactual analysis, we require estimates of rest-of-world selftrade. We use the following aggregation
procedure based on constructing synthetic gravity covariates for the rest-of-world entity that best explain the
observed aggregate trade flows.

Order the sample so that the firstM countries are the importer subsample. For the remainingS−M countries,
we cannot infer self trade because we cannot identify importer fixed effects. Define the aggregate exports from
ROW (indexed withs = 0) as

Xi0dt =
S∑

s=M+1

Xisdt for each d = 1, . . . ,M

and aggregate imports to ROW (indexed withd = 0) by

Xis0t =
S∑

d=M+1

Xisdt for each s = 1, . . . ,M.

Sectoral self trade of ROW is defined as

Xi00t =
S∑

s=M+1

S∑

d=M+1

Xisdt.

This quantity is unobserved because we do not know industry-level selftrade for the countries within the ROW
aggregate. However, instead of having to infer self trade for allS − M ROW countries, we only need to infer
self trade for the aggregate ROW entity.

To do so, we can choose the “location” of this synthetic ROW country relative to eachs = 1, . . . ,M (captured
by its bilateral gravity covariates) in order to rationalize the observed ROW aggregate trade flows. As before,
we assume an idiosyncratic component for trade costs and choose CES import demand for the synthetic ROW
country. The gravity equation (2) therefore holds for eachs, d = 1, . . . ,M . As a result, flows from ROW to each

54If we were to use time extrapolation without adjusting for country trends, then any estimates that are missing for multiple observations
at the start or end of the sample would be constant. As a result, those estimates would be systematically above trend or systematically
below trend.

55The exercise is within industry-country because we use time interpolation. Possible alternatives include averaging over years in either
the industry or country dimension, or using a forecasting approach such as Kalman filtering to obtain maximum likelihood estimates of
missing observations.
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d = 1, . . . ,M satisfy
lnXi0dt −midt = ki0t + r′0dtbit + vi0dt,

where the gravity covariate vectorr0dt represents how “far” the synthetic ROW country is from each importerd.
We are free to choose this vector to best explain the ROW aggregate imports.

We choose to construct the synthetic country’s gravity covariates as a weighted average of the covariates of
the underlying countries

r0dt =
S∑

s=1+M

ζsdt rsdt,

where
∑S

s=1+M ζst = 1. Note that we can incorporate the constraint by writing

r0dt = rM+1,dt +
S∑

s=M+2

ζsdt(rsdt − rM+1,dt).

We then use a regression to find the weights that best explain the observedtrade flows. Define

yidt ≡ lnXi0dt −midt − r′M+1,dtbit

and
xisdt ≡ (rςdt − rM+1,dt)

′bit for eachς = M + 2, . . . , S.

Then regressyidt on xidt = (xi,M+2,dt, . . . , xiSdt)
′ for each countryd = 1, . . . ,M and yeart using variation

acrossi. Note that

ki0t + vi0dt = lnXi0dt −midt − r′0dtbit

= yidt − x′
idtζdt

= constantdt + residualidt,

whereζdt = (ζM+2,dt, . . . , ζSdt)
′ is the vector of coefficients from this regression. We can therefore infer the

export capability of ROW in industryi to be

ki0t =
1

M

M∑

d=1

(constantdt + residualidt).

Similarly, we can infer import propensities and trade costs from a regression (for eachs = 1, . . . ,M andt)
of lnXis0t − kist − r′s,M+1,tbit on (r′sd′t − r′s,M+1,t)bit for d′ = M +2, . . . , S using variation acrossi.56 From
this regression we obtain

mi0t =
1

M

M∑

s=1

(constantst + residualist).

Having values forki0t andmi0t, we use the previous procedure to compute industry-level self-trade shares for
the ROW aggregate using production data for the ROW. Combined with the inferred industry-level self trade for
the sample of importers, we have a complete set of trade flows (including self trade) for all years, industries,
and country pairs(sd) with s, d = 0, . . . ,M . This information is sufficient to conduct counterfactual analysis

56When there are industries with missing export capability, those industries drop from the regression. If we wanted to impose the
same weights between the two regressions (so that we could interpret the procedure more directly as defining a synthetic country whose
characteristics are a weighted average of the underlying countries), wecould stack the data and run a single regression.
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since we only need initial expenditure shares and initial comparative advantage (which we calculate from inter-
polated export capabilities) to be able to simulate complete GLD paths for comparative advantage and calculate
counterfactuals using exact hat algebra methods.

