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Abstract

We study the consequences of poverty alleviation programs for environmental degra-
dation in Mexico. We exploit the community-level eligibility discontinuity for a condi-
tional cash transfer program to identify the impacts of income increases on deforestation,
and use the program’s initial randomized rollout to explore household responses. We find
that additional income increases demand for resource-intensive goods. The correspond-
ing production response and deforestation increase more detectable in communities with
poor road infrastructure. These results are consistent with the idea that better access
to markets disperses environmental harm and the full effects of treatment can only be
observed where poor infrastructure localizes them.
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data, and to Richard Carson, Paul Ferraro, Josh Graff-Zivin, Gordon Hanson, Jeff Vincent, and seminar participants
at NBER, PACDEV, UCSD, Amherst College, and University of Wisconsin AAE for helpful comments.
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1 Introduction

Is poverty alleviation likely to exacerbate or mitigate natural resource degradation? For policymakers

pursuing the twin goals of sustainable development - raising human living standards and improving

environmental quality – this is a crucial policy question. Deforestation represents an important type

of environmental degradation. Forest resources are both a local resource, whose uses include fuel

wood, fodder, timber, watershed protection and habitat, and a global public good. Global net forest

cover is estimated to have fallen by 9.4 million hectares (just under one percent) per year during the

1990s (FAO 2000) and carbon emissions from deforestation are estimated at approximately 20% of

the global total (IPCC 2007).

Whether higher household incomes increase or decrease pressure on forest resources depends

on multiple factors (Barbier & Burgess 1996, Wunder 2001, Pfaff, Kerr, Cavatassi, Davis, Lipper,

Sanchez & Timmins 2008) including prices of agricultural and pastoral goods (Pfaff 1999), demand

for forest products (Baland, Bardhan, Das, Mookherjee & Sarkar 2007, Fisher, Shively & Buccola

2005, Foster & Rosenzweig 2003), credit constraints (Zwane 2007), returns to alternative household

activities (Deininger & Minten 1999, 2002), agricultural intensification and extensification (Shortle

& Abler 1999, World Bank 1992), and demand for environmental amenities (Cropper & Griffiths

1994). The complexity of the relationship between household incomes and deforestation means that

research has generated few unambiguous theoretical predictions, and the search for sufficiently large,

plausibly exogenous sources of income variation for empirical analysis has been a challenging one.

In this paper, we exploit the discontinuity in the community-level eligibility rule for the nation-

wide implementation of Mexico’s Oportunidades program, as well as random variation in the pilot

phase of the program, to study the consequences of poverty alleviation programs for environmental

degradation. Oportunidades represents an ambitious attempt to increase consumption among the

poor in Mexico by building human capital. The program funnels large cash support payments

to households conditional upon their children’s school attendance and receipt of regular health

checkups. The program has an annual budget of $2.6 billion, or half a percent of GDP, and treats

40% of rural households, increasing per-capita income among recipients by an average of one-third.

The program’s rollout featured rigid, centralized eligibility thresholds at both the locality and the

household level, with eligibility defined according to a marginality index. It therefore introduced a
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very large income shock in 1998-2000 that is discontinuous at the point in the income distribution

where localities are defined as just “poor enough” to participate in the program.

We link spatial data on deforestation in Mexico from the period 2000-2003 to the location

and eligibility of every locality in Mexico, and exploit this data structure to examine whether

deforestation rates are affected by the program. While a relatively large literature exists using

the household-level discontinuity in Oportunidades (Bobonis & Finan 2008, Angelucci & de Giorgi

2009), a paucity of locality-level data has hampered research using the community-level discontinuity.

Exceptions to this trend are Barham (2009)’s paper on the impact of Oportunidades on child health

and Green (2005)’s study of political impact. This structure provides us with an unusual ability to

study economy-wide effects from the nation-wide introduction of a conditional cash transfer program

in a large and diverse country.

We find that exposure to Oportunidades increases deforestation. Changes around the disconti-

nuity imply a six-percent increase in the rate of deforestation among localities already deforesting,

and an increase of nearly 40% in the probability that any deforestation occurs in a locality. To

understand the micro-behavior that underlies this result we turn to household data from the ran-

domized pilot phase of the program: the Progresa evaluation sample. The experimental data show

that the additional household income significantly increases consumption, and recipient households

shift strongly into resource-intensive items such as beef and milk. This suggests that the deforesta-

tion impacts might be caused indirectly as households shift demand from less land-intensive goods

to more land-intensive goods, increasing their “ecological footprint” (Wackernagel & Rees 1996).

A critical feature of impact estimation where localities form the treatment unit is the issue of

spillover effects. Given a set of localized demand shocks, better-integrated local markets allow this

demand to be sourced from a broader set of producers. To the extent that new demand is satisfied

by national or global markets we lose the corresponding link between local consumption increases

and local environmental degradation.

This problem is analogous to previous literature on the effects of local rainfall shocks (Keller

& Shiue 2008, Donaldson 2009) which suggests that as infrastructure improves, prices become less

correlated with local shocks. This is a fundamental causal inference issue in the analysis of market-

mediated impacts, but is impossible to disentangle in a sample where the size of markets is homoge-

nous. The Oportunidades discontinuity not only provides a clean source of identification, but does
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so in a sample with tremendous variation in the access to transportation infrastructure (as measured

by road networks), allowing us to investigate the spatial spillover issue using several distinct empiri-

cal techniques. We show theoretically that even when the true impact of treatment on production is

constant, we are able to detect it only where infrastructure is poor, and thus the source of resources

is geographically constrained.

Empirically, we find that consumption increases appear quite constant and are not driven by

road infrastructure. The corresponding production increases on the other hand, display a more

complex spatial pattern. Consistent with the idea that transportation infrastructure is a significant

determinant of the spatial profile of market-mediated production impacts, we find larger deforesta-

tion effects in treated localities that have poor road infrastructure and thus are more isolated from

outside markets. We also find corroborating evidence at the household-level of a production re-

sponse (in this case, by richer, non-recipient households) only in treated localities which are more

isolated. Finally, we investigate spatial spillovers of treatment using a new method for calculating

spatial auto-correlation functions in a regression discontinuity context. This analysis shows the

spatial contour of impacts to be flat where roads are good, and to be concentrated around the

location of treatment where roads are bad. Overall, our results are consistent with the idea that

broader markets may simply disperse environmental harm, and that only by examining places where

these harms are localized by poor infrastructure may we capture the full effect of consumption on

environmental degradation.

The paper is organized as follows: we begin in the next section by discussing our contribution to

the literature on links between poverty and deforestation and the empirical problem introduced by

the study of micro-interventions when agents may participate in market transactions on a broader

spatial scale. Section 3 describes the Oportunidades program in more detail, and presents the

estimation strategy and results of the discontinuity analysis. Section 4 seeks to disentangle the

mechanisms through which this impact occurs by using household data from the randomized evalu-

ation phase of the program. Section 5 presents the spatial analysis, and the final section concludes

with a discussion of the policy implications of our findings.
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2 Poverty, Deforestation, and Spatial Impact Analysis

Disentangling the relationship between poverty and deforestation involves careful examination of

three distinct yet interrelated issues: existence of correlation or a causal link; understanding the

relevant household decisions; and the role of local markets in mediating the relationship. Much

theoretical work has examined the first two issues, but remains largely inconclusive. Reliable pre-

dictions regarding the sign of any causal link rely on a thorough understanding of the relevant

household decision process. Unfortunately, many of the channels through which household decisions

might affect deforestation lead to ambiguous predictions, resulting in the question becoming almost

exclusively an empirical one. Empirical analysis of the relationship, however, introduces the third

issue. When the household behavior change that drives any potential impact on deforestation passes

first through local markets, detection of any such impact relies heavily on the extent to which local

markets are connected to outside national and global markets. For the remainder of this section,

we discuss in more detail the theoretical and empirical work that has examined the relationship

between poverty and deforestation, the relevant household decisions, and our contribution to this

literature, concluding with a discussion of the detection of the effects of income changes on local

environmental outcomes when impacts can be dispersed.

