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Abstract
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eling will continue to provide useful information about
the effectiveness of educational inputs.
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1. INTRODUCTION
Economic theory states that in an efficient economy workers should be paid
their value marginal product. Implementing this rule in the service sector is
not simple, as it is often not obvious how to measure the output of a white
collar worker. Teachers provide an example of this problem: public school
teachers’ salaries are determined largely by academic degrees and creden-
tials and years of experience, none of which appears to be strongly related to
teaching effectiveness.

Perhaps in recognition that teacher pay is not well aligned with teaching
quality, President Obama has recently called for greater use of teacher merit
pay as a tool to boost student achievement in America’s public schools. But in
the United States teacher merit pay is hardly a new idea. It has been used for
at least a century, but most programs are short lived or survive either by giving
almost all teachers bonuses or by giving trivial bonuses to a small number of
teachers. Teachers have traditionally complained that principals cannot explain
why they gave a bonus to one teacher but not another (Murnane et al. 1991).
Opponents of teacher merit pay would raise the question of whether we can
reliably measure teachers’ value marginal products such that informed merit
pay decisions can be made.

The advent of wide-scale student testing, partly in response to the require-
ments of the federal No Child Left Behind (NCLB) law, raises the possibility that
it is now feasible to measure the effectiveness of individual teachers. Indeed,
recently developed panel data sets link students and teachers at the classroom
level, allowing researchers to estimate measures of “outcome-based” teacher
effectiveness.1 Because test scores are generally available for each student in
each year, they lend themselves comfortably to a value-added approach where
the effectiveness of teacher inputs can be measured by student test score
growth. The conjuncture of President Obama’s recent calls for teacher merit
pay and the development of panel data sets that provide information on student
achievement growth raise the stakes considerably: can we use student testing
to reliably infer teaching quality?

In most schools, students are not randomly assigned to teachers. A pre-
sumption in value-added modeling is that by focusing on achievement growth
rather than achievement levels, the problem of student-teacher sorting bias
is resolved because each student’s initial test score level is used as a con-
trol in the model. The value-added approach is intuitively appealing, and in-
creasing demand for performance-based measures by which teachers can be
held accountable—at the federal, state, and district levels—has only fueled

1. For recent examples see Aaronson, Barrow, and Sander 2007, Hanushek et al. 2005, Harris and
Sass 2006, Koedel and Betts 2007, Nye, Konstantopoulos, and Hedges 2004, and Rockoff 2004.
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the value-added fire.2 However, despite the popularity of the value-added ap-
proach among both researchers and policy makers, not everyone agrees that it
is reliable. Could it not be the case that a given teacher either systematically or
occasionally receives students whose gains in test scores are unusually low, for
reasons outside the teacher’s control? Ability grouping would be one source
of persistent differences in the types of students across classrooms. Random
variations, accompanied by mean reversion, would be a source of fleeting dif-
ferences that a value-added model (VAM) might wrongly attribute to a given
teacher.

Recent research by Rothstein (2010) shows that future teacher assign-
ments have non-negligible predictive power over current student performance
in value-added models, despite the fact that future teachers cannot possi-
bly have causal effects on current student performance. This result suggests
that student-teacher sorting bias is not mitigated by the value-added approach.
Rothstein’s critique of the value-added methodology comes as numerous stud-
ies have used and continue to use the technique. It raises serious doubts about
the value-added methodology just as other work, such as Kane and Staiger
(2008), Jacob and Lefgren (2007), and Harris and Sass (2007), appears to
confirm that value added is a meaningful measure of teacher performance.

We further explore the reliability of value-added modeling by extending
Rothstein’s analysis in two important ways. First, Rothstein estimates teacher
effects using only a single year of data for each teacher. We consider the
importance of using multiple years of data to identify teacher effects. If the
sorting bias uncovered by Rothstein is transitory to some extent, using mul-
tiple cohorts of students to evaluate teachers will help mitigate the bias.3 For
example, a principal may alternate across years in assigning the most trou-
blesome students to the teachers at her school, or teachers may connect with
their classrooms more in some years than in others.4 These types of single-
year idiosyncrasies will be captured by single-year teacher effects but will be
smoothed out if estimates are based on multiple years of data. Second, we eval-
uate the Rothstein critique using a different data set. Given that the degree of

2. NCLB legislation is one example of this demand at the federal level (e.g., adequate yearly progress),
and states such as Florida, Minnesota, and Texas have all introduced performance incentives for
teachers that depend to some extent on value added. For a further discussion of the performance-pay
landscape, particularly as it relates to teachers, see Podgursky and Springer (2007).

3. Rothstein notes this in his appendix, although he does not explore the practical implications in any
of his models.

4. In addition, some of what we observe to be sorting bias may be attributable to the random assignment
of students to teachers across small samples (classrooms). In an omitted analysis, we perform a
Monte Carlo exercise to test for this possibility. Although any given teacher may benefit (be harmed)
in any given year from a random draw of high-performing (low-performing) students, we find no
evidence to suggest that this would influence estimates of the distribution of teacher effects.
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student-teacher sorting may differ across different educational environments,
his results may or may not be replicated in other settings.

Our extension of Rothstein’s analysis corroborates his primary finding—
VAMs of student achievement that focus on single-year teacher effects will
generally produce biased estimates of value added. However, when we esti-
mate a detailed VAM and restrict our analysis to teachers who teach multiple
classrooms of students, we find no evidence of sorting bias in the estimated
teacher effects. Although this result depends on the degree of student-teacher
sorting in our data, it suggests that at least in our setting, sorting bias can
be almost completely mitigated using the value-added approach and looking
across multiple years of classrooms for teachers.

