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1 Chapter 10

Experimental design and the 
estimation of willingness to pay in 
choice experiments for health 
policy evaluation

Richard T. Carson and Jordan J. Louviere

10.1 Introduction
This chapter focuses on stated preferences obtained from discrete choice experiments 
(DCEs also known as SPDCEs), as opposed to data that reflect real market choices 
(revealed preferences (RP) as discussed in Chapter 9). DCEs try to simulate the essen-
tial elements of real market options that consumers might face in the future. Unlike 
real market choice data, DCEs rely on constructed markets in which key factors that 
are hypothesized to drive choices are systematically varied. To the extent that the con-
sumers in a DCE make choices in a manner consistent with the way in which they 
would actually choose in a real market, one can derive standard welfare estimates for 
policy changes. The remainder of this chapter is devoted to discussing and illustrating 
how this can be accomplished with DCEs. More details on DCEs can be found in 
Louviere, Hensher, and Swait (1).

In order to collect DCE data information from consumers, one must identify factors 
that drive the choices of interest. These factors are called ‘attributes’ of the choice 
options. Once these attributes are identified, one must assign them values, known in 
experimental design parlance as ‘levels’. Taken together, the attributes and levels 
define and determine possible choice options that can be offered to consumers in a 
DCE survey. That is, a factorial combination of attribute levels completely defines the 
possible choice options. So, for example, if there are three attributes, say A(4), B(3), 
and C(2), with the associated number of levels in parentheses, the factorial combina-
tions, or all possible options are 4 × 3 × 2 = 24. We refer to that factorial combination 
as a ‘full’ or ‘complete’ factorial design. Typically, the number of combinations in a 
full factorial design is too many to use in practical field applications of DCE surveys, 
so one has to sample from the full factorial to reduce the size of the problem. There are 
many ways to sample from full factorials, but a common approach in DCE surveys is 
to sample based on what is known as a ‘fractional factorial design’. We return to these 
ideas in more detail later in the chapter.

The type of experimental design used to construct a DCE survey is important 
for three reasons: 1. it determines the economic quantities of potential interest that 
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1 can be statistically identified from an estimation perspective; 2. it strongly influences 
confidence intervals associated with these quantities (statistics) given a fixed sample 
size or equivalently, influences the sample size needed to achieve a given confidence 
interval or level of precision for a statistic, and so plays a major role in the cost of a 
project; 3. the attributes/levels can influence the plausibility of questions; and hence, 
influence the quality of data obtained. The first two issues are largely statistical in 
nature and are the subject of this chapter.1 The third issue deals more with issues of 
survey design and are not considered further here, although it may place constraints 
on what can be measured in a DCE survey.2

This chapter uses examples from health policy research, but these examples also 
have application in analyzing consumer choices in areas like culture, environment, 
transport, utilities, or more generally where government has a strong role in determin-
ing which options are available and/or how they are priced, like health. Overviews 
of the use of DCE methods to value health issues can be found in various sources 
(e.g., 8–11).3 

We begin by considering a single binary choice (SBC) contingent valuation ques-
tion because many basic issues associated with experimental design can be easily seen 
in the context of the SBC format (see, e.g., (13)). This question format is popular in 
the stated preference literature and enjoys a number of desirable incentive properties 
under certain conditions.4 This question format also is the simplest example of a more 
general discrete choice experiment format (see, e.g., (1)). The key properties of the 
SBC format from our perspective are:

1. Only one choice question [set] is asked;

2. The question asked offers only two alternatives; and,

3. Only one attribute of the scenario, typically cost, is varied across respondents.

For example, consider the following simple proposition. A large university in the USA 
is considering offering employees the option of purchasing a dental plan. The dental 
plan covers 80% of normal costs associated with all standard, non-cosmetic dental 
procedures. The university is interested in what fraction of employees will subscribe to 
the dental plan at various prices. A DCE for this policy problem would describe the 

1 The two key statistical properties of an experimental design are identification and precision. 
Louviere, Hensher, and Swait (1) note two other properties that can influence the desirability 
of a design that are not statistical in nature. These are cognitive complexity and market real-
ism. Both considerations can restrict the nature of the attributes and design used. 

2 There are several general books on survey design (e.g., 2–4) but there is a surprising lack of 
guidance on the issue of SP choice questions in a policy context. Some exceptions are (5;6). 
A small but growing literature (e.g., (7) looks at the implications of task complexity in choice 
experiments. 

3 For an overview of different health valuation methods including SP methods with an emphasis 
on determining the value of a statistical life, see (12).

4 The SBC question format was recommended by the Arrow et al. (14) panel that looked at 
SP methods for valuing natural resource damages for the U.S. Government. Carson and 
Groves (15) examined the incentive properties of different types of SP questions in detail. 
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1 dental plan in sufficient detail for employees to understand what they would be pur-
chasing, provides the monthly cost associated with the plan and asks the question 
‘Would you subscribe to this plan if offered to you?’. The employee can choose to 
accept the plan or reject it (the two options). In this case, a single attribute is varied 
over a range of levels, namely the cost attribute. This allows the analyst to trace out the 
fraction of employees who would subscribe at each presented level of cost.

In more general DCE formats, one often sees: (a) more than one choice set asked, 
(b) more than two alternatives offered, and (c) more than one attribute varied. 
Frequently, however, only one or two of the three generalizations of  the SBC format 
are used, so it is useful to keep in mind the specific generalization of the SBC format 
when thinking about issues involving DCEs. The nature and properties of different 
experimental designs become more important as DCE formats grow more compli-
cated and we systematically illustrate where new issues arise and how the statistical 
models that can be estimated are tied to the experimental design used to construct 
a SP survey.5

From an applications standpoint, we focus on three cases:

1. A new good may be provided, and if it is provided, the person using it has to pay 
for it (everyone pays if it is a pure public good provided via coercive taxation). 
Interest lies in estimating total willingness to pay (WTP) for having the good sup-
plied rather than the current status quo good.

2. One wishes to estimate the WTP to have one or more new alternatives added to a 
set of choices available to a consumer.

3. One wishes to estimate the WTP for a change in one or more of the attributes of an 
alternative. 

We begin our discussion by laying out the theoretical welfare measures for the three 
above cases. We then introduce the basic concepts of experimental design in the con-
text of the SBC format. Next, we illustrate the issues involved in moving to different 
types of DCE formats. Finally, we try to provide guidance to applied researchers who 
want to conduct a DCE study using reasonably efficient designs where the statistics of 
primary interest are statistically identified.

10.2 Economic welfare measures for health policy changes
SP surveys analyzed from a random utility perspective often aim to produce estimates 
for policy purposes; hence, we briefly review the theory relating to welfare economic 
measures of value. Literature on this topic is vast, so to more fully appreciate the 
issues involved, interested readers may wish to pursue comprehensive treatments in 
(16–18). 

We begin by denoting the item being valued by q and initially treat this as a single 
item that could be a commodity or a program involving some mix of commodities 

5 There are many other relevant cases for measuring changes in welfare. In particular, there are 
a set of analogous measures that focus on minimum willingness to accept (WTA) compensa-
tion for undesirable changes (see Chapter 6 & 7).
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1 treated as a fixed group – the key feature is that q is a scalar. Later, we will let q consist 
of a bundle of attributes and we will ask questions about how a change in one attribute 
influences economic values. The latter does not change the underlying framework as 
one can define two distinct q’s that differ only in a change in one attribute of interest. 
We assume that a consumer has a utility function defined over quantities of various 
market commodities, denoted by the vector x, from which a consumer can freely 
choose and the item q. Thus, the direct utility function is given by u(x, q). Often analysts 
work with the corresponding indirect utility function, v(p, q, y), where p is the vector 
of the prices of the market commodities x, and y is the consumer’s income.6 We make 
the conventional assumption that u(x, q) is increasing and quasi-concave in x, which 
implies that v(p, q, y) satisfies the standard properties with respect to p and y7; but 
we make no assumptions about q. If the agent regards q as a ‘good’, u(x, q) and 
v(p, q, y) both will be increasing in q; if it is regarded as a ‘bad’, u(x, q) and v(p, q, y) 
both will be decreasing in q; and if the agent is indifferent to q, u(x, q) and v(p, q ,y) 
both will be independent of q. We make no assumption about quasi-concavity with 
respect to q. 