2.1 Does alleviating poverty increase or decrease forest cover?

Conditional cash transfer programs that seek to alleviate household poverty and improve access

to education or health are increasingly popular in developing countries, but may have unintended

secondary effects. One possibility that has not received adequate previous attention is the potential

for environmental consequences. It is not clear, ex ante, whether we should expect income increases

to exacerbate or reduce environmental degradation: a large previous literature on the Environmental

Kuznets Curve suggests the relationship is complex and non-linear (Stern 2004, Dasgupta, Laplante,

Wang & Wheeler 2002, Panayotou 1997).

We focus here on forests as an environmental outcome of interest. Forests are a key local resource

and global public good. Understanding how to prevent further deforestation would significantly

contribute to efforts to limit greenhouse-gas emissions (Kaimowitz 2008, Stern 2008). However,

even if we limit the scope to the relationship between income and deforestation, previous empirical
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results and theory are ambiguous (Pfaff, Kerr, Cavatassi, Davis, Lipper, Sanchez & Timmins 2008).

Initial work on the development-deforestation link focused primarily on the presence and shape

of an Environmental Kuznets Curve (Cropper & Griffiths 1994, Pfaff 2000), positing that forest

cover initially decreases as income rises but then recovers as income increases beyond some turning

point. Subsequent work has shown both increases and decreases in forest cover as income increases.

Foster & Rosenzweig (2003) use a general equilibrium framework to show that devotion of land to

the production of forest products should rise as demand rises. They confirm this relationship using

long-term changes in income and forest cover across Indian states. Deininger & Minten (1999, 2002)

suggest that as countries grow richer, relative returns to off-farm labor would increase and reduce

pressure on forests. They illustrate such a relationship in data from Mexico. Zwane (2007) finds

that the relationship between income and deforestation in Peru is positive at low levels of income

but may be negative at higher levels. Baland, Bardhan, Das, Mookherjee & Sarkar (2007) assesses

the impacts of income growth on firewood collection in Nepal and find a net negative but very small

effect.

The empirical literature on the relationship between income and deforestation has been hampered

by concerns about the endogeneity of income growth. Rates of deforestation are clearly influenced by

multiple factors which could be correlated with income shocks. These include population growth,

agricultural returns, forest product prices, capital availability, technology, accessibility and insti-

tutional variables; see reviews by Angelsen & Kaimowitz (1999), Barbier & Burgess (2001). The

endogeneity problem may be particularly severe for studies using cross-sectional variation to identify

impacts. Conversely, in studies using panel variation in income (Zwane 2007, Baland, Bardhan, Das,

Mookherjee & Sarkar 2007), the relatively small income changes observed in a short-term panel may

not reflect true economic development - the magnitudes may not be large enough to correspond to

realistic poverty-reduction goals. Also, these short-term fluctuations are different in nature than

permanent income changes. Households are likely to respond differently to income changes that are

perceived to be substantial and permanent versus small and temporary.

Exploiting Mexico’s rollout of Oportunidades allows us to make two contributions to the existing

empirical literature. First, the implementation of the Oportunidades program creates an exogenous

source of variation in income, allowing for clean identification of causal effects. Second, the mag-

nitude and duration of the program represents a substantial and durable increase in income for a
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large share of the households in poor communities. We are thus able to estimate impacts using a

positive shock to income that is as large as is likely to be achievable by any actual poverty alleviation

program.

2.2 The ecological footprint of poverty alleviation

In the set of empirical studies discussed above, several potential mechanisms are proposed to explain

how changes in household income affect deforestation. Many of these could apply in the case of

programs designed to alleviate poverty by improving incomes. Foster & Rosenzweig (2003) propose

that higher incomes will increase demand for forest products which will induce a supply response

by households or communities where there is clear ownership of forest resources. In this case

we would expect a conditional cash transfer program to result in less deforestation. Deininger &

Minten (1999, 2002) suggest that income increases which occur through increased returns to off-

farm labor would reduce agricultural land use and ease pressure on land, also reducing deforestation.

Although a conditional cash transfer program might not directly raise off-farm wages, it could raise

the opportunity cost of leisure, and therefore discourage on-farm production through a similar

mechanism.

Other researchers have suggested that income increases could spur capital improvements or

technological adoption, which would facilitate agricultural intensification and reduce pressure on

forests (Shortle & Abler 1999, World Bank 1992). If poverty alleviation programs also reduce

credit constraints, this mechanism would be relevant. Zwane (2007)’s model proposes different

deforestation effects of income increases at high and low initial levels in part because of borrowing

constraints. Across two periods of decision-making, an exogenous increase in income decreases

borrowing in the first period, thereby increasing the money available to purchase agricultural inputs

in the second period, and hence the value of cleared land. At low incomes, relaxing the credit

constraint increases deforestation while at higher incomes there is an offsetting increase in the

marginal utility of leisure which may result in less deforestation.

An advantage of using Oportunidades as a case study is that it was preceded by a randomized

pilot program, Progresa. This experimental design, along with the rich household surveys that were

conducted as a part of the program, allow us to unpack the household decisions corresponding to

observed aggregate deforestation impacts. The evidence in the Mexican case leads us to propose
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a new indirect mechanism by which higher incomes increase deforestation. It is similar to Foster

& Rosenzweig (2003) in that higher incomes increase demand for consumption goods. However,

here increased demand increases deforestation because the production of the relevant goods requires

more cleared land rather than more forested land. We assume that food goods produced by low-

income households are inferior relative to other goods. As household income increases, households

substitute away from these inferior goods (e.g. beans) to normal goods (e.g. beef). If the normal

good (beef) is more resource intensive than the inferior good (beans) then households will increase

their “ecological footprint” as they become richer, resulting in additional deforestation.

2.3 Estimating responses when shocks can be dispersed

In order to test our hypothesis that income changes lead to consumption driven impacts on de-

forestation, we must address an issue that is fundamental to the estimation of all market-mediated

impacts: there is by no means a one-to-one mapping between the location of the consumption change

and the location of the corresponding adjustment in production. Particularly, when the treatment

unit (and therefore the source of variation in demand) is small relative to the geographic coverage of

the program, the extent to which production impacts spill over will determine what is measured by

comparing treated and untreated localities. In trying to understand how these locality-level shocks

to income alter market demand and supply of forest-intensive resources, we can draw an analogy

with the literature estimating the effect of localized rainfall shocks on prices. A well-established

result from this literature is that as infrastructure improves, prices become less correlated with lo-

calized rainfall shocks and more correlated with the rainfall shocks of adjacent areas (Donaldson

2009, Keller & Shiue 2008). This effect occurs because demand within a given area is sourced from

more distant producers when infrastructure is improved, and hence shocks are spread over a greater

area.

When we measure market-level treatment effects from localized experiments (even randomized

ones), this same phenomenon will generate observed heterogeneity in the measured treatment effect

across infrastructure quality. This heterogeneity will be present even if the true, total treatment

effect is constant. To see this, we can think of a market as a grouping of a set of units into a single

price-setting mechanism, so that shocks to one unit within a market are transmitted to the other

units. Let the number of units per market be given by η, which proxies for infrastructure quality. A
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treatment induces a constant increase in demand equal to τ per unit, and this increase in demand

is sourced on average from itself and the η − 1 other members of the market.