Our results in this regard are encouraging; however, less detailed VAMs
that include teacher effect estimates based on single classroom observations
fare poorly in our analysis. That some VAMs will be reliable but not oth-
ers, and that value-added modeling may be reliable only in some settings,
are important limitations. They suggest that in contexts such as statewide
teacher accountability systems, large-scale value-added modeling may not be
a viable solution. Because the success of the value-added approach will de-
pend largely on data availability and the underlying degree of student-teacher
sorting in the data (much of which may be unobserved), post-estimation fal-
sification tests along the lines of those proposed by Rothstein (2010) will
be useful in evaluating the reliability of value-added modeling in different
contexts.

Although we do not uncover a well-defined set of conditions under which
value-added modeling will universally return causal teacher effects across dif-
ferent schooling environments (outside of random student-teacher assign-
ments, such conditions are unlikely to exist), we do identify conditions under
which value-added estimation will perform better. The most important insight
is that teacher evaluations that span multiple years will produce more reliable
measures of teacher effectiveness than those based on single-year classroom
observations. Often implicitly, the value-added discussion in research and
policy revolves around single-year estimates of teacher effects. Our analysis
strongly discourages such an approach.

The remainder of the article is organized as follows. Section 2 briefly
discusses the Rothstein critique. Section 3 describes our data set from the
San Diego Unified School District (SDUSD). Section 4 replicates a portion of
Rothstein’s analysis using the San Diego data. Section 5 details our extended
analysis of value-added modeling and presents our results. Section 6 shows
that transitory sorting bias appears to be driving our findings. Section 7 uses
our results to estimate the variance of teacher effectiveness in San Diego.
Section 8 concludes.

21



VALUE ADDED AND STUDENT SORTING

2. THE ROTHSTEIN CRITIQUE
Rothstein raises concerns about assigning a causal interpretation to value-
added estimates of teacher effects. His primary argument is that teacher effects
estimated from VAMs are biased by nonrandom student-teacher assignments
and that this bias is not removed by the general value-added approach or by
standard panel data techniques. Consider a simple VAM of the general form:

Yit = Yit−1δ + Xitβ + Titθ + (αi + εi t ). (1)

In equation 1, Yit is a test score for student i in year t, Xit is a vector of
time-varying student and school characteristics (for the school attended by
student i in year t), and Tit is a vector of indicator variables indicating which
teacher(s) taught student i in year t . This model could be reformulated as a
gain score model by forcing the coefficient on the lagged test score to unity
and moving it to the left-hand side of the equation. The error term is written
as the sum of two components, one that is time invariant (αi ) and another that
varies over time (εi t ).

Rothstein discusses sorting bias as coming from two different sources in
this basic model. First, students could be assigned to teachers based on “static”
student characteristics. This type of sorting corresponds to the typical tracking
story—some students are of higher ability than others, and these students are
systematically assigned to the best teachers. Static tracking may operationalize
in a variety of ways, including administrator preferences, parental preferences,
or teacher preferences (assuming that primary-school-aged children, upon
whom we focus here, are not yet able to form their own preferences). Given
panel data, the typical solution to the static tracking problem is the inclusion
of student fixed effects, which control for the time-invariant components to
the error terms in equation 1. If student-teacher sorting is based only on static
student characteristics, this approach will be sufficient.

However, the student fixed effects solution to the static tracking problem
necessarily imposes a strict exogeneity assumption. That is, to uncover causal
teacher effects from a model that controls for time-invariant student char-
acteristics, it must be the case that teacher assignments in all periods are
uncorrelated with the time-varying error components in all periods. To see
this, note that we could estimate equation 1 by first-differencing to remove the
time-invariant component to the error term:5

Yit − Yit−1 = (Yit−1 − Yit−2)δ + (Xit − Xit−1)β + (Tit − Tit−1)θ

+ (εi t − εi t−1). (2)

5. In the case of first-differencing, it is more accurate to describe the assumption as “local” strict exo-
geneity in the sense that the error terms across time must be uncorrelated with teacher assignments
only in contiguous years.
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The first-differencing induces a mechanical correlation between the lagged test
score gain and the first-differenced error term in equation 2. This correlation
can be resolved by instrumenting for the lagged test score gain with the second-
lagged gain, or second-lagged level (following Anderson and Hsiao 1981). In
addition, year t teacher assignments may also be correlated with the first-
differenced error term. Specifically, if students are sorted dynamically based
on time-varying deviations (or shocks) to their test score growth trajectories,
lagged shocks to test score growth, captured by εi t−1, will be correlated with year
t teacher assignments, and the teacher effects from equation 2 cannot be given
a causal interpretation.6 Rothstein’s critique can be summarized as follows:
If students are assigned to teachers based entirely on time-invariant factors,
unbiased teacher effects can in principle be obtained from a well-constructed
VAM. However, if sorting is based on dynamic factors that are unobserved by
the econometrician, value-added estimates of teacher effects cannot be given
a causal interpretation.