The act of valuation implies a contrast between two situations: one with item q, and 
one without q. This is an important concept because economic valuation always 
involves a comparison/tradeoff between two or more situations where the ‘or more’ 
part always can be rewritten as a set of binary comparisons. We interpret what is being 
valued as a change in q.8 Specifically, suppose that q changes from q0 to q1; the con-
sumer’s utility changes from 0 0( , , )u v p q y≡  to 1 1( , , )u v p q y≡ . If she sees this change 
as positive, u1 > u0; if she sees it as negative, u1 < u0; and if she is indifferent, u1 = u0. 
The value of the change to her in monetary terms is represented by the Hicksian 
income compensation measure, C, which is the amount of money that satisfies: 

 1 0( , , ) ( , , )v p q y C v p q y− = .9 (10.1)

6 The definition of income is always problematic in empirical work. Ideally, it refers to some 
notion of permanent household supernumerary income, which is disposal permanent income 
less total expenditure on subsistence minima and previously committed expenditures.

7 That is, we assume v(p, q, y) is homogeneous of degree zero in p and y, increasing in y, non-
increasing in p, and quasiconvex in p.

8 The alternative is to represent it as a change in p. McConnell (19) adopts this approach for a 
valuation question of the form ‘Would you accept a payment of $A to give up your right to 
use this commodity for 1 year?’ Let p* be the choke price vector (i.e., a cost vector such that, 
at these costs, the individual would choose not to consume the resource), and let p0 be the 
baseline price vector. McConnell represents the change as a shift from (p0, q, y) to (p*, q, y).

9 Note that we also can get the Hicksian equivalence measure, which in this case is WTA for 
giving up the right to q1. If the sign of u1 – u0 is positive then WTP and WTA will both be 
positive. The Hicksian income compensation function often is formally defined as the dif-
ference between two (Hicksian) expenditure functions, another alternative representation 
of the direct utility function that describes how much income is needed to achieve a specified 
level of utility given a price vector for marketed goods and the level of q. C = m(p, q0, u0) − 
m(p, q1, u0). The first term on the right is simply equal to y. 
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1 To emphasize the dependence of the compensating measure on (i) the starting value 
of q, (ii) the terminal value of q, and (iii) the value of (p, y) at which the change in q 
occurs, we sometimes write it as: 

 0 1( , , ,  )C C q q p y= . (10.2)

For a desirable change which the consumer does not have the property right to enjoy 
without paying

 0 1WTP ( , , ,  )C q q p y= . (10.3)

One can parameterize either the WTP function directly (20) or begin with a parame-
terization of the underlying utility function (21). Typically, applied researchers fit 
simple linear or logarithmic functions, but one can fit more complex utility functions, 
and SP data often is better suited for this than RP data. We illustrate these concepts 
with a specific example, the Box–Cox indirect utility function:10

 
1

, 0,1q q q

y
v q

λ

α β
λ

⎛ ⎞−= + =⎜ ⎟⎝ ⎠
, (10.4a)

where α1 ≥ α0 and β1 ≥ β0 . Equation (10.4a) can be regarded as a form of CES utility 
function in q and y with λ being the income elasticity of WTP. The corresponding 
formula for C is

 

1

0 1 0

1 1 1

y
C

λ λβ λα β β
β β β

⎛ ⎞−= − +⎜ ⎟⎝ ⎠
, (10.4b)

where α ≡ α1 − α0. McFadden and Leonard (22) employ a restricted version of this 
model with β1 = β0 ≡ β > 0, yielding

 
1

, 0,1,q q

y
v q

λ

α β
λ

⎛ ⎞−= + =⎜ ⎟⎝ ⎠
 (10.5a)

 
1

C y y
b

λλ α⎛ ⎞= − −⎜ ⎟⎝ ⎠
, (10.5b)

where b ≡ b /λ. This specification is somewhat flexible as it permits a variety of income 
elasticities of WTP; the income elasticity of WTP is negative when λ > 1, zero when 
λ = 1, and positive when λ ≤ 0. It also nests many utility models in the existing litera-
ture. For example, if λ = 1, C equals the familiar ratio of −a /b often associated with a 
measure of mean WTP from a logit or probit model.11

Now, consider the case where there is more than one possible alternative to the 
status quo good. As long as a status quo good will remain available and a consumer 

10 For simplicity, we suppress p and write the indirect utility function as a function of q and y; 
however, aq and/or bq are in fact functions of p and z.

11 Often there are measurement issues with respect to y that play a major role in econometric 
estimation, pushing empirical researchers to assume that l = 1. 
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1 will only get utility from at most one good that is an alternative to the status quo good 
then the economic value of the set of alternatives is simply the maximum WTP defined 
over all binary paired comparisons involving the status quo good. If the status quo 
good is chosen in a deterministic setting, WTP equals zero. Otherwise, the economic 
value equals the maximum amount of money a consumer has to pay for the most 
preferred of the alternatives relative to being indifferent between choosing the status 
quo good and the most preferred alternative.12 

One can make q a function of a bundle of attributes in the sense originally explicated 
by Lancaster (23). Here αq is replaced by a function, g(z), where z is a vector of attri-
butes. Typically, g(z) is represented as an additive linear function of the individual 
attributes some of which are potentially indicator variables, i.e., γ1z1 + γ2z2 + γ3z3. In 
this case, there is nothing particularly special from a welfare economic view from 
moving from a change in a status quo good versus compared to changes in the attri-
butes of goods other than having to choose the functional form that specifies how the 
attributes enter the utility function.13 Other common ways to specify the attribute 
function are: (a) an additive linear function of the logs of the individual attributes, 
(b) an additive linear function of the individual attributes plus the first-order interac-
tions between the individual z, and (c) an additive linear representation like a Translog 
utility function that is a second order approximation to an unknown function that 
include squares of individual attributes and first order interaction terms between 
attributes. When there are attributes in the model one often is interested in the 
marginal effect on WTP of a change in zi, which is simply �C/�zi, or the relative effect 
of a marginal change in one attribute relative to another attribute that can be scaled in 
a comparable way by looking at (�C/�zi)/(�C/�zj). 

10.3 Going from choice to WTP estimates
SP questions measure a consumer’s WTP (or WTA) for change in q or a discrete indi-
cator related to WTP. The utility theoretic model of consumer preference outlined 
above provides a way to interpret responses to these questions. From a statistical 
modelling viewpoint, the convention is to treat the survey responses as the realization 
of a random variable. So, it is necessary to recast the deterministic model of WTP 
outlined above into stochastic models that can generate probability distributions of 
the survey responses. Mapping from a deterministic WTP model to a probabilistic 
model of survey responses involves two steps: 1. adding a stochastic component into 

12 The case where a consumer would use more than one of the alternatives is beyond the scope 
of this chapter and rarely is examined in SP choice models. Such cases are often dealt with by 
going to some type of allocation model or bundling alternatives so that bundles are mutually 
exclusive.

13 The only ‘attribute’ that plays a special role is a good’s cost. A consumer does not get utility 
from the cost of a good per se, but instead via the effect of a good’s cost on income. In most 
empirical work this distinction is ignored or an implicit assumption is made about the mar-
ginal utility of income so that the only thing that enters the utility function for two (or more) 
goods is the difference in the cost of the goods. 
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1 the deterministic utility model that leads to what is called a WTP distribution and 2. 
specifying a connection between the WTP distribution and what we will call the survey 
response probability distribution based on the assumption of a utility-maximizing 
response to the survey question. We denote the WTP cumulative distribution func-
tion (cdf ) as GC(zp); for a given individual it specifies the probability that the 
individual’s WTP for the item in question is less than the cost zp, and we now use 
the convention of denoting attributes of the good as zi and the special attribute of 
cost as zp:

 ( ) ( )c p p G z Pr C z≡ ≤ , (10.6)

where the compensating variation, C, is now viewed as a random variable.14 The 
corresponding density function is denoted as gC(zp). 

We illustrate this via a simple example with a closed-ended, single-bound discrete 
choice format. That is, a respondent is asked ‘Would you favour a change from q0 
to q1 if it would cost you zp?’ Suppose the response is ‘yes’. This means that the value 
of C for this individual is some amount more than zp. In terms of the underlying WTP 
distribution, the probability of obtaining a ‘yes’ response is given by

 ( ) ( ) ( )p c pResponse is ‘yes’    1 –Pr Pr C z G z= ≥ ≡ . (10.7)

Note that a response to this question does not reveal the exact value of C, but instead 
provides information that C lies in an interval bounded from above or below by zp.15

There are two basic sources of the stochastic component: (a) factors related to the 
nature of the good or the consumer that influence choice, and are known to the con-
sumer but unknown to the analyst (e.g., 25;26) and (b) a true random component 
potentially including recording and optimization errors.16 These two sources effec-
tively are equivalent from the perspective of the simplest statistical estimators, but 
they have quite different implications for WTP estimates. While source (a) leads to 
the well-known model of random utility maximization (RUM) in which error compo-
nents play an integral role in the estimate of summary statistics involving WTP distri-
butions; in contrast, it is desirable to purge source (b) error components from WTP 
estimates. These two views of error sources also have different implications for what 
might be observed. Under (a) the probability of picking a dominated alternative 
should be zero, while under (b) some respondents should pick dominated alternatives 
with positive probability. For more complex statistical estimators (a) leads one to try 

14 For now, we assume the change is regarded as an improvement so that C measures WTP.
15 Other relevant information may help to more tightly bound the interval in which the con-

sumer’s WTP lies. For example, if the alternative cannot be a ‘bad’, it may be reasonable to 
assume a distribution for WTP with no support in the negative range. Carson and Jeon (24) 
look at ways to use constraints on the upper end related to income.

