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An amount of income can be obtained jointly by m agents, the ith agent’s share of income being 
Bi. The income and the utilities of each agent are functions of the state of nature. Each agent has 
a probability measure over the states of nature. An ejficient proportional distribution is one 
which is (1) Pareto optimal and for which (2) the expected proportion of income agent i 
receives divided by Bi is independent of i. It is shown that if the attitudes are strictly concave 
then there exists exactly one proportional distribution scheme. Furthermore, in special 
cases, each agent expects to receive an income that exceeds his share. 

1. Introduction 

The model presented here deals with a simple economy in which a number 

of agents desire to distribute an amount of income that depends on an 
uncertain event. Each agent i is assumed to have a utility function ui(s, c) 
which depends on income c as well as the state of nature s. Each agent also 
has a probability distribution pLi, which reflects his expectations. 

The approach of this paper is to classify the distribution schemes that are 

efficient (or optimal), those schemes that have the property that no other 
scheme can provide a higher expected utility to all of the agents, in terms of 

the expected share of income an agent receives. The main result is that given 
any positive numbers fIIi (shares) summing to one there is exactly one efficient 
distribution with the property that O,/fIj is equal to the ratio of the expected 
proportions of income received by i to that of j. Thus, if xi(s) is the income 
agent i receives in state s and Z(s) is the total income in state s, we have 

Sxi(s)dMeiSI(S)d i d p m ependent of i. Such a scheme will be called an 

efficient (or optimal) proportional distribution corresponding to the shares 
1,. . .,d,. When all expectations are the same, proportionality reduces to 

~x.(s)d~.=B.~l(s)d~. for all i. 
+his rLsu;t provid& a complete classification of the efficient states of the 

economy. It is well known that the efficient points of an economy whose 
agents have strictly concave utility functions can be identified with a simplex 
of appropriate dimension. Typically the characterization results from the 
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observation that efficient allocations maximize a weighted average of utility 
functions; efficient allocations can be associated with these weights. Here the 
correspondence is between efficient allocations and expected shares. 

If there is some way to determine the shares, then the result singles out a 
unique efficient distribution. For example, if a group of workers with known 

relative abilities and identical jobs are required to distribute the income 
derived from their combined labor, the shares could correspond to their 
relative abilities. In this instance, the state of nature could reflect the income 
of the firm as well as other factors relevant to the workers. There is no 
reason to expect that the expectations of the workers would be identical in 
such a situation. If the total income Z is obtained by adding the income Ii of 
the agents, we may take Bi=Zi/Z. There are two problems with this approach. 
First, if income depends on the state of nature, ei is not well defined (the 

expected ratio of Ii to Z will differ from agent to agent). Furthermore, if we 
derive the shares from individual income, the distribution scheme should be 

individually rational: if xi(s) is the income distributed to agent i, it must 

satisfy J ui(s, xi(s)) dpi 2 1 ui(s, Ii) dpi. The efficient proportional distribution 
corresponding to the shares Z,/Z,. .., Z,jZ need not have this property. 
Individual rationality is not a consideration if an agent is unable to 
guarantee his share of the income without the aid of other agents. Thus, in 
the example concerning distribution of income derived from a production 
process, the lack of individual rationality will not be a problem if the 
technology exhibits increasing returns to scale or if, for some reason, workers 

are unable to generate income on their own. 
If there is some recognized procedure for determining the shares, the 

efficient proportional distribution has some appeal as an equitable outcome 
of the distribution process. However, no additional properties associated with 
fairness can be guaranteed. In particular, even if all shares are equal, there is 
no reason to believe that an agent will not prefer (in the expected utility 
sense) the income another receives. Nevertheless, in certain cases another 
property can be asserted: that agent i’s expected percentage of income will 

exceed his share. If the income is thought of as a cake to be divided among 
the agents, then this result describes the situations in which it is possible to 
efficiently divide up the cake so that each agent believes he is receiving more 
than his share. Dubins and Spanier (1961) prove a similar result when all of 
the agents have linear utility functions. In section 7 it is shown that their 
theorem follows as a special case of the one presented here. 