Rothstein proposes a falsification test to determine whether VAMs pro-
duce biased estimates of teacher effectiveness. He suggests simply adding
future teacher assignments to the model and testing whether these teacher
assignments have nonzero “effects.” Future teachers do not causally influence
current test scores, which means that any observed effects must be the result of
a correlation between teacher assignments and the error terms. Alternatively,
if the coefficients on the future teacher indicator variables are jointly insignifi-
cant, sorting bias is unlikely to be a major concern for any teacher effects in the
model (as this finding would suggest that the controls in the model are cap-
turing the sorting bias that would otherwise confound the teacher effects). In
Rothstein’s analysis (2010), his most provocative finding is that future teacher
assignments have significant predictive power over current student perfor-
mance. This result suggests that value-added estimates of teacher effects are
contaminated by substantial sorting bias.

3. DATA
We use administrative data from four cohorts of fourth-grade students in San
Diego (at SDUSD) who started the fourth grade in the school years between
1998–99 and 2001–2. The standardized test that we use to measure student
achievement, and therefore teacher value added, is the Stanford 9 mathematics
test. The Stanford 9 is designed to be vertically scaled such that a one-point

6. Serial correlation in the epsilons would imply that if year t teacher assignments are correlated with
εi t−1, they will also be correlated with εi t , invalidating any VAM even in the absence of static tracking.

23



VALUE ADDED AND STUDENT SORTING

gain in student performance at any stage in the schooling process is meant to
correspond to the same amount of learning. 7

Students who have fourth-grade test scores and lagged test scores are
included in our baseline data set. We estimate a VAM that assumes a common
intercept across students and a second model that incorporates student fixed
effects. In this latter model we also require students to have second-lagged test
scores. For each of our primary models, we estimate value added for teachers
who teach at least twenty students across the data panel and restrict our student
sample to the set of fourth-grade students taught by these teachers.8 In the
baseline data set, we evaluate test score records for 30,354 students taught by
595 fourth-grade teachers. Our sample size falls to 15,592 students taught by
389 teachers in the student fixed effects data set. The large reduction in sample
size is the result of (1) the requirement of three contiguous test score records
per student instead of just two, which in addition to removing more transient
students also removes one year-cohort of students because we do not have test
score data prior to 1997–98 (that is, students in the fourth grade in 1998–
99 can have lagged scores but not second-lagged scores) and (2) requiring
the remaining students be assigned to one of the 389 fourth-grade teachers
who teach at least twenty students with three test score records or more.9

We include students who repeat the fourth grade because it is unlikely that
grade repeaters would be excluded from teacher evaluations in practice. In our
original sample of 30,354 students with current and lagged test score records,
only 199 are grade repeaters.

4. REPLICATION OF ROTHSTEIN’S ANALYSIS
Based on details provided by Rothstein in his 2010 article and corresponding
data appendix, we first replicate a portion of his analysis using data from the
1999–2000 fourth-grade cohort in San Diego. This replication is meant to
establish the extent to which Rothstein’s underlying findings are relevant in
San Diego.10 We estimate the following basic VAM:

�Y4
i = Siδ + T 3

i π 3 + T 4
i π4 + T 5

i π 5 + εi . (3)

7. For detailed information about the quantitative properties of the Stanford 9 exam, see Koedel and
Betts (2010).

8. This restriction is imposed because of concerns about sampling variation (see Kane and Staiger
2002). Our results are not sensitive to reasonable adjustments to the twenty-student threshold.

9. Only students who repeated the fourth grade in the latter two years of our panel could possibly have
had more than three test score records. There are thirty-two students with four test score records in
our data set.

10. The replication data sample is roughly a subsample of the student fixed effects data set, but we
use different teachers because Rothstein does not require teachers to teach twenty students for
inclusion into the model.
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Table 1. Standard Deviations of Teacher Effects from a Model with Controls for Past, Current, and
Future Teachers. Dependent Variable: Fourth-Grade Gain in Test Score

Wald Unadjusted Adjusted
Statistic (DF) P-Value Standard Deviation Standard Deviation

Grade 4 teachers 952 (292) <0.01 0.40 0.24

Grade 5 teachers 610 (253) <0.01 0.30 0.15

Notes: The Wald statistics and p-values are from tests for whether all teachers in the given grade
have identical effects on student gains in grade 4. The standard deviations refer to the standard
deviations of estimated teacher effects, both raw and adjusted, as explained in the text.

Equation 3 is a gain score model and corresponds to Rothstein’s VAM1 model
with indicators for past, current, and future teacher assignments. �Y4

i rep-
resents a student’s test score gain going from the third to fourth grade, Si is
a vector of school indicator variables, and T x

i is a vector of teacher indicator
variables for student i in grade x. Correspondingly, π x is a vector of teacher
effects corresponding to the set of teachers who teach grade x. Rothstein’s
basic argument is that if future teacher effects—for fifth-grade teachers in this
case—are shown to be nonzero, then none of the teacher effects in the model
can be given a causal interpretation.11

We replicate the data conditions in Rothstein (2010) as closely as possible
when estimating this model. There are two conditions that seemed particularly
important. First, in specifications that include teacher identifiers across mul-
tiple grades, Rothstein excludes students who changed schools across those
grades in the data. Second, he also focuses on only a single cohort of students
passing through the North Carolina public schools. Similar to Rothstein, the
data set used to estimate equation 3 does not include any school switchers
and is estimated using just a single cohort of fourth-grade students in San
Diego.

In our replication we focus on the effects of fourth- and fifth-grade teachers
in equation 3. In accordance with the literature that measures the importance
of teacher value added, we report the adjusted and unadjusted variance of the
teacher effects. We follow Rothstein’s approach to reporting the teacher effect
variances, borrowed from Aaronson, Barrow, and Sander (2007), where the
unadjusted variance is just the raw variance of the teacher effects and the
adjusted variance is equal to the raw variance minus the average of the square
of the robust standard errors. We follow the steps outlined in Rothstein’s
appendix to estimate the within-school variance of teacher effects without
teachers switching schools. Our results are detailed in table 1.