The increase in outcomes within a unit as a function of its own treatment is the part of the

effect that does not spill over, namely τ
η . In addition to the direct effect of treatment, each unit

will receive an expected spillover effect equal to the indirect treatment effect from the number of

individuals within the market who were treated. Writing the share treated as σ, then ση units per

market will be treated and the expected spillover effect will be ση τ
η = στ . The average treatment

effect is given by the difference between treated and untreated units, or

E(Y | T ) − E(Y | C) = (
τ

η
+ στ) − στ =

τ

η
.

This says that the experiment measures not the total effect of treatment but only the component

of it that does not spill over to other members of the same market. Now if we think of infrastructure

(in our case roads) as being an intermediating variable that determines the size of the market, it

can be thought of as determining the number of units on to which the treatment effect τ spills. In

environments where the road network is excellent, η moves towards infinity and we have a single

national market where the measured difference between treatment and control units is zero. With

poor road infrastructure, consumption is localized to the spatial unit of treatment, η goes to one

and the estimated difference between treatment and control converges on the true total treatment

effect, τ . If what we set out to do with our experiment was to measure the total environmental

impact of the treatment, then the error, meaning the difference between the true total treatment

effect and the result of the micro-experiment is given by τ(η−1
η ), which vanishes as markets become

completely autarkic.

In a sample with variability over the quality of local infrastructure, we will observe heterogeneity

in impacts even when the actual treatment effect is constant. The reason for this differential is that

spatial arbitrage removes the difference between treated and control units when the pixel size of

treatment is small and transport costs are low. Under the assumption of homogenous treatment

effects, such an argument implies that we only get the correct estimated treatment effect when spatial

arbitrage is shut off. This argument is consistent with the results of Foster & Rosenzweig (2003),

who observe a positive feedback effect of higher income on forest reserves only in closed economies,
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but not in open ones. Presumably the reason for this heterogeneity is that closed economies do not

arbitrage their increased demand for forest products across global markets, and hence they manifest

the full treatment effect on internal markets. In what follows we investigate the heterogeneity in

impacts across infrastructural quality and confirm that our largest observed treatment effects occur

precisely where they are the most localized.

3 Oportunidades and Deforestation: Overall Impact

3.1 Program description

The intention of Oportunidades is to increase school attendance and health care among poor families

in Mexico. The financial scope of Oportunidades is large. The annual budget is approximately $2.6

billion a year, about half of Mexico’s anti-poverty budget. It treats some four million households

providing cash transfers conditional on health care provision and school attendance. On average the

transfers are about one-third of total income in these poor households, clearly meaningful income

changes. The program has been widely studied and lauded for its success in achieving these objec-

tives (Schultz 2004, Fernald, Gertler & Neufeld 2008, Skoufias & McClafferty 2001). The transparent

nature of its enrollment criteria and benefits has contributed to the admiration of the program, and

it is currently being replicated in various other countries.

The program was implemented in stages. The initial implementation of the program (beginning

in 1997) was randomized, and combined with detailed household-level data collection. The full rural

roll-out of the program occurred mainly in 1998-2000. This phase was not randomized, but was

targeted to localities based on a marginality index; this created the discontinuity in treatment which

we use. Eligible villages were first selected according to their level of marginality, and then surveys

were conducted within villages to determine who would receive payments. Villages without nearby

primary schools or health clinics were not eligible to receive the program. Our analysis focuses on

the implementation from 1998-2000, as this is the period with the most useful variation and clearly

defined eligibility rules, and because it precedes available deforestation outcome measures. We also

leave out villages with more than 2,500 inhabitants – the threshold for “urban” communities in

Mexico.
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3.2 Data description

To conduct the analysis we merge information on localized deforestation with the program evaluation

sample of Progresa, the full national eligibility and rollout data for Oportunidades, and a variety

of other sources. Our unit of analysis is the locality. Locality-level eligibility for the program is

based upon marginality indices calculated by CONAPO, which were created for 105,749 of the

approximately 200,000 localities1.

The spatial coordinates of each village in Mexico, along with the population and marginality

index numbers for 1995, are from the National Institute of Geography and Statistics in Mexico

(INEGI), and the data describing the roll-out of Oportunidades comes from the Oportunidades

office. Although we have information on enrollment by village through 2003, we exclude villages

enrolled after 2000, since after this point the rollout of the program in rural areas was largely

finished, and the eligibility rules changed.

To measure deforestation at the locality level we rely on data from the Mexican National Forestry

Commission (CONAFOR). The data is based on mosaics of Landsat satellite images from 2000 and

2003 (30 m resolution) and was created by CONAFOR under a mandate to accurately measure and

monitor deforestation across the whole country (Monitoreo Nacional Forestal). Due to the large areas

that must be covered, the classification of changes is based on changes in the Normalized Difference

Vegetation Index (NDVI) values across time using comparisons during the dry season. NDVI is an

indicator of vegetation cover and is used worldwide to measure changes in forest cover. Although

NDVI change is the best available indicator of changes in forest cover, we note that the measure can

have some errors due to weather shocks such as unusually high rainfall or drought conditions. These

errors are in the dependent variable but are unlikely to be correlated with variation in treatment,

conditional on regional fixed effects. In addition, because CONAFOR was primarily concerned with

identifying areas of new deforestation, the 2000-2003 analysis does not include information on which

areas might have afforested, so our deforestation variable is censored at zero.

To measure baseline forest, we use the National Forest Inventory (NFI) from 2000. These data

are based on a combination of remote sensing using Landsat images and field sampling to verify the
1Ninety-three percent of the villages for which there is no marginality index had fewer than 25 inhabitants in 2000.

The index was created using a principal components analysis based on seven variables from the 1995 Conteo (short
census) and 1990 census, including illiteracy rates, dwelling characteristics, and proportion of the population working
in the primary sector (Skoufias et al. 1999).
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classification system. Because it is not possible to have deforestation without first having forest, and

because there tends to be larger measurement error of deforestation when the areas are smaller, we

exclude localities which start with less than 10 hectares of baseline forest in the year 2000. Figure

1 shows the distribution of forest across Mexico in 2000.

Program eligibility was defined at the locality level. We have point data on their locations,

however data on the boundaries of the more than 150,000 localities does not exist. In order to assign

each part of the landscape to a unique locality, we use the method of Thiessen polygons. These

assign land to localities based on the closest locality point. This method relies on the assumption

that localities are responsible for the land that is closest to them and has the advantage of avoiding

the problem of double counting caused by other shapes such as circles around each locality. Figure

2 shows a zoomed in picture of land use in 2000 along with the locality boundaries assigned by the

Thiessen polygons method.

3.3 Empirical strategy

We observe a cross-sectional relationship between enrollment in Oportunidades by the year 2000,

and suspected deforestation between 2000 and 2003. One way to estimate the effect would be to

apply OLS to the equation:

Δfi = α + δti + β′Xi + εi (1)

where Δfi represents the change in forest cover in polygon i over the period 2000-2003, ti is equal to

one if the locality associated with the polygon was enrolled in the program by 2000, Xi represents a

vector of locality-level characteristics which might also affect deforestation, including poverty, and

εi are unobserved factors affecting deforestation. If the program had been randomly distributed,

then this would be an appropriate way to measure its effect on environmental outcomes. However,

it is not randomly distributed, it is distributed to those who are poor, and who may be likely to

have higher rates of deforestation even in the absence of the program. In addition, since enrollment

in the program is voluntary, it is possible that those communities where enrollment is very high are

systematically different than those where enrollment is very low – i.e., that selection problems could

bias the estimates of the parameters in equation 1.
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If the discontinuity is sharp, meaning that the rule for eligibility perfectly predicts treatment,

then one can simply include the eligibility rule as a proxy for the treatment itself. In our case, this

would be a dummy variable (Ei) equal to one if the locality’s marginality index exceeds -1.2 – the

point at which enrollment begins to rise very sharply. This corresponds to the boundary between

“medium” and “low” levels of poverty, as classified by the index. We use this approach in several

specifications, understanding that it is only an imperfect proxy for treatment. It measures intention

to treat, rather than the actual effect of being treated.