E.2 Solving for equilibrium

In any yeart and for given trade costs{{τisdt}Ii=1}}s 6=d, productivities{{q
ist
}Ii=1}}Ss=1, preference weights

{{µidt}Ii=1}}Sd=1, endowments{Lst}Ss=1, and trade balances{TBdt}Nd=1, acompetitive equilibriumis a collection
of wages{wst}Ns=1, incomes{Yst}Ns=1, and expenditures{Edt}Sd=1 such that:

i. the labor market in source countrys clears

wstLst =
∑

d

(

wstτisdt/qist

)−θ

∑

ς

(

wςtτiςdt/qiςt

)−θ
µidtEdt and

ii. the goods market in each destination countryd clears

wdtLdt = Ydt = Edt + TBdt.

Denote the industry-level expenditure share with

πisdt ≡

(

wstτisdt/qist

)−θ

∑

ς

(

wςtτiςdt/qiςt

)−θ
.

For any quantityx, let x̂ ≡ x′/x denote the proportional change to some counterfactualx′. From observed
equilibrium expenditure shares of{πisdt}i,s,d, we can solve for the percent change in equilibrium wages due
to the combination of a change in productivities{q̂

ist
}i,s and a change in trade costs{τ̂isdt}i,s,d by finding the

change in wages{ŵst}s such that

ŵstYst =
∑

d

π̂isdtπisdtµidt(ŵdtYdt − TBdt),

where the change in industry-level trade shares is

π̂isdt ≡

(

ŵstτ̂isdt/q̂ist

)−θ

∑

ς πiςdt

(

ŵςtτ̂iςdt/q̂iςt

)−θ
.

Note that we can compute all necessary initial equilibrium quantities (incomes, trade balances, and preferences)
from (square) expenditure matrices across industries,{Xisdt}isd, as

Edt =
∑

i

∑

s

Xisdt, Yst =
∑

i

∑

d

Xisdt, TBdt = Ydt − Edt, and µidt =

∑

sXisdt

Edt
.

Similar to Dekle, Eaton, and Kortum (2007), we use the tâtonnement algorithm of Alvarez and Lucas (2007) to
solve for the equilibrium change in wages each period while accounting fornon-zero trade balances.
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E.3 Counterfactuals

We want to assess how churning in comparative advantage influences theconclusions from common counter-
factual exercises under trade-cost changes. In particular, we consider how a 10% decrease in trade costs for
top comparative advantage industries in 1990 China impacts the equilibrium real wage and exports from China.
In our exercise, we hold trade balances fixed at their 1990 levels from twenty years of simulations and solve
for equilibrium outcomes for the whole world under various comparative advantage scenarios—that is, different
stochastic processes for comparative advantage.

We consider three comparative advantage scenarios:

1. Static Equilibrium : hold the distribution of comparative advantage fixed (in all industries and countries)
at 1990 levels.

2. Transition Path: initialize comparative advantage at 1990 levels and allow the distribution to evolve over
time based on our estimated GLD process.

3. Steady State: sample initial comparative advantages from the stationary distribution implied byGLD
estimates and then allow it to evolve over time.

The first scenario, static equilibrium, captures a typical exercise in the trade literature—productivities are
held fixed and not allowed to evolve stochastically. The second scenario,transition path, allows us to visualize
how our estimated GLD process implies transition dynamics—how the influence ofinitial comparative advan-
tages changes as churning leads to convergence to the stationary distribution of comparative advantage. The third
scenario, steady state, allows us to remove the effect of initial conditions. When we sample from the stationary
distribution in this third scenario and simulate comparative advantage over time, we converge to the stationary
distribution (for a sufficiently large number of simulations). This scenario captures the long-run impact of a per-
manent trade cost change since the distribution of comparative advantageconverges to the stationary distribution
in the long run, while the influence of initial conditions fades.