11. Rothstein’s analyses (2009, 2010) are quite thorough, and we refer the interested reader to his
paper for more details.
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The first two columns of table 1 report the results of separate Wald tests
of the hypotheses that all grade 4 teachers have identical effects and that all
grade 5 teachers have identical effects. Confirming Rothstein’s findings, the
null hypothesis that grade 5 teachers have an equal effect on students’ gains
in grade 4 is rejected with a p-value below 0.01.

The next two columns show the raw standard deviations of teacher effects
and the standard deviations after adjusting for sampling variance. (These
are scaled by dividing by the standard deviation of student test scores.) The
adjusted standard deviations are 0.24 and 0.15 for grade 4 and grade 5 teachers,
respectively. Rothstein’s (2010) estimates that are most analogous to those in
our table 1, in terms of both the model and the data, are reported in his table
5 (column 2) for the unrestricted model. There he shows adjusted standard
deviations of the distributions of grade 4 and grade 5 teacher effects of 0.193
and 0.099 standard deviations of the test, respectively. These results are also
replicated virtually identically in his table 2 (column 7), where he uses a larger
student sample and excludes lagged year teacher identifiers from the model.
Our estimates, which show a larger overall variance of teacher effects, are
consistent with past work using San Diego data (Koedel and Betts 2007).
The relevant result to compare with Rothstein (2010) is our estimate of the
ratio of the standard deviations of the distributions of future and current
teacher effects. Rothstein finds that the standard deviation of the distribution
of future teacher effects is approximately 51 percent of the size of that of current
teacher effects (i.e., 0.099/0.193), whereas in our analysis this number is
slightly higher, at roughly 63 percent (0.15/0.24). Our results here confirm
Rothstein’s finding that future teachers explain a sizable portion of current
grade achievement gains and establish that his primary result is not unique to
North Carolina.

The results in table 1, and the corresponding results detailed by Roth-
stein, suggest that student-teacher sorting bias is a significant complication to
value-added modeling. Information about the degree of student-teacher sort-
ing in our data will be useful for generalizing our results to other settings.
We document observable student-teacher sorting in our data by comparing
the average realized within-teacher standard deviation of students’ lagged test
scores to analogous measures based on simulated student-teacher matches
that are either randomly generated or perfectly sorted. This approach follows
Aaronson, Barrow, and Sander (2007). Although sorting may occur along
many dimensions, the extent of sorting based on lagged test scores is likely
to provide some indication of sorting more generally. Table 2 details our re-
sults, which are presented as ratios of the standard deviation of interest to
the within-grade standard deviation of the test (calculated based on our stu-
dent sample). Note that while there does appear to be some student sorting
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Table 2. Average Within-Teacher Standard Deviations of Students’ Period (t − 1) Test Scores

Within Schools Across District
Random Perfect Random Perfect

Actual Assignment Sorting Assignment Sorting

Standard deviations 0.81 0.90 0.32 0.99 <0.01
of lagged scores

Notes: In the “Perfect Sorting” columns, students are sorted by period (t − 1) test
score levels in math. For the randomized assignments, students are assigned to teach-
ers based on randomly generated numbers from a uniform distribution. The random
assignments are repeated 25 times, and estimates are averaged across all random
assignments and all teachers. The estimates from the simulated random assignments
are very stable across simulations.

based on lagged test score performance in our data set, this sorting is relatively
mild.

5. EXTENSIONS TO MORE COMPLEX VALUE-ADDED MODELS
We extend the analysis by evaluating the effects of future teachers using three
models that are more commonly used in the value-added literature. These
models include a richer set of control measures. We use a general value-added
specification where current test scores are regressed on lagged test scores, but
note that it is also somewhat common in the literature to use the gain score
model (which is used primarily by Rothstein), where the coefficient on the
lagged test score is forced to one and the lagged score term is moved to the left
side of the equation.

The first model that we consider, and the simplest, is a basic VAM that
allows for the comparison of teacher effects across schools:

Yit = ψt + Yi (t−1)φ1 + Xitφ2 + Titθ + εi t . (4)

In equation 4, Yit is the test score for student i in year t , ψt is a year-specific
intercept, Xit is a vector of time-invariant and time-varying student-specific
characteristics (see table 3), and Tit is a vector of teacher indicator variables
where the entry for the teacher who teaches student i in year t is set to one.
The coefficients of interest are in the vector of teacher effects, θ .

We refer to equation 4 as the basic model. The most obvious omission
from the model is school-level information, whether in the form of school
fixed effects or time-varying controls. Researchers have generally incorporated
this information because of concerns that students and teachers are sorting
into schools nonrandomly. This sorting, along with the direct effects of school-
level inputs on student achievement (peers, for example), will generate omitted
variables bias in the value-added estimates of teacher effects in equation 4.
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Table 3. Controls from Value-Added Models

Student-Level Controls (X i t ) School-Level (and Classroom-Level) Controls (Si t )

English-learner (EL) status School fixed effects

Change from EL to English proficient Classroom-level peer performance in year (t − 1)

Expected and unexpected school changer Class size

Parental education

Race Percentage of student body by:

Gender Race

Designated as advanced student English learner status

Percentage of school year absenta Free/reduced price lunch status

School-changer status

aThe share of days missed by students is sometimes considered endogenous. Fourth-grade stu-
dents, however, are not likely to have much influence over their attendance decisions.