Figure 3 examines the discontinuity visually, retaining the marginality index as the X-variable,

but then plots the two critical dimensions of the discontinuity structure on the vertical axes. On

the right axis we see the scatterplot of the proportion of localities enrolled in Oportunidades by

2000 according to bins across the distribution of the marginality index. It is important to note that

the number of observations in each bin varies considerably across bins, with few observations in

the extreme bins and many more per bin towards the middle. We do not use information on the

presence of schools or clinics in these villages, but we observe that even without using this data to

exclude villages, we see a sharp increase in enrollment above values of -1.2 on the marginality index.

The proportion enrolled remains high for intermediate values of the marginality index and then is

lower at high levels of marginality; we suspect that the decreases in enrollment at very high levels

of marginality may be related to the fact that the very poorest villages may not have been eligible

as a result of their lack of infrastructure.

The solid line in Figure 3 shows the smoothed deforestation rate by marginality bin, estimated

with a break at the lower end of the discontinuity window, along with a 95% confidence interval2.

Deforestation rates, while sloping upward across this part of distribution, appear to jump by around

50% precisely at the discontinuity. Note that because income is decreasing as we move to the

right, a treatment that increases income is effectively pushing households to the left on this figure.

The implication is that while the cross-sectional data are supportive of a Kuznets-style relationship

(deforestation highest in the middle part of the distribution) the eligibility discontinuity lies above

this value, and so if we took the Kuznets relationship to be causal, we would have expected an income
2We replicate this picture using the 1994 levels of forest cover within the Thiessen polygons as a falsification test.

Unfortunately, the data on 1994 forest areas is missing large tracts of data in northwest Mexico and in parts of the
state of Guerrero. However, given the available data, nearly 30,000 observations, there appears to be no difference
in 1994 forest levels (measured in percent of polygon in forest) at the point of the discontinuity either visually or
statistically.
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increase in this part of the poverty distribution to decrease deforestation. This would appear to

provide another piece in the already substantial body of evidence suggesting that cross-sectional

Kuznets relationships do not depict a causal link between income and environmental changes.

Figure 4 zooms in on the same picture, showing the sample we will use in our discontinuity

analysis. Deforestation rates in the 2000-03 interval average just under half a hectare on the richer

end of the discontinuity, but once a locality becomes just poor enough to qualify for Oportunidades

average deforestation jumps to nearly one and a half hectares. The data range includes marginality

levels from -2 to 1, which constitutes 85% of the total sample with baseline forest and populations

less than 2,500. The assumption behind the identification strategy is that households which are very

close to each other in poverty measures will be so similar that the only difference in deforestation

over this range will come from the receipt of Oportunidades payments. As a robustness check, we

also include results from a sample restricted to the range -1.6 to -.4 on the poverty index, which

constitutes only 30% of the total sample. This sample is shown in Figure 5. In both cases, there

are significant differences between deforestation rates before and after localities become eligible for

the program.

Our situation differs from a sharp discontinuity in two ways. First, enrollment is not one hundred

percent beyond any threshold. Second, there is a range over which the probability of enrollment

increases. Presented with the first problem, some authors have used the eligibility criteria to predict

the probability of enrollment3. In our case, the discontinuity also shows a differential probability

of enrollment over the range between -1.2 and -.9. Because of this, we use a fuzzy discontinuity

strategy, following closely the methodology of Green (2005) and Jacob & Lefgren (2004). Nonlinear

combinations of the eligibility rule and the marginality index are used as instruments in a system

of equations given by:

Δfi = α + δTi + γMi + β′Xi + εi (2)

Ti = ω + τ1Ei + τ2EiIi + τ3Mi + τ4MiIi + μIi + Γ′Xi + νi (3)

where Ii represents the value of the marginality index in locality i, Mi is equal to one over the zone

where enrollment increases rapidly (from -1.2 to -.9) and zero otherwise, and the other variables
3For a review of regression discontinuity approaches, see Imbens & Lemieux (2008).
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are as defined above. The vector Xi may also include, depending upon our specification, the size of

the polygon in kilometers squared, the population in 1995, the percentage of the polygon that was

forested in 2000, and regional dummy variables.

This specification assumes that the underlying relationship between poverty as measured by

Ii and deforestation is linear over the range that we consider. While this may be a reasonable

approximation over the narrow range around the discontinuity, we also experiment by including

quadratic and higher-order terms to control for potential non-linear effects.

Table 1 presents some simple statistics from the two subsamples comparing average deforestation

levels in the eligible and marginal zones for the program. In the “full” sample, there is a positive and

significant difference in deforestation between marginal and definite groups, while in the restricted

sample this difference is positive but not significant. These simple comparisons of means across the

running variable seem to indicate the presence of a jump in deforestation around the discontinuity.

They do not, however, control for the underlying relationship between poverty and deforestation,

nor do they control for any other covariates which might be correlated with both of these.

3.4 Results

3.4.1 Simple approach

We first present results from the simplest reasonable approach – using the eligible localities as a

proxy for the treated localities. Table 2 shows the results of a Tobit estimation where the dependent

variable is equal to the natural log of one plus the area (in kilometers squared) of land suspected

of deforestation between 2000 and 2003 within Thiessen polygon associated with a locality. The

first four columns show results from the full sample, and the last two from the restricted sample.

The simplest specification includes just the eligibility criterion, the marginality index, polygon area,

baseline percentage of that area in forest, and population. In this case the effect of eligibility

is positive and significant. Adding more covariates reduces the size of the coefficient somewhat,

but it is still positive and significant. A squared term of the index renders the eligibility variable

insignificant, but a cubic term returns its significance and results in an increase in the point estimate.

It is possible that the correlation of these terms with the slope of the “marginal” zone creates this

effect. The last two columns show positive and significant effects of eligibility on deforestation in
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the restricted sample.

Among non-eligible localities, the probability of deforestation is 4%, and the value of the depen-

dent variable among those observations is around .09 (.10 for the restricted sample). Considering

the marginal effects of eligibility in this light reveals a large effect of the program – it increases the

probability of deforestation by 1.5 percentage points – around 37 percent. The increase in defor-

estation among deforesters fluctuates between .003 to .006. This change constitutes an increase in

deforestation among the deforesters of around 6 percent.

3.4.2 Fuzzy discontinuity

Results from the instrumental variables discontinuity approach are presented next. We begin by

examining the predictive power of the instruments and then show the impact estimation results.

Table 3 shows the results of the first stage OLS regressions of a dependent variable equal to one

if the locality was treated by 2000. The first four columns test the power of the set of fuzzy

discontinuity instruments on the full sample, and the last three columns for the restricted sample.

The variables have the expected signs – being eligible for the program (in the zone above -1.2)

increases the probability of enrollment, as does being in the marginal zone. The slope of the increase

in probability of enrollment in the marginal zone is given by the interaction of the marginality index

with the marginal zone, and is positive and significant as predicted. Estimations 3 – 4 and 6 –

7 include nonlinear terms of the marginality index. F-tests of the set of instruments show that

these specifications are somewhat weaker than those including just a linear term of the index. This

confirms the suspicion suggested above that the nonlinear terms are correlated with the instruments.