16 Excellent discussions of the two perspectives are provided by Hanemann (21) and Cameron 
(20). McConnell (19) lays out the relationship between the two from the perspective of esti-
mating welfare measures. It is important to note that analysts often claim to estimate a RUM 
model but use measurement error perspectives when calculating WTP measures.
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1 to allow for heteroscedasticity in preference parameters, while (b) leads one to try to 
model the error term to allow for heteroscedasticity in some fashion.17 

The RUM approach proceeds by specifying a particular indirect utility function 
( , , ; )v p q y ε  and a particular distribution for ε. An example of a RUM version of the 

restricted Box–Cox model is

 
1

0,1q q q

y
u q

λ

α β ε
λ

⎛ ⎞−= + + =⎜ ⎟⎝ ⎠
, (10.8a)

where ε0 and ε1 are random variables with a mean of zero. Consequently,

 

1

C y y
b b

λλ α η⎛ ⎞= − − −⎜ ⎟⎝ ⎠
, (10.8b)

where 1 0α α α≡ − , b β λ≡  , and 1 0η ε ε≡ − .
In contrast, if we take the second view and operationalize it with an additive error 

term, we would have

 0 1( , , , )C C q q p y ε= + . (10.9)

In the case of the Box–Cox model (7), for example, 

 

1

C y y
b

λλ α ε⎛ ⎞= − − +⎜ ⎟⎝ ⎠
. (10.10)

Comparison of (10.8b) with (10.10) illustrates the difference between the two 
approaches to formulating a WTP distribution. Inserting an additive random term in 
utility function (10.8a) leads to a random term that enters into the formula for C in a 
non-additive manner. Even when both approaches lead to similar estimates for mean 
and median WTP, the implied pdf ’s may be quite different, particularly in the tails. 

Often there can be substantial problems in empirically estimating WTP measures 
from discrete choice data from either survey choices or market choices.18 The prob-
lems largely stem from the fact that in all discrete choice models the parameters are 
identified only up to a scale factor.19 Because of scale, WTP estimates are a ratio of 
parameter estimates; hence, they can be ill-behaved even if the individual parameter 
estimates are normally distributed (as suggested by the theoretical foundation 

17 Under (a) the main source of heterogeneity typically is assumed to be differences in prefer-
ences, while under (b) the main source of heterogeneity typically is assumed to be differences 
in ability to answer questions.

18 Indeed, it usually is better to work with SP data than RP data because the cost variable 
typically has a much more limited range and there are high correlations between various 
attributes. 

19 In the case of binary discrete choice, where only cost is varied, one can use non-parametric 
techniques to avoid some of the problems associated with the scale issue. However, these 
techniques give much coarser estimates and have not been generalized to the multinomial 
choice case. See (18) for a discussion.
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1 underlying maximum likelihood estimation) because the ratio of two normal vari-
ables is distributed as a Cauchy distribution (although this can be simulated). Further, 
there is a very tight relationship between the functional form assumed for the cost (zp) 
variable and the assumed distribution of WTP.20 For example, it is common to specify 
ln(zp) in a logit model, which implies that the WTP distribution is log-logistic. 
Unfortunately, this distribution has an (implausible) infinite mean for a wide range 
of estimated parameter values, although it typically cannot be distinguished from a 
log-normal (or a Weibull) that has a finite mean in terms of statistical fit.

The problem is that similarly shaped WTP distributions over a wide range of mon-
etary values may have very different behaviour in the far tails,21 and using more flex-
ible functional forms to allow heterogeneity in preferences can exacerbate problems. 
For example, if one specifies a cost variable as a random effect and assumes the effect 
to be normally distributed, it typically implies that some consumers have a negative 
WTP even if this is implausible. This may concentrate a large fraction of the distribu-
tion near zero, causing traditional formulas for mean WTP to blow up.22

Often problems in estimating mean WTP are not reported because the analyst 
assumes them away by estimating a logit or probit model with a linear specification for 
the cost variable, forcing mean and median WTP to be equal. A similar problem 
occurs if one estimates a model with the log of cost as a regressor but mistakenly 
assumes that the correct formula for mean WTP is EXP[−a/b], where a is the 
constant term (assuming no other attributes) and b is the coefficient on log(cost). 
This is the correct formula for median WTP but the correct formula for the mean 
includes a function of the variance, such as the following for a normal distribution: 
mean WTP = EXP[−a/b]EXP[1/2b2]. Often a better solution to this problem is to 
recognize that percentiles of the distribution, including the median, usually can be 
reliably estimated far out in the tails. Traditional welfare economics focuses on mean 
WTP but policymakers typically care about more than one summary statistic of the 
WTP distribution. 

10.4 Experimental design for a single binary discrete 
choice question
The simplest case for experimental design of a choice experiment occurs when one 
asks a single binary discrete choice CV question of each respondent and only one 
attribute (typically cost (zp)) is varied, as earlier noted. Collection of discrete choice 

20 Typically, analysts use the cost of the alternative instead of the more theoretically suitable 
income minus cost, which is justified by particular assumptions about marginal utility of 
income. A large amount of measurement error in income also may offset the theoretically 
desirable properties.

21 Cost amounts in the far tails are rarely if ever observed in market data and it may be implau-
sible to ask respondents about them in SP surveys. 

22 The key issue is that a non-trivial fraction of consumers may be indifferent to the introduc-
tion of any of the alternatives to the status quo, leading to a spike at zero that formally can be 
modeled as a mixture distribution (27).
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1 data requires the use of a set of design points that represent the cost to agents who are 
then randomly assigned to those design points. Choice of these design points can 
greatly influence how many observations are required for a given level of statistical 
efficiency, which is often referred to as the precision of the estimate.23 

We begin by considering a linear regression model measuring WTP as a function of 
changes in a single design factor, say the number of treatments an insurance plan 
would pay for, zi, where the line goes through the origin if the value of the design 
factor is zero. Now, we ask the question ‘if you have n observations and can run the 
experiment at two values of the factor, what values would you chose and how many 
observations should you allocate to each to minimize the confidence interval of the 
WTP estimate at a particular level of the factor’ (i.e., the estimated slope parameter 
times the factor level of interest)? In this case, the confidence interval for WTP is 
simply a function of the confidence interval for the slope parameter, so one should 
choose two values of the factor that are as far apart as feasible. In the case of DCEs, the 
two values should be chosen to be as far apart as is plausible to respondents. One 
should allocate half the sample to each of these two values; and it is straightforward to 
show that this minimizes the confidence interval on the slope parameter.24 This is a 
desirable property of a simple DCE because in cases where the expected response to 
cost is linear, one only needs two levels of cost to accurately estimate the slope. The 
trick is to ensure that the two points are placed sufficiently far apart to cover much of 
the response distribution, but not so far into the tails of the distribution that one 
observes only a few choices.

For example, consider a plan where as before WTP for the plan varies with the 
number of treatments paid for, but the plan also has other fixed benefits (e.g., infor-
mation, access to other services at discounts) that do not vary with the number of 
treatments. Let us represent the WTP for a plan with no treatments by a. Now, WTP 
for a plan is represented by a + bzi, and the objective is to minimize the confidence 
interval around this quantity for a particular zi. One can do this by choosing two 
values for zi that are as far apart as possible because the confidence interval for a also 
is minimized by this choice. 

Much of this basic intuition extends to binary discrete choice models with a single 
factor, typically cost. DCEs for these models are analogs of dose–response experiments 
in medical and related applications; For example, instead of ‘cost’, experimenters vary 
the magnitude of a dose of – say – an insecticide, and analytical interest focuses on the 
percent of the sample population alive falls as dose amount increases. In the case of a 
DCE for – say – a dental insurance plan, the ‘dose’ is the levels of cost, and analytical 
interest focuses on the fraction still in ‘favour’ as cost increases. Different choice models 

23 Like survey design, experimental design is not generally taught in economics departments. 
A classic text is (28). A more modern, comprehensive reference is (29) or (30).