This leads to the second model that we consider, the within-schools model,
which is more commonly estimated in the literature and includes school-level
covariates and school fixed effects.

Yit = ξt + Yi (t−1)β1 + Xitβ2 + Sitβ3 + Titγ + νi t . (5)

In equation 5, Sit includes school indicator variables and time-varying school-
level information for the school attended by student i in year t . The controls
in the vector Sit are detailed in table 3. The benefit of including school-level
information is a reduction in omitted variables bias, including sorting bias
generated by students and teachers selecting into specific schools. However,
the cost of moving from equation 4 to equation 5 is that it is no longer straight-
forward to compare teachers across schools.12

Finally, in our third specification we incorporate student fixed effects. This
approach is suggested by Harris and Sass (2006), Koedel (2009), and Koedel
and Betts (2007), among many others:

Yit = αi + λt + Yi (t−1)τ1 + Xitτ2 + Sitτ3 + Titδ + uit . (6)

The inclusion of the student fixed effects, αi , allows us to drop from the vector
Xit time-invariant student characteristics, leaving only time-varying student
characteristics. The benefit of the within-students approach is that teacher
effects will not be biased by within-school student sorting across teachers

12. Although teacher effectiveness cannot be compared across schools straightforwardly using value-
added estimates from equation 5, this may be acceptable from a policy perspective. For example,
policy makers may wish to identify the best and worst teachers on a school-by-school basis regardless
of any teacher sorting across schools.
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based on time-invariant student characteristics (such as ability, parental in-
volvement, etc.). However, as noted in section 2, there are trade-offs. Recall
that the student fixed effects model necessarily imposes some form of the strict
exogeneity assumption. Equation 6 also narrows teachers’ comparison groups
to those with whom they share students, meaning that identification comes
from comparing test score gains for individual students when they were in
the third and fourth grades. In addition, the incorporation of the student fixed
effects makes the model considerably noisier.13 Finally, the size of the student
sample that can be used is restricted in equation 6 because a student record
must contain at least three contiguous test scores, instead of just two, to be
included in the analysis (as described in section 3).

Despite these concerns, econometric theory suggests that the inclusion of
student fixed effects will be an effective way to remove within-school sorting
bias in teacher effects as long as students and teachers are sorted based on
time-invariant characteristics. We estimate the within-students model by first-
differencing equation 6 and instrumenting for students’ lagged test score
gains with their second-lagged test score levels.14 This general approach was
developed by Anderson and Hsiao (1981) and has recently been used by Harris
and Sass (2006), Koedel (2009), and Koedel and Betts (2007) to estimate
teacher value added.15 Note that to completely first-difference equation 6 we
must incorporate students’ lagged teacher assignments, which will appear in
the period (t − 1) version of equation 6.16 That is, the model compares the
effectiveness of students’ current and previous year teachers.

We start with our baseline student samples—the 30,354 student/595
teacher sample for our basic and within-schools models and the 15,592 stu-
dent/389 teacher sample for our within-students model. For the students in
these samples, we then move forward one year and identify fifth-grade teacher
assignments. In each sample, approximately 85 percent of the students appear
in the data set in year (t + 1) with future teacher assignments. We include
teacher indicator variables for students’ fifth-grade teacher assignments and
test the null hypothesis that these different teacher assignments differentially

13. In fact, a test for the statistical significance of the student fixed effects in equation 6 fails to reject the
null hypothesis of joint insignificance (tested using the gain score analog to this model). However,
the test is of low power given the large-N, small-T panel data set structure (typical of most value-added
analyses), limiting inference.

14. Rothstein (2010) takes an entirely different approach based on Chamberlain’s correlated random
effects model when testing for student fixed effects in his analysis.

15. Although all three of these studies use the same basic methodology, Harris and Sass (2006) estimate
their model using the generalized method of moments, while Koedel (2009) and Koedel and Betts
(2007) use two-stage least squares (2SLS). We use 2SLS here.

16. We include lagged teacher assignments for all lagged teachers who teach at least five students in
our sample in the prior year.
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predict grade 4 test score growth.17 So adjusting model 4 by adding controls
for grade 5 teachers,

Y4
i t = ψt + Yi (t−1)φ1 + Xitφ2 + T 4

i t θ + T 5
i (t+1)η + εi t (4′)

where η is a vector of future (grade 5) teacher fixed effect coefficients. We test
whether the indicators for future teachers differentially predict achievement in
the current year: H0 : η1 = η2 = . . . = ηJ = η̄. A rejection of this null hypoth-
esis for future teacher effects suggests that sorting bias is contaminating the
teacher effects in the model. This is the falsification test proposed by Rothstein
(2010).

It is less straightforward to add the future teacher effects to the student
fixed effects model because of the first-differencing procedure. For example,
a student’s fourth-grade teacher enters into the model for third-grade value
added as a future teacher and into the model for fourth-grade value added as
a current teacher. We allow fourth-grade teachers to have one effect in the
lagged score model and a separate effect in the current score model by not
differencing out the teacher indicator variables. This approach is taken because
the current score teacher effect may be partially causal while the future teacher
effect cannot be. The current score and lagged score effects are not separately
identifiable, but they are captured by a single coefficient for each fourth-grade
teacher. Equation 7 details the first-differenced version of the within-students
model that incorporates future teacher assignments. Year t corresponds to the
fourth grade for the students in our sample.