Table 4 shows estimations of the systems of equations given by equations 2 and 3, using as

the dependent variable the natural log of 1 plus the area deforested of the polygon, as measured

in kilometers squared. The estimates are similar in quality to those of the simplest approach –

participation in the program increases both the probability and the amount of deforestation –

although they are somewhat larger. This suggests that the results are robust to using the cleanest

source of exogenous variation given the eligibility rules of the program.
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3.5 Heterogeneity in treatment

As we have discussed above, land use change is a multi-faceted process, driven by changes in returns

to land as well as household dynamics. We have no reason to believe that the impact of participation

in Oportunidades will be uniform across localities. In fact, we expect that the impact will vary

significantly depending upon the profitability of existing forest land in alternative uses and the

quality of local transport infrastructure. The most basic dimension at which we might expect the

effect to vary is the underlying suitability of land with respect to a production supply response. Table

5 examines this question by looking for heterogeneity across a locality’s propensity to be deforested.

Column 1 of this table shows the estimation of predicted deforestation, which is conducted using only

the ineligible localities of the restricted sample. This estimation shows that deforestation increases

with marginality (though not significantly), with the baseline amount of forest, population, and area

of the polygon. It decreases with the slope of the land in the polygon. We then use this estimation to

predict the probability of deforestation for the whole sample, and interact this predicted value with

eligibility for the program. These results are shown in columns 2 – 5, and support our hypothesis:

having a higher risk of deforestation (higher quality land) increases the likelihood of deforestation

significantly more in localities which are eligible for the program. This result is robust to including

non-linear terms of the marginality index. We do not show the parallel results from the restricted

sample, although they are nearly equivalent.

Next, we consider the possibility that transport infrastructure might also affect the impact of

the program on deforestation. The first three columns of table 6 show the differential impact of

eligibility at different categories of road density, where road density is calculated as the kilometers of

roads within a ten kilometer buffer around each locality. This number ranges from zero to 139, and

the three columns are the sub-sample divided into equal groups according to road density. Here we

observe that the program only has a significant positive impact on deforestation where road densities

are very low. The second three columns of the table show the effect of land quality – the propensity

to deforest – in the given road density categories. Again we observe that deforestation is much

more likely to occur where predicted deforestation is high, and that being eligible for Oportunidades

increases overall deforestation, but only where road networks are very limited.

In sum, the results show that Oportunidades is associated with an acceleration of deforestation.
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Localities that received treatment show greater deforestation than localities with very similar poverty

levels that did not receive treatment. However, treatment effects vary across land quality and road

networks. The problem of estimating responses when shocks can be dispersed through spillovers as

described in Section 2.3 suggests that our failure to detect deforestation impacts in places with good

road networks comes not from a lack of environmental harm there, but from a lack of correspondence

between the places where consumption increases and the places where production rises to meet that

consumption. We cannot test for true heterogeneity in impacts across the quality of road networks

jointly with the presence of this spillover heterogeneity, but market spillover would suggest that we

move towards the correct deforestation impacts in places with more localized markets. To the extent

that some spillovers exist across localities even with the worst road infrastructure in the sample,

even these impacts are lower bounds on the true environmental harm. Similarly, the fact that our

data structure necessitates the use of a ‘baseline’ forest cover from two years after the treatment

began suggests that the estimates provided here may give a lower bound for the true link between

income increases and deforestation.

The strength of the identification provided by the eligibility discontinuity lies not in its ability

to disentangle micro channels but rather in the ability to estimate economy-wide impacts of a major

national program being implemented at scale. In order to try to understand the household-level

changes that underly these broader impacts, we turn to the evaluation data from the randomized

pilot of the program.

4 Progresa and Deforestation: Household Channels

4.1 The Progresa data

The initial, experimental phase of Oportunidades was known as Progresa. This pilot phase featured

a three-year period during which the intervention was directly randomized at the locality level. Of

the pool initially identified for participation in the program (poor and very poor according to the

1995 Conteo), 506 localities were randomized into 320 “treatment” (initial intervention) and 186

“control” (delayed intervention) groups. The experiment included several baseline and evaluation

surveys that have been used in previous studies (see Skoufias (2005), Section 3 for a description of

the evaluation design). For our analysis, we combine the 1997-98 baseline surveys with the 2000
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followup which occurred at the end of the experimental phase. This evaluation design provides a

unique opportunity to study the micro-foundations of the household production and consumption

decisions that underly the observed deforestation impacts.

We wish to examine both demand and supply-side impacts of the program. A large and careful

literature exists on the consumption impacts of Progresa, and the program is found to have increased

the intake of meat and animal products (Hoddinott & Skoufias 2004). Given the well-documented

significant increase in the resources required to supply an animal-intensive diet (White (2000),

Gerbens-Leenes & Nonhebel (2002), Bouma et al. (1998)) and the intense competition between

cattle-rearing and forest resources in Mexico (Barbier & Burgess (1996), Kaimowitz (1995)) this

seems a natural place to look for a demand-driven increase in pressure on forest cover. To this

end, we examine changes in consumption of beef and milk products. We might also suspect that

there would be an increase in demand for forest products. Since the survey does not contain direct

measures of timber demand, we use a proxy, namely home improvements.The survey does not

contain measures of timber demand, with the exception of new housing construction in the form of

the number of rooms in the home.

On the production side, we assess changes in the number of cattle owned, number of plots,

and plot size. Evidence exists to show that Mexican households substitute into the consumption

of home produced goods during periods of economic recession, and hence we may expect that the

sourcing of production moves away from the households of beneficiaries (Hicks 2008). In terms of

changes in production inputs, we also consider the impact of the program on child labor. Given

that this type of labor is disproportionately used on the family farm, this provides an additional

reason why households eligible for Progresa/Oportunidades may produce less on their own household

farms and consume more goods produced elsewhere. Finally, we investigate whether the ineligible

households in treatment localities display spillover effects in production that are not observable in

the ineligible households in control localities. Of primary interest is not the previously-established

intention to treat effect of the program, but the heterogeneity of this effect across the quality of

local transportation infrastructure.

Since the data in this section are generated by a randomized experiment, we could use OLS on

the simple difference in difference equation below, restricting the sample to eligible households:
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yit = β0 + β1Ti + β2Pt + β3TiPt + εit (4)

where yit is the household-level outcome variable related to consumption, land use, or child labor,

Ti equals 1 if the household is in a treated locality, Pt is equal to one in the post-treatment period,

TiPt is the interaction of Ti and Pt, and εit is the household specific error. Because randomization

was at the locality level we use clustered standard errors that are robust to correlation between

households within a given locality. β3 is the treatment effect of interest. To test for heterogeneity

of treatment effects across the quality of local transportation infrastructure, we include a second

specification for each outcome variable which examines the interaction between treatment effect and

the inverse road density in the locality.

Effects on all household level outcome variables with the exception of child labor and land plots

used in the eligible sample will be estimated using negative binomial MLE. Child labor is a binary

outcome, so for this we show the results of a linear probability model, and in the case of land plots

used by household members in the eligible sample we use a Poisson MLE. Note that for all count

variables, the choice of OLS, or Poisson or negative binomial MLE does not significantly change

the estimated marginal effects; however, use of the count data models should provide us with more

accurate standard errors4.