24 The slope parameter is proportionate to the reciprocal of the square root of Σi(zi – E(zi))2. 
Given any finite constraint on how far apart the two values of zi can be from each other, it is 
possible to show that this quantity is maximized by placing half of the zi at each end of the 
constrained distance. 
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1 have different likelihood functions and most are non-linear in the model parameters, 
which has four major implications:

1. The curvature of the likelihood function for most commonly used choice models 
suggests that the design points should be closer together than in a traditional linear 
model, but the general principle that they should not be very close remains. The 
main caveat is not to place the design points too far in the tails because there is too 
little density to accurately measure the choice probabilities in samples of reasona-
ble size.

2. The optimal design will depend on the number of parameters in the underlying 
distribution.

3. The optimal design also will depend on the values of those parameters. Generally, 
one does not need more design points than parameters, but to be able to test more 
general distributions than one assumes, more design points are needed. Yet, the 
general principle is that if one fits a parametric distribution characterized by a 
small number of parameters, one should have relatively few design points so the 
distribution can be estimated with reasonable precision at a small number of 
places.

4. The choice of zi that minimizes the confidence interval on b in non-linear models 
generally is not the one that minimizes confidence intervals on functions of a and 
b, and hence, the confidence interval for WTP.

As noted earlier, in the simplest case, estimates of mean (and median) WTP are a 
ratio of two parameters (−a/b), where a is the estimate of the constant from a logit or 
probit model and b is the estimate of the cost parameter. Two basic criteria are used 
in the stated preference literature for this case: 1. directly minimize the confidence 
interval around the mean WTP estimate and 2. maximize the determinant of the 
information matrix for the estimated parameters. Statistical designs that minimize 
confidence intervals around mean WTP are known as C-optimal designs. Alberini and 
Carson (31) and Alberini (32) show that C-optimality can be substantially more 
efficient (on the order of 50%) than maximizing the determinant of the information 
matrix (D-optimality) under conditions relevant to DCE studies.25 Both the C- and 
D-optimality criteria lead to choosing only two design points if the underlying distri-
bution can be fully characterized by two parameters and the design is not constrained 
to have more design points.26 C- and D-optimal designs differ in where the points 
are placed, with D-optimal designs generally placing them further in the tails of the 
distribution.

25 C-optimal designs are closely related to fiducial designs popular in biometrics.
26 A design can be constrained to have more design points, but forcing a design to have four 

design points results in two design points being replicates, or being arbitrarily close to the 
two original points if they are forced to be distinct. If the distribution is assumed symmetric, 
equal numbers of observations generally are assigned to design points on either side of the 
median; asymmetric distributions can result in an asymmetric assignment of observations 
being optimal.
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1 D-optimal designs are popular even in binary discrete choice cases with one zp as a 
regressor, as it is natural to think in terms of maximum likelihood estimation; they also 
are easier to construct than C-optimal designs. D-optimal designs become more com-
pelling in cases where goods are bundles of attributes and interest lies not in a single 
WTP estimate but in WTP estimates for a sizeable number of marginal tradeoffs. In this 
case, D-optimal designs effectively strike a balance in estimating all the marginal effects 
with reasonable precision for a given sample size. Much of the rest of this chapter is 
devoted to D-optimal designs when there are multiple attributes of interest.

Generally speaking, a D-optimal design is one that minimizes the determinant of the 
Fisher Information Matrix associated with a particular class of designs. The best 
D-optimal design is the one with the largest determinant. Street and Burgess (33) show 
that such designs exhibit level balance (each level of each attribute occurs equally often), 
and the differences in the attribute levels are orthogonal. It is difficult to generalize 
beyond this description because designs for non-linear models like choice models 
depend on the particular problem specification, namely the number of attributes, the 
number of levels associated with each attribute, the indirect utility specification associ-
ated with the problem, and the form of the underlying choice process model.

Both C- and D-optimality rely on certain knowledge of the model parameters, but 
this is never satisfied in practice because if the parameters were known there would be 
no need to do an experiment. Yet, one usually has at least some knowledge of the likely 
parameter values, so a good way to begin is to ask if theory can bound the parameter 
space, with inequality constraints being quite useful. Additionally, does existing litera-
ture on related goods help to bound the likely estimate of mean/median WTP? An 
obvious next step is to use data from pre-test and pilot studies to assist with this. Such 
a process is better thought of as ‘sequential design’, and Kanninen (34) discusses issues 
related to such a sequential design process. In general, the more uncertainty about the 
nature of the underlying WTP distribution, the more design points one should use, 
which can be shown using a formal Bayesian approach to design problems. Yet, one 
needs to recognize that there is a clear tradeoff between the precision at which the 
distribution is pinned down at individual design points and the number of design 
points.27

10.5 Generalizing attributes of binary discrete 
choice questions
Now, we consider what happens if an attribute is not continuous, but instead categor-
ical, with greater than two levels. For example, an attribute of a GP practice might 

27 Alberini and Carson (31) suggest it is hard to justify more than eight design points, and 
show that four to six design points spanning the expected quartiles of the expected WTP give 
estimates that are reasonably efficient and robust to fairly large deviations in expected and 
observed WTP distributions, as long as the presumed distribution of WTP is of low dimen-
sionality. McFadden (35) shows that a very different design is required if one wants to be 
able to consistently estimate mean WTP without making parametric assumptions about the 
nature of the distribution; this design involves spacing a large number of design points over 
the support of the WTP distribution. 
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1 be opening hours, such as 9–5, 9–7 and 9–9. If only this attribute is presented and the 
respondent’s response options are to keep the status quo or choose the new opening 
hours, the theory and analysis are the same as in Section 10.4. Now, consider the case 
of adding a cost attribute with three discrete levels that cover the possible range of 
costs to opening hours. Now, we have a case where we must jointly vary two attributes 
each having three levels. The design involves both attributes; all combinations of them 
represent a 3 × 3 factorial design (= 9 combinations). 

The implied DCE involves offering a respondent nine (or fewer) combinations of 
opening hours and costs. For each of the nine combinations that we will call ‘scenar-
ios’, a respondent is asked whether they will stay with the status quo or switch to the 
new health service represented by a particular level of opening hours and a level of 
cost. Any design that uses less than all nine combinations will have some parameters 
that are not statistically identified without some identifying assumption/restriction 
for the underlying utility function.

If one believes that the true relationship between utility and cost is linear, the proper 
way to design this experiment is to only use two levels for the cost attribute, as dis-
cussed in Section 10.4. Thus, this DCE would have only six combinations. On the 
other hand, if one does not know the true relationship, and it is possible, perhaps 
likely, that it is non-linear, then one needs to assign at least three levels to the cost 
attribute. Typically, one would assign four levels to the cost attribute to be able to 
visualize relationships between utility and cost and rule out a quadratic polynomial if 
it is inappropriate. For example, if the true relationship is S-shaped, one needs at least 
four levels to visualize and test this.

The previous theoretical insights also apply to this case. That is, one may wish to 
value a change in opening hours from 9–5 to 9–9. This requires one to estimate 
the value of the utility difference between the two levels of opening hours, and if the 
relationship between utility and cost is linear, one would divide this utility difference by 
β, the estimate of the cost effect. If the status quo option varies across consumers, one 
must calculate the difference between the status quo and the proposed change in open-
ing hours for each consumer and use the method of sample enumeration (36) to calcu-
late the implied WTP. As before, if cost is treated as a random effect, one needs to 
calculate statistics for the WTP distribution, and one may need to simulate the WTP 
distribution in the case of complex models that allow random effects and covariances 
among effects and/or non-constant diagonal error variances and covariances.

Lancsar and Savage (42) discuss calculation of WTP for cases involving forced choice 
of one or more of the alternatives compared with the status quo, relying heavily on 
Hanemann’s (21) discussion of issues involved in applying welfare ideas to discrete 
choice problems. For example, in the case of a simple binary choice model where the 
choice is between a constant status quo and a series of one-at-a-time designed choice 
options, one needs to examine the utility of each alternative and the probability 
of each alternative being chosen using ‘expected utility’. The WTP expression for 
this case is

 
0 1

1 1

1
ln e ln e ,

(cos )
i i

n n
V V

i itβ = =

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ ∑  (10.11)
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1 where the cost effect is as previously defined, and 
1

ln e i

n
V

i=
∑  is the so-called ‘inclusive 

value’, or expected maximum utility for the status quo (superscript 0) and the alter-
native of interest (superscript 1). So, (10.11) tells us that in cases where consumers 
can choose two or more alternatives one must evaluate the difference in expected 
utility between two options divided by the cost effect to calculate WTP. If the cost 
effect is non-linear, a more complicated expression is required but the concept is 
the same. If both cost and attribute are random effects, one must simulate the 
distribution.