The conclusions of this paper should be compared to several earlier 
results. Gale and Sobel (1980) presented a model similar to this one. 
However, agents were assumed to have identical expectations. It is shown 
that corresponding to any given shares 8i,. . ., 8, there is a unique efficient 
distribution with agent i receiving expected share Bi for each i. This follows 
as a special case of the results presented here. On the other hand, Gale and 
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Sobel proved that the desired allocation can be characterized as the solution 
to a certain constrained maximization problem. An analogous result has not 
been found in the more general case presented here, so independent proofs 
have been provided. The fact that the distribution problem with different 
expectations cannot be solved by the maximization of a single function can 
be put in perspective if the results of Wilson (1968) are considered. Wilson 
was interested in a model more general than ours, in which a group chooses a 
distribution (sharing rule) and an action that will effect a random outcome. 
In our model, the group has no explicit influence on the outcome. Wilson 

shows that unless expectations are identical, or the sharing rule is linear, 
there will be no way to determine an efficient allocation my maximizing a 

social utility function satisfying the Savage axioms. 
The second section of this paper provides a formal description of the 

model. Section 3 proves existence and section 4 uniqueness of efficient 
proportional distributions. In section 5, two special cases are analyzed. In 
these, each agent expects to receive more than his share in the efficient 
proportional distribution. Section 6 looks at the special case in which the 
agents have different expectations, but identical utility functions. In this case, 
an efficient scheme of ‘proportional bets’ can be constructed to give positive 
expected utility to every agent. Finally, section 7 deduces several results of 
Dubins and Spanier (1961) as special cases of our analysis. 

2. The model 

In this section we describe the problem. The characteristics of the model 
are : 

0) 

(ii) 

(iii) 

(iv) 

a non-negative, bounded, measurable function I (the total income) 

defined on a probability space S (the states of nature). 
real valued utility functions ui defined on S x R, for i= 1,. . ., m. The 

functions are denoted by u,(s,c) and are assumed to be increasing and 
concave in c. Letting u! denote differentiation with respect to c, we also 
assume ui and u; are bounded and measurable in s. 

probability measures pi representing the expectations of the agents. We 
assume the measures are mutually absolutely continuous [that is, if 
pj(A)= 0 for some j then pi(A)=0 for all i] hence the measures can be 
replaced by bounded measurable functions pi which can be taken to be 
positive almost everywhere. The pi are densities (Radon-Nikodym 
derivatives) with respect to a common measure, say y = m- ' CT= 1 pi, and 
satisfy is f(s) dpi = js f(s)pi(s) dy for all integrable functions J In what 
follows all integrals will be with respect to the measure y; reference to y 
is suppressed in our notation. Also we write jf for jsJ: Finally, the pi 
are normalized so that j Zp, = 1 for each i. 

positive numbers f3,, . . ., 8, summing to one (the shares). If the total 
income is independent of the state of nature, and is obtained as the sum 
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of individual incomes Ii, we can take 6i =ZJI. Notice that the shares 
cannot be defined unambiguously if Ii depends on s. In this case there 
need not be agreement about what an agent’s expected share of income 

is. 

A distribution scheme is a vector valued non-negative measurable function 

d=(dl,..., d,) on S; d,(s) represents the consumption distributed to agent i in 

state s. We denote by D the set of all distribution schemes. The scheme d in 
D is called feasible if 

xdi(s)=l(s) for all s. 

If in addition we have 

(J d,(s)p,(s))/8, independent of i, 

we say that d is proportional. That is, a feasible distribution scheme is 
proportional provided that agent i’s expected proportion of income divided 

by his share is independent of i. Because of the particular normalization 
chosen for pi, Jdt(S)p,(s) is equal to the expected share of income received by 

agent i. That is, Jdi(s)pi(s)=Jdi(s)pi(s)/jZ(s)pi(s). 
For each d in D we define the m-vector u(d) by 

Thus u(d) is the set of expected utilities of the agents under the scheme d. 

A feasible scheme H is called optimal or efficient if there is no other feasible 
scheme d such that u(d)>@). 

3. Existence of optimal proportional distributions 

In this section we will show that efficient proportional distributions exist. 

The proof is a consequence of the next lemma: 

Lemma. Let u be a convex valued upper hemicontinuous correspondence from 
the (m- 1)-dimensional simplex to itseljY If Izi =0 implies vi=0 for all DE CY@), 
then t( is surjective. 

When cx is single-valued this is a consequence of Brouwer’s Theorem. In the 
general case one can construct a proof by using an approximation theorem. 
For example, the result of Celina given in Hildenbrand and Kirman (1976, 
app. IV) is sufficient to prove the lemma. 



.I. Sobel, Proportional distribution schemes 151 

Now define a correspondence $ from the (m - 1 )-dimensional simplex A to 

the set of feasible distribution schemes Zj by 

I)(A) = {d : d solves max C Ai J ui(s, x,(s))p,(s), 

subject to 1 vi(s) = Z(s)}. 