4.2 Progresa results

The experimental household data present a straightforward narrative as to the micro-level impacts

of treatment. Table 7 shows no increase in the direct demand for timber products in the context of

the home improvements proxy, but does show confirmation of the strong increase in consumption

of resource-intensive goods that results from receipt of Progresa transfers. Meat and milk con-

sumption and the ownership of cows all surge under the treatment; the treatment effects represent

increases relative to the baseline mean of of 32%, 24%, and 18%, respectively. These large average
4The application of OLS would provide us with consistent estimates of the parameters of interest, however, this

would not be the ideal approach. A problem arises in that many of the household-level variables are count variables; in
this case maximum-likelihood estimation using a count-data distribution such as Poisson or negative binomial would
be more efficient. Poisson MLE is a useful starting point for the analysis of count data, but is often inadequate due to
the well-known equality of mean and variance in this distribution. Often count data are overdispersed; in other words,
the variance exceeds the mean. A test of overdispersion proposed by Cameron & Trivedi (2005) (p. 671) and applied
to the household evaluation data indeed rejects the null hypothesis of equidispersion for all count variables except the
number of plots of land used by household members in the eligible sample.

20



consumption-side impacts prove to be invariant to the quality of local road networks; everyone eats

more protein regardless of local infrastructure.

Table 8 presents production-side results. Despite a significant 3 percentage point decrease in the

share of children who work in the home, there is not a significant fall in the number of children on

the labor force, and there is no increase in either the number of plots or the total area cultivated

by recipient households. Therefore, the program does not appear to relieve credit constraints to

production in any simple way (or at least, if it does so then this effect is counterbalanced by an

increase in the marginal utility of leisure). In addition, the program has no detectably differential

effects across the distribution of road density. Therefore Progresa does not appear to provoke a

substantial increase in the extensive margin of agricultural production among beneficiary households.

If consumption is increasing in this large treated population and production is not increasing in

these households, from where is this additional consumption being sourced? To answer this question

Table 9 turns to the analysis of indirect effects; namely those experienced by households that reside

in eligibly poor localities but who do not themselves qualify as poor (i.e. spillover effects). Within

this group we observe that while the program does not have significant effects on production in this

group overall, in road-poor areas there is a significantly stronger increase in the number of hectares

under cultivation and in the number of cows being grazed on that land.

These results can easily be cast in the framework introduced in Section 2. Progresa induces

greater consumption of resource-intensive goods everywhere, and hence increases pressure on re-

sources regardless of network quality. Since treatment does not increase output among recipient

households, this additional demand is put into the marketplace. With low road density, the demand

must be met locally and so the spatial distribution of forest pressure maps closely onto the locality

of treatment. Where infrastructure is better, the large increase in demand for animal protein (as

well as the diversification of fruit and vegetable consumption found in Hoddinott & Skoufias (2004))

will be met through a marketplace that serves up more consumer variety sourced from a greater

variety of locations. In such circumstances, a large component of the treatment effect spills over

into other places and hence the observed difference between treatment and control localities is small.

Importantly, in this very simple framework the true total treatment effect is the one observed in

the most isolated locations. The environmental damage from consumption is not necessarily lower

in places with better infrastructure, it is simply undetectable.
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5 Spatial analysis

5.1 Spatial ACFs in a RD framework

Having motivated the idea of a marketplace as a spatial unit within which the impacts of treatment

effects are dispersed, we move to examine the spatial contour of the response to treatment in a more

direct way. The empirical approach tries to mirror the discontinuity analysis, which is built on the

logic that while the distribution of outcomes may be endogenous across the broader distribution of

the eligibility score, it is exogenous within a window around the discontinuity. In order to estimate

the spatial distribution of impacts directly, we adapt techniques introduced by Conley & Topa

(2002) to the regression discontinuity framework. Specifically, since treatment is linked directly

with marginality through the locality-level eligibility criterion, spatial auto-correlation functions

calculated in the standard way will be endogenous. We therefore construct areas (0-10 km, 10-20,

and so on up to 40 km) around each locality, and within each area we count the number of localities

within a the band around the discontinuity, and the number of these localities actually treated. This

provides a conservative way of using “as if random” saturation in the intensity of treatment in the

window around the discontinuity to measure spillover effects.

The underlying information used here is the same as that used in the discontinuity analysis, but

the structure of the data is slightly different. Here we divide the country in a grid of equally-sized

cells 10 km square. Each cell with forest in it constitutes a potential observation. If deforestation

occurs in cell i between 2000 and 2003, then di = 1. For each cell we also calculate an “intensity

of treatment,” which is composed of a ratio where the denominator is the number of “study”

localities in the cell, and the numerator is the number of villages out of the study villages that

receive Oportunidades. We define a study village as one which is in the subsample that we used

for the discontinuity analysis, i.e., one which is located between -1.6 and -0.4 on the poverty index.

For a given cell, si0 represents this ratio, which we refer to as a saturation. For each cell we also

calculate this ratio for all of the neighboring cells, excluding the own cell. This is the saturation

at 10 kilometers, si10, and proceed outwards, calculating saturation in successive rings around a

given cell up to 40 kilometers. We also calculate the density of road networks in the 40 kilometers

surrounding each cell. We call this variable ci and interact it with each of the saturation variables

to help us understand how road access might affect the probability of deforestation. For areas which
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have no “study” localities in them, we include a dummy variable equal to one when there are no

localities, and for these observations include zeros in the saturation observations. We then drop all

cells with no baseline forest cover and estimate:

di = α +
∑

k=0,10,20,30,40,50

[βksik + θksikci] + ΓXi + εi, (5)

where Xi are control variables and εi is the error term. We calculate standard errors using

bootstrapping in order to avoid the problem of spatial autocorrelation of error terms. In estimations

of this type, it is quite reasonable to worry about spatial correlation of the error terms. In a standard

regression model, this correlation does not bias the coefficient estimates but does create inefficiency.

In order to avoid the problem of bias in the coefficients, we run a linear probability model using

OLS. We bootstrap the estimation to obtain standard errors for the distribution of the coefficients

(for a discussion of spatial autocorrelation in the probit, tests, and estimation strategies, see Pinkse

& Slade (1998)). Our theory tells us that deforestation should be most strongly correlated with

nearby treatment intensity where infrastructure is poorest.

5.2 Spatial analysis: Results

The results from the spatial regression are shown in Table 10. The table contains only partial

results – in all cases, the mean poverty level in each buffer is included, along with the variables

indicating zero observations in a buffer. The last column also includes fixed effects at latitude,

which capture spatial variation in ecosystem, as well as cultural heterogeneity, to the extent that it

varies geographically in Mexico. The variable capturing infrastucture quality is a dummy variable

equal to one in the case where there are less than 150 kilometers of road within a 30 kilometer buffer

around the locality. In the simplest specification, which does not include interactions of saturations

with road density, having low road density significantly decreases the probability of deforestation.

In the two versions where interactions are included, however, we observe that road density is very

important in determining the effect of program concentration on deforestation. In particular, in

very remote areas (those with low road density), the probability of deforestation as a result of

Oportunidades recipients nearby increases.

Figure 6 graphs out the reported coefficients from column (3) by distance, for the subsample
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with high road density and that with density less than 150 kilometers. This provides a visual image

of the effect of the program on deforestation according to distance, and shows that for cells which

are very isolated, the deforestation effect is highly localized. For well-connected cells, on the other

hand, the effect of having more Oportunidades recipients nearby is not significantly different from

zero, which corresponds with our hypothesis that good infrastructure may help spread the impacts

of the program to the point where they are non-detectable locally.

6 Conclusions

This paper conducts an analysis of the impact of large income transfers on deforestation, taking

advantage of the discontinuity created by the eligibility rule for Oportunidades. We find that the

income transfer increases deforestation, at least in the population that is just below the marginality

level required to be able to receive payments. We then use household data to disentangle the

mechanism behind this increase in forest loss. Here we observe that households increase their

consumption of two relatively land-intensive goods – beef and milk. We do not detect a corresponding

increase in consumption of a good that might increase forest cover through increasing demand for

forest products– housing construction. Nor do we detect changes on the production side triggered by

exposure to Progresa, and hence we conclude that the observed deforestation effects of the program

arise from consumption changes, in other words through an expansion of each household’s “ecological

footprint” of resource use.