Including more attributes is a direct extension of the above discussion. In general, 
for attributes X1(l1), X2(l2), …, Xk(lk), the total number of combinations is given by 
the full factorial expansion X1(l1) × X2(l2) × … × Xk(lk), where Xk is the kth attribute 
and lk is the number of levels of that attribute. Thus, a DCE that involves asking a 
sample of respondents to compare a status quo option with some number of designed 
options one-at-a-time can be designed by (a) constructing the full factorial, and if 
sufficiently small, assigning all respondents to it, or if too large to do that, blocking 
the factorial into subsets (typically, randomly assigning sets without replacement) and 
assigning respondents randomly to each block (version); (b) using a fractional facto-
rial design to sample from the full factorial and assigning all respondents to the 
scenarios given by the fraction, or blocking the fraction as described for the factorial, 
and randomly assigning respondents to one of the blocks (versions).

Random utility again underpins the specification of statistical models used to 
describe the choice process of respondents who participate in such DCEs. That is, as 
before we think of an indirect utility function with systematic and random compo-
nents. Respondents seek to maximize their utility in their choices, but the analyst fails 
to include all factors known to the respondent and/or the respondent makes choices 
imperfectly, giving rise to the random utility case. Appropriate statistical models of the 
choice process for this case include (a) fixed effects for the attributes with additional 
terms that represent interactions of observable covariates with the intercept that 
reflects the propensity to choose the status quo versus the other options and/or inter-
actions with the attributes or (b) random effects for the intercept and/or attributes to 
capture unobserved, latent differences in preferences (or, possibly a hybrid of a and b). 
Currently, random effects models are popular with academics and practitioners, but it 
remains unclear how to use such models to forecast choices and/or evaluate policies 
that will occur in the future and/or in other locations unless one assumes that random 
components are stable over time and/or space. 

10.6 Multinomial alternatives
This case has two different versions: 1. there are multiple alternatives but all alterna-
tives are generic and 2. at least one of the multiple alternatives differs in some signifi-
cant way that requires the analyst to view this as ‘non-generic’ (or, ‘alternative-specific’). 
For example, suppose a person’s GP asks them to have a particular diagnostic test, and 
informs them that the test service is provided by (a) several named hospitals, (b) several 
named clinics, and (c) several named stand-alone testing services. Suppose further 
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1 that the testing options can be described by (i) waiting time to be tested, (ii) locational 
convenience to the person, and (iii) cost.

If the objective is to understand and model the type of service that will be chosen by 
people facing this decision, or the particular named option within each type of service 
that will be chosen, then the problem is alternative-specific. If, on the other hand, the 
objective is to understand people’s decisions/preferences for types or services and 
features of these services, where particular manifestations of the service options avail-
able for each type are examples, then the problem is generic. That is, alternative-spe-
cific problems arise when one wants to model the choices of particular named options 
that are members of a general class of options; generic options arise when one wants 
to model the choices of non-named options that lie within the general class. The 
former provides very specific information about the choices of particular options that 
would be of interest to – say – the owners of each type of option (e.g., owners of testing 
clinics); the latter provides very general information about the entire class of possible 
options. Tables 10.1a and b below illustrate two possible choice tasks for these cases 
using the testing example.

These cases are treated at length in (1), Louviere, Hensher, and Swait (hereafter 
‘LHS’) as ‘generic’ and ‘alternative-specific’ DCEs. For generic DCEs, designs discussed 
and illustrated in LHS are obsolete because optimal design theory developed by 
Deborah Street, Leonie Burgess and colleagues (e.g., (33)) provides the theory and 
methods to construct optimal designs for this case. For ‘alternative-specific’ DCEs, the 
design theory originally proposed by Louviere and Woodworth (37) remains the pri-
mary way to construct such experiments. It is important to note that in the latter case, 
identification issues are well-understood and typically can be satisfied in virtually all 

Table 10.1a An alternative-specific task

Features Hospital Clinic Stand-alone

Wait time for testing Same day 1 week Next day

Locational convenience 15 min away 1 hour away 2 hour away

Cost $75 $50 $100

I most likely will choose: ❑ ❑ ❑

Table 10.1b A generic task

Features Option A Option B

Type of test service Hospital Clinic

Wait time for testing 1 week Next day

Locational convenience 2 hour away 15 min away

Cost $100 $50

I most likely will choose: ❑ ❑
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1 applications but the efficiency of the designs relative to an optimal design is 
unknown.

Those who wish to construct optimally efficient designs for the generic case should 
consult Street and Burgess (33), which provides software to help analysts implement 
the design theory. In the case of alternative-specific designs, the theory detailed in LHS 
(1) or Louviere and Woodworth (37) provide the way to construct the designs. In the 
case of generic designs, attribute parameters specified in indirect utility functions are 
the same for all choice options, whether specified as fixed or random. In the case of 
alternative-specific designs, attribute parameters can be specified to be the same for 
some, but not all effects. That is, at least one attribute effect must differ for at least one 
alternative, regardless of whether the effects are specified as fixed or random.

Generic DCEs and associated models are consistent with the previous discussion of 
the theory that underlies calculation of WTP. If some model effects are alternative-
specific, this implies that WTP will differ by (at least one) alternative. If cost effects are 
alternative-specific, this raises interesting issues over which cost effects to use in WTP 
calculations, as different cost effects imply different values of marginal values for 
income. Our position is that one generally should use cost effects associated with a 
given option to calculate the WTP associated with changes for that option, particularly 
when the cost for the base option is known. Comparisons between multiple programs 
are more complicated and, for this reason, researchers often try to use only one cost 
parameter unless there is clear evidence to the contrary. 

A variation on the above theme is a DCE that presents respondents with multiple 
choice options, where one of these options is a constant option. To this point, the 
constant option has always implicitly been the status quo, but when multiple choice 
options are offered to respondents, a logical choice often is to choose none of 
the options, which is feasible since it involves zero cost. In the case of a constant status 
quo option, one can choose to incorporate the attribute levels of the status quo option 
in the estimation matrix or treat it as a fixed or random effect. In the case of the 
‘choose none’ option, there are no associated attributes, and hence, one must be care-
ful about how to specify this option. For example, as before, one can choose to allow 
it to be a fixed or random effect and/or one can allow the variance of the random 
component associated with this option to differ from the other options (as in nested 
or tree logit models).

10.7 Common designs
Two good sources of information about designs used in SP studies are LHS (1) and 
Street and Burgess (33). As these sources are available, our focus here will be on briefly 
describing the options and their advantages and disadvantages.

10.7.1 Ad hoc designs
From time-to-time one sees ad hoc designs used in SP studies. By ‘ad hoc’ we mean a 
design that is constructed without reliance on formal statistical design theory. Basically, 
one should NEVER do this, primarily because the properties of such designs are rarely 
known in advance, and it is likely that they are (a) statistically inefficient relative to an 
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1 optimal design and/or (b) poorly conditioned, including the possibility of identifica-
tion issues. Because applied economists rarely receive training in experimental design, 
and because econometrics historically has had to deal with ‘messy’ data, there is a 
tendency for applied economists to think that ‘any design will do’. The sooner this 
notion is dispelled, the better.

10.7.2 Full-factorial designs
These designs may not be practical because the number of combinations of attribute 
levels can be very large. That said, let us distinguish two types of applications: 1. a 
design administered to everyone in a sample and 2. a design blocked into ‘versions’ 
with respondents randomly assigned to a particular version without replacement. 
Type 1 designs typically are used when one wants to be able to compare individuals 
and/or if one wants to estimate a model for each individual. For example, one type of 
comparison that often arises in practice is to group the individuals into segments 
based on their choices. The latter application is well beyond the scope of this chapter. 
Interested readers may wish to consult reference works on taxonomic methods such 
as cluster analysis or latent class methods. Type 2 designs typically are used when the 
design of interest has more than 16 or 32 attribute level combinations or choice sets 
and one does not want to compare individuals’ choices directly.

Full factorials can be used as both type 1 and type 2 designs. In the case of type 1 
designs, the class of factorials probably is restricted to those designs that have 32 
choice sets or fewer, although it may be possible to use larger designs in certain cases 
where the incentives are sufficiently high, such as paying physicians enough to moti-
vate them to ‘do’ perhaps 64 or more scenarios. In the case of multiple choice response 
tasks, however, only very small factorials are possible for type 1 applications. 
Researchers interested in such applications should consult Street and Burgess (33). In 
the case of type 2 applications, it is likely that full factorials can be practical for many 
cases because the factorial can be blocked into versions. For example, suppose that a 
researcher wished to design an experiment for ten attributes, each with two levels 
(210). The full factorial has 1,024 attribute level combinations, and if the researcher is 
confident that each respondent can and will ‘do’ 16 scenarios, the design can be 
blocked into 64 versions, with each respondent randomly assigned to one version. So, 
a full factorial of this size would be practical with samples of 400–800 people, which 
are not uncommon in SP applications. In our experience, many researchers rule out 
full factorials due to their size without realizing that they could have been used.