To assess the average impact of a given trade cost change, we simulate alarge number of paths for comparative
advantage. For eacht and simulation samplej, we compute the change in equilibrium wages{ŵ(j)

st }s where the
superscript indexes the simulation sample. We can then compute the implied change in real wages, and the level
of trade flows as

ŵ
(j)
dt

p̂
(j)
dt

=
ŵ

(j)
dt

∏

i

[
∑

s π̂
(j)
isdt(τ̂isdtŵ

(j)
st /q̂

(j)
ist

)−θ
]−

µidt
θ

and

X
(j) ′
isdt =

πisdt

(

ŵ
(j)
st τ̂isdt/q̂

(j)
ist

)−θ

∑

ς πiςdt

(

ŵ
(j)
ςt τ̂iςdt/q̂

(j)
iςt

)−θ
µidt

(

ŵ
(j)
dt Ydt − TBdt

)

.

For each source country, we aggregate these trade flows across destination markets and industries to get exports
in those “treated"" industries (those where trade costs are reduced), and also to get the level of total exports.

We compute these quantities for each simulation samplej = 1, . . . , J for a baseline counterfactual (τ̂isdt =
1), where trade costs do not change (but equilibrium does change because comparative advantages change) and for
a treatment counterfactual where trade costs also change (τ̂isdt = 0.9). We then compute the percent difference
between the two counterfactuals to get the within-sample-j treatment effect of the trade cost change. Finally, we
average over samples to get a measure of the average treatment effect of the trade cost change across simulations
within a given productivity scenario (static equilibrium, transition, or steady state).
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F Additional Evidence

In this Appendix, we report additional evidence to complement the reportedfindings in the text.

F.1 Cumulative probability distribution of absolute advantage

Figures A1, A2 andA3 extendFigure 1 in the text and plot, for 28 countries in 1967, 1987 and 2007, the log
number of a source countrys’s industries that have at least a given level of absolute advantage in year t against
that log absolute advantage levellnAist for industriesi. The figures also graph the fit of absolute advantage in
the cross section to a Pareto distribution and to a log normal distribution using maximum likelihood, where each
cross sectional distribution is fit separately for each country in each year (such that the number of parameters
estimated equals the number of parameters for a distribution× number of countries× number of years). In
the Online Supplement (Section S.6) we show comparable cumulative probabilitydistributions of log absolute
advantage for PPML-based exporter capability, the Balassa RCA index,and varying industry aggregates of OLS-
based exporter capability.

F.2 GLD predicted cumulative probability distributions of a bsolute advantage

Figures A4, A5andA6 present plots for the same 28 countries in 1967, 1987 and 2007 as shownbefore (inFig-
ures A1, A2andA3), using log absolute advantage from OLS-based exporter capability.Figures A4 throughA6
contrast graphs of the actual data with the GLD implied predictions and show alose fit.

F.3 Comparative advantage at varying industry aggregates

As a robustness check, we restrict the sample to the period 1984-2007 withindustry aggregates from the SITC
revision 2 classification. Data in this late period allow us to construct varying industry aggregates. We first obtain
gravity-based estimates of log absolute advantage from OLS (6) at the refined industry aggregates. Following
our benchmark specifications in the text, we then estimate the decay regression (10) at ten-year intervals and the
GLD model (C.17) using GMM at five-year intervals.

For the decay regression,Table A1 repeats in columns 1, 4 and 7 the estimates fromTable 1 for our bench-
mark industry-level aggregates at the SITC 2-3 digit level (133 industries) during the full sample period 1962-
2007. Table A1 presents in the remaining columns estimates for the SITC revision 2 two-digit level (60 in-
dustries) and the three-digit level (224 industries) during the late period 1984-2007. At the two-digit level (60
industries), the ten-year decay rate for absolute advantage using all countries and industries is−0.26, at the
three-digit level (224 industries) it is−0.37. When using PPML-based log absolute advantage or the log RCA
index, decay rates vary less across aggregation levels, ranging from−0.31 at the two-digit level for PPML-based
log absolute advantage to−0.34 at the three-digit level for log RCA. The qualitative similarity in decay rates
across definitions of export advantage and levels of industry aggregation suggest that our results are neither the
byproduct of sampling error nor the consequence of industry definitions.