Average household income increases by one-third as a result of the transfers, which leads the

probability of deforestation to increase by 30 percent and the rate of deforestation among deforesters

to increase by nearly 6 percent. These increases are significant in the entire sample, but are strongest

in two subgroups: places that were already at high risk of deforestation, and places with poor

infrastructure. These results underline the importance of considering spatial spillovers in the analysis

of micro-experiments, and provide no support for the argument that increasing incomes will translate

into improved environmental outcomes.

In recent years the use of local average treatment effects in the analysis of development program

impacts has come under fire for answering small questions using a non-representative sample, and for

obfuscating important sources of heterogeneity in outcomes (Deaton 2009). Although we estimate
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local average treatment effects in this paper, our use of the national rollout means that we have a

very large and heterogeneous sample at the discontinuity. Therefore we are able to exploit the jump

in program participation to cleanly identify impacts of poverty reduction but also to investigate a

critical source of heterogeneity. Furthermore, the eligibility cutoff that we use for identification in

this paper is precisely the extensive margin of the actual program, and hence measures the exact

impact of expanding the current program, as in Karlan & Zinman (2009). Hence we submit that

the treatment effect estimated in this paper is both policy relevant and has substantial richness in

terms of the analysis of heterogeneity.

In terms of the generalizability of these results, it is important to recognize the dimensions in

which impacts of a CCT program may not reproduce the dynamics of a more endogenous long-

term increase in income. Most obvious is the conditionality; it explicitly seeks to alter the prices

faced by households in the use of one input to production, child labor. The program also features

conditionality on regular health checkups for beneficiary children, and this increase in focus on

their health may lead to dietary changes that would not be replicated with a simple increase in

income. Further, Oportunidades payments are made monthly and hence provide a cash flow that

may be more suited to consumption than investment. It is quite possible, for example, that an

alternative program delivering the same total amount of cash to beneficiary households in one lump

sum would have seen more investment and less consumption, particularly if credit markets are

imperfect. Finally, no particular household receives Oportunidades payments for longer than they

have children of eligible age, and so the program features a rolling beneficiary pool and is not likely

to generate the real wealth effects that would be seen if permanent income had increased. Despite

these caveats, CCT programs have emerged as a major policy tool in the fight against global poverty,

and so to the extent that they present one of the most obvious policy levers for decreasing poverty

our results are relevant even if we interpret impacts as limited to these programs.

Our findings, particularly the spatial contours of treatment effects, motivate the idea that trans-

portation infrastructure plays a critical role in determining the “footprint” of environmental impacts.

This underlines the empirical issues generated by spatial spillover effects when we examine the pro-

duction response to market-mediated increases in local demand. A well-established result in the

literature on rainfall shocks and on famines is the idea that infrastructure decreases the correlation

between localized shocks and local market prices. Extended to a program evaluation context, this
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logic suggests that when treatment is administered at small spatial units, market-driven spillovers

cause an underestimation of the true harm from treatment. By this logic, the strong deforesta-

tion impacts seen in isolated parts of Mexico when treated with Oportunidades is deeply troubling,

because it is precisely in these environments that we are closest to capturing the full impact of

treatment. We see these results not as a criticism of poverty-alleviation programs but rather as a

cautionary tale. Should we wish to achieve increases in wealth simultaneously with improvements

in environmental quality, our study suggests that carefully designed environmental management

schemes should accompany poverty alleviation programs.
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7 Figures

Figure 1: Forest Cover in Mexico, 2000
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Figure 2: Thiessen Polygons

30



0
.2

.4
.6

.8
P

ro
po

rt
io

n 
of

 lo
ca

lid
ad

es
 tr

ea
te

d

0
.0

05
.0

1
.0

15
.0

2

−4 −2 0 2 4
Marginality index

Kernel regression of ln(deforestation) on marginality index
95% CI of regression
Proportion of localidades treated within bins of width 0.1

Ln
(t

ot
al

 d
ef

or
es

ta
tio

n 
in

 k
m

2)

Figure 3: Entire sample minus observations with index > 3 (42 observations missing)
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Figure 4: Estimation sample
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Figure 5: Restricted estimation sample
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8 Tables

Table 1: Tests of difference in deforestation across marginality zones
Non-eligible Eligible Test of Marginal Test of Definite Test of

<-1.2 >= −1.2 difference difference > -.9 difference
(1) (2) (1) vs (2) (3) (1) vs (3) (4) (3) vs (4)

Full sample
Ln(km2 deforested) .0039 .0146 7.38 .0079 3.47 .015 4.08

Observations 2827 37392 2014 35378

Restricted sample
Ln(km2 deforested) .0043 .0096 3.88 .0079 2.81 .010 1.41

Observations 2166 8626 2014 6612
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Table 2: Tobit Estimation
Dependent variable: log-deforestation

Full sample Restricted sample
(1) (2) (3) (4) (5) (6)

Eligible .040 .027 .020 .053 .046 .039
(.017)∗∗ (.016)∗ (.023) (.029)∗ (.025)∗ (.024)

Marginality index .075 .045 .079 .090 .044 .014
(.005)∗∗∗ (.004)∗∗∗ (.006)∗∗∗ (.008)∗∗∗ (.026)∗ (.025)

Index squared -.008 -.003
(.006) (.006)

Index cubed -.011
(.006)∗

% polygon in forest, 2000 .114 .194 .113 .113 .194 .230
(.010)∗∗∗ (.011)∗∗∗ (.010)∗∗∗ (.010)∗∗∗ (.021)∗∗∗ (.023)∗∗∗

Ln(polygon area, km2) .094 .094 .095 .095 .075 .086
(.003)∗∗∗ (.003)∗∗∗ (.003)∗∗∗ (.003)∗∗∗ (.006)∗∗∗ (.006)∗∗∗

Ln(Population in 1995) .034 .020 .034 .034 .024 .013
(.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.004)∗∗∗ (.004)∗∗∗

Ln(1+slope) -.055 -.055
(.003)∗∗∗ (.008)∗∗∗

Obs. 40219 40219 40219 40219 10792 10792
Uncensored observations 3844 3844 3844 3844 711 711
Log-likelihood -8579 -7392 -8578 -8577 -1771 -1522
Ecoregion controls no yes no no no yes
Marginal effects
on pr(y > 0) .017 .011 .008 .021 .015 .011

(.006)∗∗∗ (.006)∗ (.010) (.010)∗ (.008)∗∗ (.006)∗

on y > 0 .006 .004 .003 .008 .006 .005
(.002)∗∗∗ (.002)∗∗ (.003) (.004)∗ (.003)∗ (.003)∗

Tobit estimation. Standard errors in parentheses. * significant at 10%; ** significant at 5%;
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Table 3: First stage regressions
Dependent variable = 1 if locality received Oportunidades in 1998 or 1999

Full sample Restricted sample
(1) (2) (3) (4) (5) (6) (7)

Eligible .586 .796 .922 1.013 .624 .797 .434
(.032)∗∗∗ (.050)∗∗∗ (.051)∗∗∗ (.090)∗∗∗ (.071)∗∗∗ (.247)∗∗∗ (.400)

Marginal 1.453 1.368 1.304 1.272 1.338 1.261 1.315
(.112)∗∗∗ (.095)∗∗∗ (.095)∗∗∗ (.098)∗∗∗ (.094)∗∗∗ (.139)∗∗∗ (.146)∗∗∗