The major advantage of full factorials is that they allow one to estimate and test all 
possible main and interaction effects. In type 1 applications, there typically is a lot of 
statistical power to conduct these tests, and to the extent that one takes differences in 
individuals into account (e.g., preference heterogeneity), one can estimate and test 
these effects allowing for differences. The primary advantage of being able to estimate 
and test interaction effects is that one does not have to assume strictly additive indirect 
utility functions but instead can allow for more complex forms. The disadvantage, of 
course, is that there are typically many more effects to estimate, so analyses are more 
complicated. The advantage that is associated with type 1 applications does not neces-
sarily apply to type 2 applications because (a) the power of the tests will be less due 
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1 to smaller sample sizes associated with interaction effects, (b) it may not be possible 
to take individual differences into account as easily or as thoroughly as one can with 
type 1 applications because versions may be confounded with differences, and (c) it is 
unrealistic to rely on assumptions that all respondents have exactly the same indirect 
utility function.

In summary, full factorials probably can be used in many more applications than 
most SP researchers think, although their use in multiple choice response tasks is 
likely to be limited only to very small problems.

10.7.3 Orthogonal main effects plans
Orthogonal main effects plans (OMEPs) are a sample of attribute level combinations 
from the full factorial that have the property that all main effects are independent of 
one another. The advantage of OMEPs is that they typically are smaller than other 
designs. The disadvantage, however, is that one must assume that the indirect utility 
function is strictly additive for all respondents. Worse yet, if this assumption is false, 
one cannot test and reject it. It probably is fair to say that OMEPs are used much more 
often than they should, particularly in so far as they are the most widely used designs 
in SP research. If one has a type 1 design application, it may be that OMEPs are the 
only feasible option to allow rigorous comparisons of individuals. However, for type 2 
design applications, it rarely would be the case that one would need to use an OMEP, 
and so researchers should consider other options discussed below.

10.7.4 Designs that allow estimation of main and interaction 
effects
Readers who want to construct and apply these designs should consult reference 
works in the design literature, although a good starting place is LHS (1). These types 
of designs are distinguished by what can be estimated and what must be assumed 
about omitted effects:

1.  Main effects are orthogonal to one another, and are also orthogonal to unobserved 
but potentially significant two-way interactions. These designs protect estimates of 
main effects from two-way interaction effects that cannot be estimated. Their 
advantage is that they typically are relatively small(er), and hence, can be used in 
many applications. Two-way interactions are the most likely interactions to be 
significant and large, and so should be considered a key potential source of bias in 
main effects when they are omitted. Another disadvantage is that one must assume 
that all interactions of higher order than two-way are not significant, and that one 
cannot test this assumption to determine whether it is false. These designs typically 
need to be blocked into versions, but for smaller designs, it may be possible to use 
them in type 1 design applications.

2.  One also can construct designs for problems that involve estimation of all main 
effects and a subset of the two-way interactions (known as ‘selected two-way inter-
actions’). It is hard to generalize about these designs because they typically are 
constructed on a case-by-case basis, but sources of these designs exist, as noted in 
Street and Burgess (33). The advantage of these designs is that they are smaller than 
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1 the design discussed below. The disadvantage is that designs for the exact subset 
that a particular researcher is interested in may not exist, and one must assume that 
all unobserved interactions are not significant, leaving one open to bias from 
unobserved two-way interactions that are significant.

3. Main effects and two-way interactions are orthogonal to one another, and both 
types of effects can be simultaneously estimated. These designs often are large, 
especially if the number of attributes and levels is greater than 8–10. However, for 
smaller problems, these designs have the advantage that they allow estimation of 
both main and two-way interaction effects, but at the cost of assuming that all 
other unobserved interaction effects are not significant. It rarely will be the case 
that one can use these designs in a type 1 design application, so the vast majority of 
applications of these designs will be for type 2 design problems.

4. One also can construct designs that allow one to orthogonalize the main effects and 
two-way interactions to unobserved and potentially significant three-way interac-
tions. One also can construct designs that allow independent estimation of all 
main, two-way and three-way interactions. These types of designs are rarely used 
because they typically are fairly large, and require considerable design skill.

10.7.5 D-optimal designs
As previously noted, these designs optimize the determinant of the Fisher Information 
Matrix for the design. D-optimal designs for the case of all effects equal to zero have 
been developed by Street and Burgess (33), and readers should consult this reference 
for construction methods. What appears to be widely misunderstood about these 
designs is the fact that Monte Carlo simulations show that these designs are optimally 
efficient for choice probabilities that are not extreme and that they remain reasonably 
efficient for very large and very small choice probabilities. So, they are a good choice 
for almost all DCE problems. It also is worth noting that if one observes choice prob-
abilities in the far tails in a DCE, this implies a very poor choice of the attribute levels 
or that the underlying process is almost deterministic. In addition to the Street and 
Burgess designs, designs can be constructed using SAS macros developed by Kufeld 
(38). Comparisons with Street and Burgess designs, however, suggests that the SAS 
designs sometimes do not have diagonal information matrices and can require sub-
stantial computation time to construct a highly efficient design.

10.7.7 Random designs
A number of SP researchers use what we call ‘random designs’. These designs are con-
structed in various ways, but typically one or more sets of starting designs are con-
structed or one randomly samples from the complete set of all possible choice sets. If 
one uses a set of starting designs, say m of them, one typically randomly selects an 
attribute level combination from each of the m simultaneously to create an m-tuple 
that represents an m-element choice set. This design procedure was discussed by 
Louviere and Woodworth (37), but modern advances in optimal design of DCEs has 
made them obsolete. Similarly, some commercial DCE software creates choice sets by 
drawing them randomly from the entire set of possible choice sets, which typically is 
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1 very large. Neither way of designing DCEs is a good idea since one cannot determine 
a priori which effects can be estimated with any precision, nor can one identify a priori 
what will be identified.28 This approach also has the disadvantage that differences in 
individuals may be confounded with differences in the choice sets faced. Our advice is 
not to use this approach since better alternatives are available. 

10.8 Using prior information
Naturally, it is always better to use whatever prior information one has available to 
construct designs, as noted earlier. So, if one has theoretical or empirical reasons to 
impose sign restrictions on the attribute effects, this will (a) restrict the classes of 
designs to consider and (b) will restrict the indirect utility functions to be estimated. 
For example, suppose there are three two-level attributes, and each has a known sign 
for the main effects. If the indirect utility function is strictly additive, only four 
scenarios are required to estimate the model in a binary discrete choice task. There are 
16 possible binary response patterns that could be observed because each of the four 
scenarios can receive either of the two binary responses (24). Of these 16 patterns, only 
seven are consistent with additivity and sign restrictions, assuming that basing 
responses on only a single attribute or a pair of attributes is acceptable.

If the utility function is not additive, one must use the full factorial (2 × 2 × 2 = 8 
attribute level combinations), which greatly increases the allowable response patterns 
to nearly 128, again assuming that one can base one’s choices on one or a pair of attri-
butes as well as all three attributes. It should be obvious that as the number of attri-
butes and/or the number of response categories increase, the number of possible 
response patterns that can be consistent with a particular set of sign restrictions grows 
exponentially. Thus, as the number of attributes and/or the number of levels increases, 
sign restrictions may not help bound the problem in any practical sense. As such, sign 
restrictions are most useful for smaller problems.29

Finally, one can use a sequential design approach. In this approach, one uses exper-
iments on small(er) samples to explore as much of the design space as possible. This 
approach can be viewed as a type of model selection problem where the objective is to 
identify as many possible significant and meaningful effects as possible a priori, while 
at the same time eliminating as many non-significant and non-meaningful effects as 
possible. In this way, one can bound the problem, which may allow one to use a 
smaller, special purpose design to identify and estimate the effects that one has a priori 
reason to believe will be significant and meaningful.

28 Use of random design is often believed to identify all of the parameters of a model. That is 
true, however, only asymptotically as the design drawn approaches the full factorial. In the 
typical application, many parameters will not be statistically identified and other very poorly 
identified if subsamples receiving particular attribute combinations is small. 

29 One also can impose informative priors on the parameters of the utility function. This takes 
one in the direction of Bayesian designs if uncertainty around the priors is formally quanti-
fied. If one is prepared to assume that the parameters are known with certainty, it is possible 
to determine the design that maximizes D-optimality. 
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1 10.9 Desirability and implications of common 
design criteria
In this section, we review several design criteria that are frequently discussed in the 
various DCE literatures.30

10.9.1 Orthogonality
Orthogonality of the effects to be estimated means that the information matrix is 
block diagonal, and hence, all effects of interest can be estimated independently of one 
another. This is a desirable but not essential criterion. What is essential is that the 
degree of shared covariance between effects to be estimated is low.