Yit = αi + λt + Yi (t−1)τ1 + Xitτ2 + Sitτ3 + T 4
i t δ4 + T 5

i (t+1)η5 + uit

Yi (t−1) = αi + λ(t−1) + Yi (t−2)τ1 + Xi (t−1)τ2 + Si (t−1)τ3 + T 3
i (t−1)δ3

+ T 4
i t η4 + ui (t−1)

Yit − Yi (t−1) = (αi − αi ) + (λt − λ(t−1)) + (Yi (t−1) − Yi (t−2))τ1

+ (Xit − Xi (t−1))τ2 + (Sit − Si (t−1))τ3 + T 4
i t δ4 − T 3

i (t−1)δ3

+ T 5
i (t+1)η5 − T 4

i t η4 + (uit − ui (t−1)) (7)

In equation 7 we instrument for the lagged test score gain with the second-
lagged test score level. The second row in the equation contains the vectors of
teacher effects after first-differencing. The positive entries are from the current

17. By not requiring all students to have future teacher assignments we are able to use a larger student
sample, and therefore a larger teacher sample. The reference group here is the student population
for which no grade 5 teacher is observed. The results do not depend on the use of this comparison
group. For instance, dropping the students without a fifth-grade teacher and instead omitting one
future teacher does not change the results.
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score model and the negative entries are from the lagged score model. The
superscripts on the teacher indicator vectors indicate the grade level taught
by the teachers, along with the corresponding subscripts on the coefficient
vectors.18 The teacher coefficients denoted by δ may contain some causal
component, while the coefficients denoted by η cannot possibly contain causal
information. Grouping terms, the vector of current teacher coefficients in this
model estimates (δ4 − η4).

In each model, we estimate future teacher effects for all teachers who teach
at least twenty students from our original student sample, one year in advance.
We perform Wald tests of the null hypothesis that the teacher effects are jointly
equal to each other separately for current and future teachers, although our
primary interest is in the tests for the future teachers. We also estimate the
unadjusted and adjusted variances of the distributions of the current and future
teacher effects, again following Aaronson, Barrow, and Sander (2007).19

A caveat to the falsification tests in the basic and within-schools models
is that they need not indicate sorting bias. Returning to equation (4′) and
the analogous within-schools model, if students are sorted into year (t + 1)
classrooms based on year t performance, grade 5 teacher assignments should

be correlated with grade 4 test score growth. By itself, this is not an indictment
of the VAM because a model of grade 5 test score growth, which would be
used to estimate grade 5 teacher effects, would include grade 4 performance
as a control. However, only if grade 4 test scores fully capture differences in
academic readiness prior to grade 5 would this benign explanation for grade
5 teacher effects suffice. If this condition fails, the future teacher coefficients
in the basic and within-schools models will capture sorting bias attributable
to any unobserved factors that determine both academic performance and
student-teacher assignments. In the context of the models, if the error terms
in the basic and within-schools models are serially correlated, nonzero future
teacher effects will be problematic.20

One way to test the extent to which the future teacher effects in these
models are capturing bias from sorting on unobservables is to look at prior year

18. Our approach requires that we treat teacher effects separately by grade for fourth-grade teachers
who also teach students in the third grade. If teacher effects are constant across grades, these
by-grade effects are expected to difference out for a student who has the same teacher in the third
and fourth grades (assuming constant quality). However, this creates some additional noise relative
to a standard first-differenced model because more than one parameter must be estimated for the
forty-nine fourth-grade teachers who also teach in the third grade in our panel.

19. We diagonalize the variance matrices to compute the Wald statistics. Substituting the full variance-
covariance matrices for the diagonal variance matrices has little effect on the reported Wald statistics,
and mechanically it does not affect the teacher effect variance estimates at all.

20. We expect that the student fixed effects model will reduce the problem of serial correlation because
in the simpler models the errors will partly reflect omitted student ability and motivation, which
are largely unchanging across grades.
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teachers. If lagged test scores are complete measures of academic readiness,
which is the condition required for the future teacher effects to be benign,
the contributions of prior year teachers to student performance should be
small. Rothstein (2010) shows that this is not the case, and in fact lagged
teacher assignments are strong predictors of student outcomes in VAMs.21

This suggests that nonzero future teacher effects in the basic and within-
schools models will reflect sorting bias.

Turning to the within-students model, the falsification test is a test of strict
exogeneity. By assumption, the time-varying information contained in year
t test scores does not influence teacher assignments in year (t + 1) in this
model. Nonzero future teacher effects indicate that the future year teacher
assignments are correlated with the first-differenced error terms—that is, they
indicate that strict exogeneity fails.

Table 4 details our initial results from the three VAMs—in all three spec-
ifications, the significance of the future teacher effects cannot be rejected.
Although the results in table 4 continue to show nonzero future teacher ef-
fects, note that the estimates of the standard deviations of teacher effects are
much smaller than the analogous estimates in table 1. For example, the ratio
of the adjusted standard deviation of the future teacher effects distribution to
the adjusted standard deviation of the current teacher effects distribution falls
below one-half in each of the models in table 4 (down from approximately 0.6
in table 1).22 Compared with table 1, table 4 indicates that richer VAMs that
evaluate teachers over multiple years reduce the bias in the estimated teacher
effects.23

One potentially important aspect of the results in table 4 is that some of
the future teacher effects are estimated using multiple cohorts of students. If
the sorting captured by Rothstein’s estimates (and our analogous estimates)
is transitory to some extent, using multiple cohorts of students to evaluate
teacher effects will help mitigate the bias. To illustrate, we write the single-
year teacher effect estimate for teacher j at school k in year t from the basic
VAM as the sum of five components:

θ̂ j kt = θ j + λk + (δ j + ρ j t ) + ν j kt . (8)

21. We replicate this finding in our data (results available upon request).
22. Note that the meaning of this ratio is less clear in the student fixed effects model because the current

teacher effects from this model estimate the joint parameter (δ4 − η4) in equation 7. Ultimately,
however, the important result from the student fixed effects model is that the future teacher effects
have a less predictive power over current test score growth.