Marginal x index 1.718 1.595 1.470 1.427 1.490 1.399 1.454
(.106)∗∗∗ (.092)∗∗∗ (.093)∗∗∗ (.098)∗∗∗ (.093)∗∗∗ (.153)∗∗∗ (.160)∗∗∗

Eligible x index -.163 .043 .217 .306 .011 .180 -.121
(.020)∗∗∗ (.032) (.037)∗∗∗ (.080)∗∗∗ (.053) (.236) (.351)

Marginality index .072 -.046 -.189 -.283 .120 -.165 -.123
(.020)∗∗∗ (.032) (.036)∗∗∗ (.083)∗∗∗ (.049)∗∗ (.391) (.393)

Index squared -.045 -.054 -.098 -.491
(.005)∗∗∗ (.008)∗∗∗ (.133) (.355)

Index cubed .009 -.186
(.007) (.157)

Percent polygon -.108 -.027 -.027 -.027 .016 .016 .016
in forest, 2000 (.007)∗∗∗ (.007)∗∗∗ (.007)∗∗∗ (.007)∗∗∗ (.013) (.013) (.013)

Ln(polygon area) -.027 -.033 -.033 -.033 -.012 -.012 -.012
(.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.003)∗∗∗ (.003)∗∗∗ (.003)∗∗∗

Ln(total population .203 .203 .203 .153 .153 .153
in 1995) (.001)∗∗∗ (.001)∗∗∗ (.001)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗

Ln(1+average slope) .019 .018 .018 .015 .015 .015
(.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.004)∗∗∗ (.004)∗∗∗ (.004)∗∗∗

Obs. 40219 40219 40219 40219 10792 10792 10792
Log-likelihood -23850 -15030 -14983 -14983 -3276 -3275 -3275
Adjusted R-squared .156 .456 .457 .457 .557 .557 .557
Ecosystem controls no yes yes yes yes yes yes
F-test of instruments 2560.83 1720.61 508.55 403.31 298.95 189.02 81.01

Linear probability model estimation. Robust standard errors in parentheses. * significant at 10%;
** significant at 5%; *** significant at 1%
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Table 4: Fuzzy discontinuity estimates
Dependent variable: log-deforestation

Full sample Restricted sample
(1) (2) (3) (4)

Treated .068 .042 .109 .092
(.020)∗∗∗ (.022)∗ (.053)∗∗ (.055)∗

Marginality index .064 .043 .004 -.020
(.004)∗∗∗ (.005)∗∗∗ (.040) (.041)

Percent polygon in forest, 2000 .106 .197 .186 .229
(.010)∗∗∗ (.011)∗∗∗ (.021)∗∗∗ (.023)∗∗∗

Ln(polygon area) .098 .094 .077 .088
(.003)∗∗∗ (.003)∗∗∗ (.006)∗∗∗ (.006)∗∗∗

Ln(total population in 1995) .013 -.0006
(.005)∗∗ (.009)

Ln(1+average slope) -.057 -.057
(.003)∗∗∗ (.008)∗∗∗

Obs. 40219 40219 10792 10792
Log-likelihood -32544 -22388 -7077 -4798
Ecosystem controls no yes no yes
Marginal effects
on pr(y > 0) .029 .017 .037 .027

(.008)∗∗∗ (.008)∗∗ (.017)∗∗ (.015)∗

on y > 0 .011 .006 .015 .012
(.003)∗∗∗ (.003)∗∗ (.007)∗∗ (.006)∗

IV Tobit estimation. Standard errors in parentheses. * significant at 10%; ** significant
at 5%; *** significant at 1%.
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Table 5: Predicted Deforestation risk and impact of Oportunidades
Dependent variable: log-deforestation

(1) (2) (3) (4) (5)
Eligible -.092 -.028 -.056 -.017

(.028)∗∗∗ (.029) (.033)∗ (.039)

Predicted Risk 3.116 3.138 3.109 3.183
(.343)∗∗∗ (.342)∗∗∗ (.342)∗∗∗ (.345)∗∗∗

Eligible x Predicted Risk .612 .808 .837 .763
(.348)∗ (.346)∗∗ (.347)∗∗ (.349)∗∗

Marginality index .022 -.046 -.042 -.030
(.033) (.004)∗∗∗ (.005)∗∗∗ (.008)∗∗∗

Index squared -.009 -.005
(.006)∗ (.006)

Index cubed -.011
(.006)∗∗

Percent polygon in forest, 2000 .060
(.018)∗∗∗

Ln(total population in 1995) .006
(.003)∗

Ln(polygon area) .025
(.004)∗∗∗

Ln(1+average slope) -.008
(.006)

Obs. 2166 40219 40219 40219 40219
Log-likelihood 363 -7543 -7488 -7487 -7485
Adjusted R-squared .036
Ecosystem controls yes no no no no
Tobit estimation. Standard errors in parentheses. * significant at 10%; ** significant at 5%;
*** significant at 1%.
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Table 6: Road density and impact of Oportunidades
Dependent variable: log-deforestation

Road density Road density
Low Medium High Low Medium High
(1) (2) (3) (4) (5) (6)

Treated .136 .051 .032
(.053)∗∗ (.036) (.033)

Eligible -.092 .065 -.039
(.062) (.050) (.037)

Predicted risk 2.234 4.192 3.347
(.698)∗∗∗ (.584)∗∗∗ (.520)∗∗∗

Eligible x predicted risk 1.850 -.350 .790
(.697)∗∗∗ (.575) (.507)

Marginality index .046 .048 .025 -.046 -.039 -.057
(.008)∗∗∗ (.008)∗∗∗ (.008)∗∗∗ (.008)∗∗∗ (.007)∗∗∗ (.008)∗∗∗

Percent polygon in forest, 2000 .208 .196 .167 -.072 -.073 -.094
(.021)∗∗∗ (.017)∗∗∗ (.017)∗∗∗ (.022)∗∗∗ (.017)∗∗∗ (.018)∗∗∗

Ln(Population, 1995) -.026 -.015 -.018
(.020) (.013) (.011)

Ln(polygon area in km2) .090 .079 .101
(.006)∗∗∗ (.005)∗∗∗ (.007)∗∗∗

Ln(1+slope) -.048 -.057 -.054
(.006)∗∗∗ (.005)∗∗∗ (.006)∗∗∗

Obs. 13406 13406 13407 13406 13406 13407
Log-likelihood -7831 -6522 -5139 -2890 -2592 -1849

Tobit estimation. The first three columns use instrumental variables, while the second three are standard tobits.
Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 10: Spatial regressions – dummy variable for low density
Dependent variable = 1 if deforestation

(1) (2) (3)
Own saturation .012 .004 -.003

(.018) (.018) (.017)

Within 10-20 km .012 .0009 -.026
(.022) (.022) (.021)

Within 20-30 km .090 .105 .019
(.023)∗∗∗ (.025)∗∗∗ (.025)

Within 30-40 km .104 .137 .019
(.021)∗∗∗ (.027)∗∗∗ (.026)

Density < 150 km -.128 .011 -.011
(.011)∗∗∗ (.029) (.029)

Baseline forest .0005 .0005 .0008
(.0001)∗∗∗ (.0001)∗∗∗ (.0001)∗∗∗

Density x own saturation .071 .078
(.032)∗∗ (.034)∗∗

Density x 10-20 km .008 -.003
(.026) (.024)

Density x 20-30 km -.094 -.024
(.031)∗∗∗ (.029)

Density x 30-40 km -.127 -.076
(.041)∗∗∗ (.036)∗∗

Obs. 10977 10977 10977
R2 .059 .062 .188
Lat-long fixed effects no no yes
OLS with bootstrapped standard errors.
** significant at 5%; *** significant at 1%
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