10.9.2 Level-balance
This means that each level of an attribute occurs equally often, and more generally, 
this should hold for all attributes. This criterion is associated with the precision of the 
estimate of the attribute levels, such that if level balance holds, the model parameters 
associated with each level will be estimated with equal precision. Again, this criterion 
is desirable, but not essential. However, unless one has good reasons for not satisfying 
level balance, such as one of three levels being far more important to the work than the 
other two, it is desirable to satisfy this criterion. A similar criterion is a balanced level 
co-occurrence. That is, if a design is orthogonal, it will be the case that the levels of 
each pair of attributes will co-occur equally often. This criterion insures minimal 
shared covariances.

10.9.3 Attribute overlap
This refers to correlations among two or more attributes, such that it may not be pos-
sible to vary them independently. This leads to what are called ‘nested’ factors/
attributes because the way to deal with these problems is to combine the attribute 
levels into a single attribute that can be varied independently. For example, if a par-
ticular health service attribute is the amount of use of the system, and a second is the 
cost of using the system, it is likely to be the case that higher levels of use will covary 
with cost, so one would want to combine these two attributes into one.

10.9.4 Elimination of dominated/infeasible alternatives
If all the attributes are numerical and their signs are known a priori, any of the stand-
ard design constructions will lead to dominated and/or infeasible options. However, 
while this happens in practice, our experience suggests that there is far too much con-
cern about this criterion than should be the case.31 The first thing a researcher should 

30 Viney, Savage, and Louviere (39) look at these concepts in the context of a specific empirical 
example.

31 In empirical applications, the more serious problem is likely to be that particular attributes 
are known to have sufficiently high correlation so that the absence of this correlation in 
attribute bundles is noticeable. 
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1 do is to determine whether it is reasonable to expect the respondent sample to actually 
know which attribute level combinations are infeasible. Typically, the sample does not 
know this; but the experts, such as doctors or medical researchers do. If the sample 
cannot tell if a scenario or an option is infeasible, a researcher may want to proceed to 
use standard design construction methods as these will provide significantly better 
statistical properties than alternative methods.

If many respondents in fact know that something is infeasible and/or there can be 
dominant options in choice sets, then one typically must modify the standard con-
struction methods to deal with this. For example, one way to deal with dominance is 
to randomly replace one or more levels with levels that are non-dominant. Ideally, 
one should test various random replacements, using those that minimally modify the 
statistical properties of the design. Infeasible options are a different problem as 
they have to be eliminated from the design. One way to do this is to construct the full 
factorial of possible options that can be created from the attributes and levels of each 
choice option (if the options are not generic), then eliminate all the infeasible combi-
nations and check the statistical properties of the remaining combinations. If the 
shared covariances are not large and the inverse of the information matrix is well-
conditioned, then use that design. If the statistical properties are poor, then one could 
try to select combinations from the feasible pool with the objective being to select a 
sample that has the best properties.

10.9.5 Utility balance
It is not clear why this criterion is considered important, although it has achieved 
considerable prominence in the marketing literature. Put simply, this criterion means 
that one should try to construct choice sets in such a way that the options in each set 
are as close in utility as possible. While this may seem like an intuitive criterion, if one 
could achieve this objective, there would be NO useful statistical information pro-
vided by the choices. That is, satisfying this criterion is equivalent to making all the 
choice options equally probable because if the option utilities are perfectly balanced, 
the respondents should be totally indifferent to all of them, and so should choose 
randomly. Thus, this criterion should not be used in the design of DCEs.

10.10 Concluding remarks
Experimental design is a key component of a successful choice experiment to help 
evaluate health policy alternatives. It is all too easy to construct and implement designs 
that do not statistically identify the parameters of interest or that greatly diminish the 
precision of the estimates relative to what could have been achieved with an efficient 
design. The underlying statistical theory for generic choice experiments is now well-
understood (33), and software for producing reasonably high quality designs is now 
available (e.g., Street and Burgess design software that comes with their book); so, 
there is little justification for choosing and using the poor quality designs that appear 
all too often in the current literature.

Applied researchers need to think seriously about the attributes of the programs they 
wish to compare and the class of underlying utility functions they wish to estimate. 
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1 Invest time upfront in extensive qualitative work of the type illustrated by the ICEPOP 
Program (31;41), where extensive and iterative qualitative work was used to under-
stand not only attributes, but also key words and phrases. Also plan time for elaborate 
and extensive pre-testing to identify tasks and associated survey instruments that 
‘work’. By ‘work’ we mean that (a) will be understood by all respondents, (b) will be 
meaningful to them, and (c) will simulate the actual choices one wants to observe as 
closely as possible. Often it makes sense to ask more choice questions rather than more 
complicated choice questions, or to ask more questions about the options in each 
choice set instead of more choice sets. Make reasonable restrictions on the nature 
of the utility function to reduce the size of the model space. Fix the attribute levels 
that are relatively unimportant to the policy issues being evaluated to further reduce 
the size of the model space and the task. More generally, one should avoid complex 
models and designs unless the project budget allows for extensive pretesting and large 
sample sizes. 

Spend time observing the actual choices made by the population(s) of interest. 
Interview these populations and ask them how they make the choices, what are 
the pros and cons of each choice, and whether they feel like they have sufficient and/
or ‘the right’ information to make the right decision(s); if they do not have sufficient 
or ‘right’ information, what would assist them? Relying on experts to tell you how 
consumers make decisions rarely is a good idea because few of them actually know 
this. If, in fact, the expert is the one who makes the decision for the consumer, then 
model the expert; yet, even here, one may want to understand and model how the 
expert’s decision(s) impact(s) the consumer.

Finally, there is a great deal of misinformation and misunderstanding about the 
design of DCEs in the applied health economics literature. The literature on the 
optimal design of DCEs is highly technical, and it is easy to make mistakes as noted 
by (33;43). There are no quick fixes and no easy routes; the literature on the design of 
experiments for linear models has evolved over more than 80 years, with some prob-
lems yet to be resolved. So, beware those who claim to have answers for all DCE design 
problems. Currently, we barely understand the generic design case for conditional 
logit models, and while designs for the alternative-specific case have been around since 
Louviere and Woodworth (37), few formal proofs of the properties of these designs 
exist even for conditional logit models. Furthermore, there are virtually no results 
available to guide those who want to estimate more general choice models than condi-
tional logit, although mixed logit models at least should be identified with current 
generic and alternative-specific designs (each person is represented by a conditional 
logit model; only the parameters of that model differ across people).

It also is worth noting that this chapter has had little to say about types of tasks, task 
context, task complexity, methods of survey administration, survey length, incentive 
compatibility, sampling strategies, and a host of other issues relevant to whether 
any given stated preference DCE survey is reliable and valid. Similarly, we have said 
nothing about validating SP model predictions, pooling data from various sources, 
taking account of observable and unobservable heterogeneity and many other issues 
that are germane to particular applications. The choice modelling and SP literatures 
are now extensive on each of these topics, and interested readers should consult the 
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1 workshop reports from the triennial Invitational Choice Symposia published in 
special issues of the journal Marketing Letters (e.g., Marketing Letters 1991, 1993, 
1996, 1999, 2002, 2005, 2008), as well as standard reference sources like (1;44) for 
guidance.

References
 1. Louviere, J.J., Hensher, D.A., and Swait, J.D. 2000. Stated choice methods: analysis and 

application. New York: Cambridge University Press.

 2. Bradburn, N.M., Sudman, S., and Wansink, B. 2004. Asking questions: The definitive guide 
to questionnaire design—for market research, political polls, and social and health question-
naires. San Francisco, CA: Jossey-Bass.

 3. Presser, S., Rothgeb, J.M., Couper, M.P., Lessler, J.T., Martin, E., Martin, J., and Singer, E. 
2004. Methods for testing and evaluating survey questionnaires. New York: Wiley.

 4. Tourangeau, R., Rips, L.J., and Rasinski, K. 2000. The psychology of survey response. New 
York: Cambridge University Press.

 5. Mitchell, R.C. 2002. On designing constructed markets in valuation surveys. 
Environmental and Resource Economics 22: 297–321.

 6. Kaplowitz, M.D., Lupi, F., and Hoehn, J.P. 2004. Multiple methods for developing and 
evaluating a stated choice questionnaire to value wetlands. In: Presser, S., Rothgeb, J.M., 
Couper, M.P., Lessler, J.T., Martin, E., Martin, J., and Singer, E., editors. Methods for test-
ing and evaluating survey questionnaires. New York: Wiley.

 7. Swait, J. and Adamowicz, W. 2001. The influence of task complexity on consumer choice: 
A latent class model of decision strategy switching. Journal of Consumer Research 28: 135–
148.