Notice that if d E $(A) for some 1 then x is efficient. Next define f: 6+ A by 

It is routine to check that under our assumptions on the utility functions the 
correspondence cc=fo $ is well defined and satisfies the assumptions of the 
lemma [a similar verification is given in Gale and Sobel (1980)]. Therefore 
there exists AE A with 8~ @). Thus if de II/(A) then d is an efficient 
proportional distribution. We have established : 

Theorem 1. There exists an ejkient proportional distribution corresponding 
to the given shares 8,, . . ., 8,. 

4. Uniqueness of efficient proportional distributions 

The proof of uniqueness depends on an analysis of the necessary 
conditions for optimality. 

Let X be an optimal proportional distribution. Then there is a AE A such 
that x solves 

maxC~iSui(s,xi(s))Pi(s), 

subject to ~xi(s)=Z(s). 
(1) 

This is a problem considered in Gale and Sobel (1980) and therefore we 

can assert that if X is a solution to (1) then there exists a function p 
satisfying, for almost every s and every i, 

‘i”l(s,xi(s)lPi(s)~B(s), with equality if xi(s)> 0. (2) 

We can now prove the uniqueness’ theorem. 

‘We say x=y if y({s:xi(s)#y,(s)})=O for each i. 
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Theorem 2.’ If u:(s,c) is a strictly decreasing function of c for all i then 

there is at most one efficient proportional distribution associated with the 

shares 8,,. . .,lJ,. 

Proof. Suppose x and y are two efficient proportional distributions 
associated with the shares b’ l,...,e, and that ~yi(s)pi(s)~~xi(s)pi(s) for all i. 

Then it follows from (1) and (2) that there exist 2 and ~1 in A such that 

uj(s9xj(s))Pj(s) 4 
2- if xj(s)>O, 

u~(stxi(s))Pi(s) -lj 

Pi>“J(s~Yj(s))Pj(s) if y.(s)>O 

PjLjuuI(s3Yi(s))Pi(s) ’ . 

Moreover, by relabeling the agents if necessary, li/ui can be taken to be non- 
increasing in i. Thus, for any i and j > i, xj(s) > 0 and y,(s) > 0 imply 

Hence, since ui(s,c) is decreasing in c, 
yi(s) > xi(s) implies yj(s) 2 xj(s) for all j > i. (3) 

In order to obtain a contradiction, suppose that x# y and let k be the 
smallest integer with y, #xk. It follows from (3) and the fact that xxi =I yi 

that yk sxk with strict unequality on a set of positive measure. As this 
contradicts s yk(~)~k(~)Z~~k(~)~L(~), the theorem is established. 1 

5. Properties of proportional distributions 

Suppose X is an efficient proportional distribution. In order to have appeal 
as an equitable outcome of the distribution process, X should have some 
additional properties. For example, if expectations are different it seems 
reasonable to expect that Jpixi > ei for each i. That is, each agent expects to 
receive more than his objective share. Unfortunately, this may not be the 
case in general. For example, in a two-agent, two-state world, with total 
income of one unit in each state, let agent one have probabilities (l/2,1/2) 
and utility function u1 (j, c)=jc for j = 1,2, and let agent two have 
probabilities (l/3,2/3) and u,(j, c) = c/j for j= 1,2. Then the unique 
proportional distribution with shares (l/2,1/2) is (0,6/7) for agent one and 

‘1 am gratefpl to Hilton Machado for discovering an error in an earlier version of this proof. 
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(1,1/7) for agent two. Thus each agent expects to receive 3/7 of the total 

income. 
What makes the above example possible is a difference in tastes that more 

than compensates for different expectations. This possibility can be ruled out 
in two special cases: 

Theorem 3. Let X be an ejjicient proportional distribution and let 

K = s piXi/Bi. If 
(A) ui=u and di= l/m for all i, or 

(B) ui(s, c)=ui(c) for all i and Z(s) is independent of s, 

thenKz1. 

Observe that K 2 1 is equivalent to Jp&z ei for each i. Condition (A) 
implies that each agent is identical with respect to all characteristics except 

expectations. This corresponds to a situation in which similar workers have 
different attitudes about the future. For condition (B) to hold all preferences 
must be independent of the state of nature. This situation may be interpreted 
as a gambling model where each agent has Ii dollars to bet and the xi(s) is 
the amount received by i in the event s. The result then guarantees that each 
agent has non-negative expected winnings (if Bi = Z,/x,Z, ). 

Proof. Suppose X is efficient. Then by (2) there exists a function /I satisfying, 

for almost every s, 

nipi(S)~B(S)IUI(S,Xi(S)), with equality if xi(s)> 0. (4) 

It follows that, for almost every s, 

A#i(S)Xi(S)=p(S)Xi(S)/Uf(S,Xi(S)). (5) 

Suppose condition (A) holds. Integrating both sides of (5) and summing over 
i yields 

But, for fixed s, 

(6) 

since c (Xi(s) - I(s)/m) = 0 and l/u’(s, c) is an increasing function of c for fixed 
S. 
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Combining (6) and (7), and an application of (4) yield 

and soKz1. 