For the GLD model under the GMM procedure, Table A2 confirms that results remain largely in line with
those inTable 2 before, for the benchmark aggregates at the SITC 2-3 digit level (133industries) during 1962-
2007. The benchmark estimates are repeated in columns 1, 4 and 7. In the other columns,Table A2 presents
estimates for the SITC revision 2 two-digit level (60 industries) and the three-digit level (224 industries) during
the late period 1984-2007.

Estimates of the dissipation rateη are slightly larger during the post-1984 period than over the full sample
period and, similar to the impliedη estimate in the decay regressions above, become smaller as we move from
broader to finer classifications of industries. Estimates of the elasticity of decay φ are statistically significantly
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Figure A1:Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1967
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1965-1967 and CEPII.org; three-year
means of OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the frequency of industries (the cumulative probability 1 − FA(a) times the total number of industriesI = 133) on the vertical axis plotted against the
level of absolute advantagea (such thatAist ≥ a) on the horizontal axis. Both axes have a log scale. The fitted Pareto and log normal distributions are based on maximum
likelihood estimation by countrys in yeart = 1967 (Pareto fit to upper five percentiles only).
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Figure A2:Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1987
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1985-1987 and CEPII.org; three-year
means of OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the frequency of industries (the cumulative probability 1 − FA(a) times the total number of industriesI = 133) on the vertical axis plotted against the
level of absolute advantagea (such thatAist ≥ a) on the horizontal axis. Both axes have a log scale. The fitted Pareto and log normal distributions are based on maximum
likelihood estimation by countrys in yeart = 1987 (Pareto fit to upper five percentiles only).
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Figure A3:Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 2007
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 2005-2007 and CEPII.org; three-year
means of OLS gravity measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the frequency of industries (the cumulative probability 1 − FA(a) times the total number of industriesI = 133) on the vertical axis plotted against the
level of absolute advantagea (such thatAist ≥ a) on the horizontal axis. Both axes have a log scale. The fitted Pareto and log normal distributions are based on maximum
likelihood estimation by countrys in yeart = 2007 (Pareto fit to upper five percentiles only).
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Figure A4:Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage in 1967
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and CEPII.org; OLS gravity
measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the observed and predicted frequency of industries (the cumulative probability1 − FA(a) times the total number of industriesI = 133) on the vertical
axis plotted against the level of absolute advantagea (such thatAist ≥ a) on the horizontal axis. Both axes have a log scale. The predicted frequencies are based on the GMM
estimates of the comparative advantage diffusion (15) in Table 2 (parametersη andφ in column 1) and the inferred country-specific stochastic trend component lnZst from (18),
which horizontally shifts the distributions but does not affect their shape.
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Figure A5:Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage in 1987
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and CEPII.org; OLS gravity
measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the observed and predicted frequency of industries (the cumulative probability1 − FA(a) times the total number of industriesI = 133) on the vertical
axis plotted against the level of absolute advantagea (such thatAist ≥ a) on the horizontal axis, for the yeart = 1987. Both axes have a log scale. The predicted frequencies are
based on the GMM estimates of the comparative advantage diffusion (15)in Table 2 (parametersη andφ in column 1) and the inferred country-specific stochastic trend component
lnZst from (18), which horizontally shifts the distributions but does not affecttheir shape.
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Figure A6:Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage in 2007
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Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and CEPII.org; OLS gravity
measures of export capability (log absolute advantage)k = lnA from (6).
Note: The graphs show the observed and predicted frequency of industries (the cumulative probability1 − FA(a) times the total number of industriesI = 133) on the vertical
axis plotted against the level of absolute advantagea (such thatAist ≥ a) on the horizontal axis. Both axes have a log scale. The predicted frequencies are based on the GMM
estimates of the comparative advantage diffusion (15) in Table 2 (parametersη andφ in column 1) and the inferred country-specific stochastic trend component lnZst from (18),
which horizontally shifts the distributions but does not affect their shape.
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Table A1: DECAY REGRESSIONS FORCOMPARATIVE ADVANTAGE , VARYING INDUSTRY AGGREGATES