 8. Viney, R., Lanscar, E., and Louviere, J. 2002. Discrete choice experiments to measure 
consumer preferences for health and healthcare. Expert Review of Pharmaco-economics and 
Outcomes Research 2: 319–326.

 9. Ryan M. and Gerard, K. 2003. Using discrete choice experiments to value health care: 
current practice and future prospects. Applied Health Economic Policy Analysis 2: 55–64.

10. Bryan, S. and Dolan, P. 2004. Discrete choice experiments in health economics: for better 
or worse. European Journal of Health Economics 5: 199–2002.

11. Lancsar, E. and Donaldson, C. 2005. Discrete choice experiments in health economics: 
distinguishing between the method and its applications. European Journal of Health 
Economics 6: 314–316.

12. Viscusi, W.K. and Gayer, T. 2005. Quantifying and valuing environmental health risks. 
In: Karl-Göran, M. and Jeffrey R.V., editors. Handbook of Environmental Economics, 
vol. 2, Amsterdam: North-Holland.

13. Mitchell, R.C. and Richard, T.C. 1989. Using surveys to value public goods: The contingent 
valuation method. Baltimore, MD: Johns Hopkins University.

14. Arrow, K., Solow, R., Portney, P.R., Leamer, E.E., Radner, R., and Schuman, H. 1993. Report 
of the NOAA Panel on Contingent Valuation. Federal Register 58: 4601–4614.

15. Carson, R.T. and Groves, T. 2007. Incentive and information properties of preference 
questions. Environmental and Resource Economics 37: 181–210.

16. Just, R.E., Darrell, L.H., and Andrew, S. 2005. The welfare economics of public policy: 
A practical approach to project and policy evaluation. Northhampton, MA: 
Edward Elgar.

10-McIntosh-Chap10.indd   20810-McIntosh-Chap10.indd   208 4/20/2010   4:01:27 PM4/20/2010   4:01:27 PM

OUP UNCORRECTED PROOF–REVISES, 20/04/2010, GLYPH



REFERENCES 209

47
46
45

44
43

42
41

40
39
38

37
36
35

34
33

32
31

30
29

28
27

26

25
24

23
22
21
20
19

18
17

16
15
14

13
12

11
10
9

8
7

6
5
4

3
2
1 17. Bockstael, N.E. and Freeman, A.M. 2005. Welfare theory and valuation. In: Karl-Göran, M. 

and Jeffrey, R.V., editors. Handbook of environmental economics. vol. 2, Amsterdam: North-
Holland.

18. Carson, R.T. and Hanemann, W.M. 2005. Contingent valuation. In: Karl-Göran, M. 
and Jeffrey, R.V., editors. Handbook of environmental economics, vol. 2, Amsterdam: 
North-Holland.

19. McConnell, K.E. 1990. Models for referendum data: the structure of discrete choice models 
for contingent valuation. Journal of Environmental Economics and Management 18: 19–34.

20. Cameron, T.A. 1988. A new paradigm for valuing non-market goods using referendum 
data: maximum likelihood estimation by censored logistic regression. Journal of 
Environmental Economics and Management 15: 355–379.

21. Hanemann, W.M. 1984. Welfare evaluations in contingent valuation experiments with 
discrete responses. American Journal of Agricultural Economics 66: 332–341.

22. McFadden, D.L. and Gregory, K.L. 1993. Issues in the contingent valuation of environ-
mental goods: methodologies for data collection and analysis. In: Jerry, A.H., editor. 
Contingent valuation: A critical assessment, pp. 165–216. Amsterdam: North-Holland.

23. Lancaster, K. 1966. A New Approach to Consumer Theory. Journal of Political Economy 
84: 132–157.

24. Carson, R.T. and Yongil, J. 2000. On overcoming informational deficiencies in estimating 
willingness to pay distributions, paper presented at the American Agricultural Economics 
Association Meeting, Tampa, FL.Chilton, S.M., and W.G. Hutchinson (1999), Do focus 
groups contribute anything to the contingent valuation process? Journal of Economic 
Psychology 20: 465–483.

25. McFadden, D.L. 1974. Conditional logit analysis of qualitative choice behavior. In: 
Zarembka, P. editor. Frontiers in econometrics, pp. 105–142. New York: Academic.

26. Manski, C. 1977. The structure of random utility models. Theory and Decision 8: 229–254.

27. Kriström, B. 1997. Spike models in contingent valuation. American Journal of Agricultural 
Economics 79: 1013–1023.

28. Box, G.E.P., Hunter, W.G., and Hunter, J.S. 1978. Statistics for experimenters: An introduction 
to design, data analysis, and model building. New York: Wiley.

29. Atkinson, AC. and Donev, A.N. 1992. Optimum experimental designs. New York: Oxford 
University Press.

30. Wu, C.F.J. and Hamada, M. 2000. Experiments: planning, analysis, and parameter design 
optimization. New York: Wiley.

31. Alberini, A. and Richard, T.C. 1990. Choice of thresholds for efficient binary discrete 
choice estimation. Discussion Paper 90-34. San Diego: Department of Economics. 
University of California, San Diego.

32. Alberini, A. 1995. Optimal designs for discrete choice contingent valuation surveys: 
Single-bound, double-bound, and bivariate models. Journal of Environmental Economics 
and Management 28: 287–306.

33. Street, D.J. and Burgess, L. 2007. The construction of optimal stated choice experiments: 
theory and methods. New York: Wiley.

34. Kanninen, B.J. 1993. Design of sequential experiments for contingent valuation studies. 
Journal of Environmental Economics and Management 25: S1–S11.

35. McFadden, D.L. 1999. Computing willingness-to-pay in random utility models. In: Moore, 
J., Riezman, R., and Melvin, J., editors. Trade, theory, and econometrics: essays in honor of 
John S. Chipman. London: Routledge.

10-McIntosh-Chap10.indd   20910-McIntosh-Chap10.indd   209 4/20/2010   4:01:28 PM4/20/2010   4:01:28 PM

OUP UNCORRECTED PROOF–REVISES, 20/04/2010, GLYPH



EXPERIMENTAL DESIGN AND THE ESTIMATION OF WILLINGNESS TO PAY210

24
23

22
21
20

19
18
17

16
15
14
13

12
11
10

9
8

7
6

5
4
3

2
1 36. Ben-Akiva, M. and Lerman, S. 1985. Discrete choice analysis: theory and application to travel 

demand. Cambridge: MIT.

37. Louviere, J.J. and Woodward, G. 1983. Design and analysis of simulated consumer choice 
or allocation experiments: An approach based on aggregate data. Journal of Marketing 
Research 20: 350–367.

38. Kufeld, W. 2005. Experimental design and choice modeling macros. Technical Report 
TS722I, Cary, NC: SAS Institute.

39. Viney, R.,Savage, E., and Louviere, J. 2005. Empirical investigation of experimental design 
properties of discrete choice experiments in health care. Health Economics 14: 349–362.

40. Coast, J., Flynn, T.N., Natarajan, L., Sproston, K., Lewis, J., Louviere, J.J., and Peters, T.J. 
2008. Valuing the ICECAP capability index for older people. Social Science and Medicine 
67(5): 874–882.

41. Coast, J., Flynn, T.N, Sutton, E., Al-Janabi , H., Vosper, J., Lavender, S., Louviere, J.J., and 
Peters, T.J. 2008. Investigating choice experiments for preferences of older people 
(ICEPOP): evaluative spaces in health economics. Journal of Health Services Research & 
Policy 13(3): 31–37.

42. Lancsar , E. and Savage, E. 2004. Deriving welfare measures from discrete choice experi-
ments: inconsistency between current methods and random utility and welfare theory. 
Health Economic Letters 13: 901–907.

43. Street, D.J., Burgess, L., and Louviere, J.J. 2005. Quick and easy choice sets: constructing 
optimal and nearly optimal choice experiments. International Journal of Research in 
Marketing 22: 459–470.

44. Train, K. 2003. Discrete choice methods with simulation. New York: Cambridge Economic 
Press.

10-McIntosh-Chap10.indd   21010-McIntosh-Chap10.indd   210 4/20/2010   4:01:28 PM4/20/2010   4:01:28 PM

OUP UNCORRECTED PROOF–REVISES, 20/04/2010, GLYPH


	00-McIntosh-FM
	01-McIntosh-Chap01
	02-McIntosh-Chap02
	03-McIntosh-Chap03
	04-McIntosh-Chap04
	05-McIntosh-Chap05
	06-McIntosh-Chap06
	07-McIntosh-Chap07
	08-McIntosh-Chap08
	09-McIntosh-Chap09
	10-McIntosh-Chap10
	11-McIntosh-Chap11
	12-McIntosh-Chap12
	13-McIntosh-Chap13