23. The control variables added to the specifications marginally reduce the sorting bias. This result
is consistent with Rothstein (2010). Although Rothstein does not report results from models that
incorporate student- or school-level control variables, he notes that his results do not qualitatively
change if they are included in the model.
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Table 4. Extension of Rothstein’s Analysis Using the Value-Added Models from Section 5

Wald Unadjusted Adjusted
Statistic Standard Standard
(DF) P-Value Deviation Deviation

Basic model Grade 4 teachers 3393 (594) <0.01 0.27 0.23
Grade 5 teachers 846 (471) <0.01 0.16 0.10

Within-schools model Grade 4 teachers 1994 (594) <0.01 0.28 0.22
Grade 5 teachers 815 (471) <0.01 0.15 0.10

Within-students model Grade 4 teachersa 649 (388) <0.01 0.29 0.18
Grade 5 teachers 341 (259) <0.01 0.16 0.07

See notes to table 1.
aNote that these estimates are for the composite effects documented in equation 7.

In equation 8, θ j is teacher j ’s true effect, λk measures the quality of school
k, δ j measures bias from persistent student sorting to teacher j across years,
ρ j t measures bias from nonpersistent student sorting to teacher j , and ν j kt is
the statistical noise associated with the teacher effect estimate. If λk �= 0, the
within-schools model is appropriate. Including additional student-level con-
trols and/or student fixed effects will reduce the impacts of δ j and ρ j t ; however,
if students are sorted to teachers based on dynamic and unobserved attributes
that are correlated with test score growth (e.g., expected mean reversion), these
terms can be nonzero in expectation even in the within-students model.

Using multiple years of data to evaluate teachers will reduce the bias from
sorting on unobservables to the extent that the sorting is transitory and cap-
tured by ρ j t rather than δ j . As long as student sorting is partly transitory, the
variance of our estimated teacher effects will fall with the number of cohorts
observed for each teacher j because ρ j t is being averaged over an increasing
number of cohorts of students. In the extreme, if sorting on unobservables
contributes only to ρ j t (i.e., it is entirely nonpersistent from year to year), the
sorting bias will go to zero as t increases.

Table 5 provides compelling evidence that transitory sorting bias may be an
important concern in the data. We group students by year (t + 1) classrooms,
then calculate the within-teacher, across-year correlations of classroom average
year t gain scores for the year (t + 1) teachers who teach in each year of the
within-students data panel. In the context of equation 8, for teacher j these
correlations provide a rough measure of the relationship between (δ j + ρ j t )
and (δ j + ρ j (t+1)). Correlations near one would suggest that there is little scope
for transitory bias and that adding additional years of teacher data will not
be helpful. Correlations near zero would indicate that the sorting bias can be
reduced by evaluating teachers across multiple years. The first panel of table
5 reports correlations for raw year t gain scores, which range between 0.30
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Table 5. Across-Year Correlations in Year t Gain
Scores Averaged at the Teacher-by-Year Level for Year
(t + 1) Teachers Who Taught in All Three Years of the
Within-Students Panel

Year 1 Year 2 Year 3

Raw Gain Scores

Year 1 1

Year 2 0.35 1

Year 3 0.30 0.34 1

Year t Gain Scores Demeaned within Students

Year 1 1

Year 2 0.20 1

Year 3 0.14 0.30 1

and 0.36 across years. The second panel reports correlations for year t gain
scores that are demeaned within students (i.e., we subtract students’ average
gains), which are even smaller and range from 0.14 to 0.30. Although these
correlations are not zero, they are far from one, suggesting that transitory
sorting bias can be reduced by evaluating teachers across multiple years.

As a second way to investigate the significance of transitory sorting bias,
we replicate our analysis from table 4 but evaluate only future teachers who
teach students in every possible year of the data panel. For the basic and
within-schools models, this means that future teachers teach students in four
consecutive years. For the within-students model, future teachers teach stu-
dents in three consecutive years (recall that we use only three year-cohorts of
students in the within-students model).

We report our results in table 6. Consistent with what is suggested by the
correlations in table 5, future teacher effects are smaller when we focus on
future teachers who teach multiple cohorts of students. In fact, in the student
fixed effects model, when we focus on future teachers who teach at least three
classrooms of students, the adjusted variance of grade 5 teacher effects goes to
zero. This suggests that at least some of the sorting bias uncovered by Rothstein
(2010) is transitory.24 This finding highlights perhaps the most policy-relevant
implication of our study—evaluating teachers over multiple years will improve
the performance of VAMs and, depending on the sorting environment, may

24. Our transitory sorting bias finding is consistent with other work that finds that multiyear teacher
effects are more stable (McCaffrey et al. 2009) and more predictable (Goldhaber and Hansen 2008).
However, reduced sampling variance will also be a determinant of these other results.
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Table 6. Extension of Rothstein’s Analysis Using the Value-Added Models from Section 5 and Modeling
Only Future Teachers Who Taught Students in Each Year of the Data Panel

Wald Statistic Unadjusted Adjusted
(DF) P-Value Variance (s.d.) Variance (s.d.)