OLS gravityk PPML gravityk lnRCA
2-dgt. 3-dgt. 2-dgt. 3-dgt. 2-dgt. 3-dgt.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Decay Regression Coefficients
Decay rateρ -0.349 -0.257 -0.370 -0.320 -0.320 -0.343 -0.303 -0.307 -0.326

(0.002)∗∗∗ (0.003)∗∗∗ (0.002)∗∗∗ (0.0002)∗∗∗ (0.0003)∗∗∗ (0.0003)∗∗∗ (0.01)∗∗∗ (0.017)∗∗∗ (0.01)∗∗∗

Var. of residuals2 2.089 1.463 2.005 2.709 1.889 2.583 2.318 1.678 2.267
(0.024)∗∗∗ (0.027)∗∗∗ (0.023)∗∗∗ (0.013)∗∗∗ (0.024)∗∗∗ (0.017)∗∗∗ (0.006)∗∗∗ (0.009)∗∗∗ (0.007)∗∗∗

Implied Ornstein-Uhlenbeck (OU) Parameters
Dissipation rateη 0.276 0.306 0.301 0.198 0.284 0.220 0.222 0.310 0.241

(0.003)∗∗∗ (0.006)∗∗∗ (0.004)∗∗∗ (0.0009)∗∗∗ (0.004)∗∗∗ (0.001)∗∗∗ (0.006)∗∗∗ (0.014)∗∗∗ (0.006)∗∗∗

Intensity of innovationsσ 0.558 0.441 0.554 0.623 0.52 0.618 0.570 0.486 0.572
(0.003)∗∗∗ (0.004)∗∗∗ (0.003)∗∗∗ (0.001)∗∗∗ (0.003)∗∗∗ (0.002)∗∗∗ (0.005)∗∗∗ (0.008)∗∗∗ (0.006)∗∗∗

Observations 324,978 70,609 230,395 320,310 70,457 227,061 324,983 70,609 230,396
AdjustedR2 (within) 0.222 0.241 0.265 0.282 0.315 0.295 0.216 0.233 0.224

Yearst 36 14 14 36 14 14 36 14 14
Industriesi 133 60 224 133 60 224 133 60 224
Source countriess 90 90 90 90 90 90 90 90 90

Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) in 90 countries for 133 time-consistent industries from 1962-2007,for 60 time-consistent
industries at the 2-digit SITC level from 1984-2007, and 224 industriesat at the 3-digit SITC level from 1984-2007, and CEPII.org; OLS and PPML gravity measures of export
capability (log absolute advantage)k = lnA from (6) and (8).
Note: Reported figures for ten-year changes. Variables are OLS and PPML gravity measures of log absolute advantagelnAist and the log Balassa index of revealed comparative
advantagelnRCAist = ln(Xist/

∑
ς Xiςt)/(

∑
ι Xιst/

∑
ι

∑
ς Xιςt). OLS estimation of the ten-year decay rateρ from

kis,t+10 − kist = ρ kist + δit + δst + ǫis,t+10,

conditional on industry-year and source country-year effectsδit andδst for 1962-2007 (column 1-2) and 1984-2007 (columns 3-6). The implied dissipation rateη and squared
innovation intensityσ2 are based on the decay rate estimateρ and the estimated variance of the decay regression residualŝ2 by (13). Robust standard errors, clustered at the
industry level and corrected for generated-regressor variation of export capabilityk, for ρ ands2, applying the multivariate delta method to standard errors forη andσ. ∗ marks
significance at ten,∗∗ at five, and∗∗∗ at one-percent level.
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Table A2: GMM ESTIMATES OFCOMPARATIVE ADVANTAGE DIFFUSION, VARYING INDUSTRY AGGREGATES

OLS gravityk PPML gravityk lnRCA
2-dgt. 3-dgt. 2-dgt. 3-dgt. 2-dgt. 3-dgt.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Estimated Generalized Logistic Diffusion Parameters
Dissipation rateη 0.256 0.297 0.287 0.180 0.289 0.205 0.212 0.332 0.204