To prove (B), observe that if ui=~pi(s)u~(Xi(s)), then 

This follows since 

2 1 [ZPi(S)Ui-Pi(S)Uj(xi(s))lxi(s) + j” [zP~~s~vi~Ppi~s~uf~~i~s~~lxi~s~ 
*i S-A, 

~CiSIZ,,(S)Ui-Pi(S)Ui(Xi(S))l=O, 

where ci > 0 satisfies 

Zui=uj(ci) and Ai={s:Zui>uf(~i(s))}. 

Integrating (5) and using (8) we get 

8&,ud(Z 2s p(s)%,(s) for each q. 

Summing and using (4) gives, for each i, 

Thus, 

K=Aiui 
I 

C 84;/4u4 for all i, 
4 

and so Kz 1, the desired result. 1 
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Some interpretation of the proof of condition (B) is possible. Notice that, 
roughly speaking, p,(s)uI(~~(s)) is a price system supporting ‘the efficient 

allocation X. Then (8) says that the value of the income Xi is no more than 
the product of average prices (vi) and average income (0&Z) for every agent. 
Adding these inequalities yields the conclusion K 2 1. 

Also notice that the inequalities in (7) and (8) will hold strictly provided 

agents do not have identical expectations. Hence, K> 1 in this case. 

6. Proportional bets 

In view of the results of the previous sections we can reformulate our 

model to describe a special case. Suppose that each agent i has a positive 
amount of money pi and a utility function vi satisfying our boundedness, 
smoothness and concavity assumptions, and depending on income alone. 

Then, provided the agents have different expectations, there will be an 
incentive to gamble. 

Call a vector y= (yi, . . ., y,) of measurable functions from S to R a bet if 

yi(s)2 -pi and CT= I yi(s)=O. By defining functions ui by ui(c) = U((C - pi), 
letting Z=cy= 1 pi, and e,=pJZ, we can apply the theorems of sections 3 and 
4 to assert the existence and uniqueness of an efficient proportional 

distribution X=(X1,. . ., 2,). Furthermore, by Theorem 3(B) we have 
j Xi(s)pi(s)2 Bi and, letting ji(s)=xi(s) -/Ii, an efficient bet with the expected 
shares ljji/ei independent of i, and expected winnings non-negative for every 
agent. 

7. Linear utility functions 

Dubins and Spanier (1961) discuss a model of division for the case in 
which all utility functions are linear, z+(s,c)=c, and Z(s)= 1 for all s. In this 

section we deduce one of their results as a consequence of our analysis. 

Theorem 4. Zf the measures pi are non-atomic and ui(s, c)=c for all i, then 

there is a partition {A,,. . ., A,,,} of S such that the distribution 2, defined by 

&(s)=Z,(s) for SEAR, 

=o for S~Ai, 

is efficient, and ~pi(s)Xi(s)/Bi is independent of i. 

Proof: Let x be an efficient proportional distribution. For every non-empty 
subset T of (1,. . ., m} let S, = {s : xi(s) >O if and only if i E T}. Thus S, is the 
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set of states for which each agent in subset T gets positive income and 
everyone not in T receives 0 income. Then for every T, S, can be partitioned 
into A,(T) with 

A.S(Tj li(s)Pi(s)EjT xi(s)Pi(s). 
I 

To see this notice that (2) implies that if i,jE T then there exist positive 
numbers ;li, Aj with 

~iPi(S) = ~jpj(S) for almost every s E S,. (10) 

Order the elements of T, i,, . . ., i,, and suppose that Ai1 (T), . . ., Ai,_l (T) are 

disjoint subsets of Sr satisfying (9). Then, using (lo), 

Hence, since pi, is non-atomic, a set Ai, can be chosen to satisfy (9). By 
induction, this process can be continued until A,(T) is defined for all i E T. 
Since x is -efficient we may assume UieT A,(T) = S,. Finally, the claim is 

established by setting A,(T)=4 for i# T. The theorem follows by defining Ai 

by Ai=UrAi(T). I 

The above theorem states that we can choose the distribution to be a 
partition provided all utility functions are linear and measures non-atomic. 
If, in addition, Z(s) is constant we can apply condition (B) of Theorem 3 to 
assert the existence of a partition {A,, . . ., A,} with ui(Ai)/oi independent of i, 

and ui(Ai)~Bi for every i. This demonstrates the existence of what are called 
‘equitable’ partitions in Dubins and Spanier (1961). 
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