(0.004)∗∗∗ (0.014)∗∗∗ (0.004)∗∗∗ (0.006)∗∗∗ (0.107)∗∗∗ (0.053)∗∗∗ (0.006)∗∗∗ (0.02)∗∗∗ (0.035)∗∗∗

Intensity of innovationsσ 0.739 0.558 0.715 0.767 0.613 0.798 0.713 0.574 0.678
(0.01)∗∗∗ (0.011)∗∗∗ (0.006)∗∗∗ (0.037)∗∗∗ (0.454) (0.336)∗∗ (0.051)∗∗∗ (0.09)∗∗∗ (0.42)

Elasticity of decayφ -0.041 -0.070 -0.023 -0.009 -0.035 0.024 0.006 -0.014 -0.008
(0.017)∗∗ (0.024)∗∗∗ (0.01)∗∗ (0.035) (0.593) (0.272) (0.053) (0.119) (0.404)

Implied Parameters
Log gen. gamma scaleln θ̂ 121.94 59.09 281.50 900.95 155.22 -239.56 -1,410.50 548.19 1,083.20

(71.526)∗ (31.021)∗ (161.258)∗ (4581.812) (3570.434) (3595.553) (14980.320) (6069.679)(72277.940)

Log gen. gamma shapelnκ 5.017 4.115 6.338 7.788 5.456 5.842 8.641 7.484 8.181
(0.842)∗∗∗ (0.724)∗∗∗ (0.875)∗∗∗ (8.062) (33.387) (22.563) (17.289) (17.421) (107.014)

Mean/median ratio 8.203 6.597 6.087 16.897 6.222 10.293 10.256 4.643 12.085

Observations 392,850 96,989 322,860 389,290 96,828 319,140 392,860 96,989 322,860
Industry-source obs.I × S 11,542 5,332 19,160 11,531 5,331 19,118 11,542 5,332 19,160
Root mean sq. forecast error 1.851 1.690 1.737 1.898 1.664 1.817 1.7601.560 1.768
Min. GMM obj. (× 1,000) 3.27e-13 1.82e-12 9.14e-13 2.56e-12 3.53e-11 9.91e-12 6.79e-12 1.61e-10 6.01e-11

Source: WTF (Feenstra, Lipsey, Deng, Ma, and Mo 2005, updated through 2008) in 90 countries for 133 time-consistent industries from 1962-2007,for 60 time-consistent
industries at the 2-digit SITC level from 1984-2007, and 224 industriesat at the 3-digit SITC level from 1984-2007, and CEPII.org; OLS and PPML gravity measures of export
capability (log absolute advantage)k = lnA from (6) and (8).
Note: GMM estimation at the five-year horizon for the generalized logistic diffusion of comparative advantagêAis(t),

d ln Âis(t) = −
ησ2

2

Âis(t)
φ − 1

φ
dt+ σ dW Â

is (t)

using absolute advantageAis(t) = Âis(t)Zs(t) based on OLS and PPML gravity measures of export capabilityk from (6), and the Balassa index of revealed comparative ad-
vantageRCAist = (Xist/

∑
ς Xiςt)/(

∑
ι Xιst/

∑
ι

∑
ς Xιςt). Parametersη, σ, φ for 1962-2007 (column 1-2) and 1984-2007 (columns 3-6) are estimated under the constraints

ln η, lnσ2 > −∞ for the mirror Pearson (1895) diffusion of (20), while concentrating out country-specific trendsZs(t). The implied parameters are inferred asθ̂ = (φ2/η)1/φ,
κ = 1/θ̂φand the mean/median ratio is given by (A.10). Robust errors in parentheses (corrected for generated-regressor variation of export capability k): ∗ marks significance at
ten,∗∗ at five, and∗∗∗ at one-percent level. Standard errors of transformed and implied parameters are computed using the multivariate delta method.
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negative across all industry aggregates for the OLS-based absolute advantage measures but statistically indistin-
guishable from zero for PPML-based log absolute advantage and the logRCA index, again regardless of industry
aggregation.
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