Basic model Grade 4 teachers 4640 (594) <0.01 0.27 0.23
Grade 5 teachers 268 (140) <0.01 0.14 0.09

Within-schools Grade 4 teachers 2260 (594) <0.01 0.28 0.23
model Grade 5 teachers 260 (140) <0.01 0.14 0.08

Within-students Grade 4 teachersa 684 (388) <0.01 0.29 0.19
model Grade 5 teachers 158 (147) 0.25 0.13 0.00b

Notes: See notes to table 1. For the basic and within-schools models, this analysis includes fifth-
grade teachers who teach in all four years of our data panel. In the within-students model we
evaluate just three year cohorts of students, and therefore we include fifth-grade teachers who
teach in three consecutive years.
aNote that these estimates are for the composite effects documented in equation 7.
bAdjusted variance estimate was marginally negative.

be sufficient to mitigate sorting bias if static tracking is adequately controlled
for.25

6. IS THIS TRANSITORY SORTING BIAS OR SAMPLE SELECTION?
In addition to transitory sorting bias, sample selection may also partly explain
our results in table 6. For example, by requiring teachers to teach in all three
years of our data panel, we exclude a disproportionate share of inexperienced
teachers. If students are sorted differently to experienced and inexperienced
teachers, this could contribute to our findings. Although we cannot capture
fully the differences between the teachers who do and do not exit the data
panel, we can replicate the correlative analysis in table 5 separately for the
experienced and inexperienced teachers who remained in the data set for all
three years. We present these correlations in table 7—they do not suggest that
the magnitude of transitory sorting bias will differ across experienced and
inexperienced teachers.26

We also directly test the extent to which our results in table 6 are driven
by sample selection. If what we have uncovered is a sample selection effect,
if we remove a cohort of student data and rerun the model using the new
student subsample but the same teachers, the adjusted variance of grade 5
teacher effects should remain near zero, and the Wald test should continue

25. Although we focus on future teachers, the analysis is also relevant for lagged teachers. In omitted
results we find that the patterns of bias associated with transitory sorting for future teachers are
also reflected among lagged teachers, although the interpretation of the lagged teacher analysis is
less straightforward for a handful of reasons, some specific to our data set (contact the authors for
details).

26. We omit the demeaned gain score correlations for brevity—they are smaller in magnitude and
display a similar pattern to the raw gain scores.
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Table 7. Across-Year Correlations in Year t Gain Scores Av-
eraged at the Teacher-by-Year Level for Year (t + 1) Teachers
Who Taught in All Three Years of the Within-Students Panel, by
Teacher Experience

Year 1 Year 2 Year 3

Raw Gain Scores: Experienced Teachers (N = 104)

Year 1 1

Year 2 0.27 1

Year 3 0.33 0.38 1

Raw Gain Scores: Inexperienced Teachers (N = 43)

Year 1 1

Year 2 0.59 1

Year 3 0.22 0.23 1

Table 8. Within-Students Model Using Only Future Teachers Who Taught Students in Each Year of the
Data Panel, with Each of the Three Year Cohorts Individually Omitted from the Data Set

Wald Unadjusted Adjusted
Statistic Variance Variance
(DF)a P-Value (s.d.) (s.d.)

Drop fourth-grade cohort Grade 4 teachersb 568 (369) <0.01 0.31 0.18
in 1999–2000 Grade 5 teachers 181 (147) 0.03 0.17 0.06

Drop fourth-grade cohort Grade 4 teachersb 651 (374) <0.01 0.34 0.21
in 2000–1 Grade 5 teachers 190 (147) 0.01 0.20 0.09

Drop fourth-grade cohort Grade 4 teachersb 617 (332) <0.01 0.36 0.23
in 2001–2 Grade 5 teachers 196 (147) <0.01 0.21 0.07

See notes to table 1.
aThe number of grade 4 teachers included in the model changes across rows because some of
the grade 4 teachers taught only in a single year. Note that the 2001–2 cohort of students was
somewhat larger than the other two cohorts, which explains why there are fewer grade 4 teachers
in the model when this cohort is dropped.
bThese estimates are for the composite effects documented in equation 7.

to retain the null that all grade 5 teachers have an identical effect on grade
4 achievement. Table 8 shows the results when we reestimate the within-
students model after removing one cohort of grade 4 students at a time. The
adjusted variance of grade 5 teachers now rises. Also, in two of three cases the
adjusted variance for the grade 4 teachers also increases as would be expected.

So why does the fixed effects model using future teachers who teach in
all years, shown in table 6, appear to salvage hope for the use of VAMs?
We conclude that there is not something unusual about this sample of grade
5 teachers. Rather, the main reason we succeed in reducing future teacher
effects to zero has mostly to do with the fact that in table 6 we include only
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grade 5 teachers who teach in all years in the data. The use of multiple years
of data reduces transitory sorting bias significantly.27

7. THE VARIANCE OF TEACHER QUALITY IN SAN DIEGO
The results from the previous section suggest that we can estimate the vari-
ance of causal teacher effects in San Diego using a within-students VAM that
focuses on teachers who teach in all three years of our data panel. For this
analysis we return to the within-students model in equation 6 from section 5
and estimate teacher effects for fourth-grade teachers. Unlike in the previous
analysis, we do not include future teachers in the model, and we estimate a typ-
ical first-differenced specification (as opposed to the nonstandard specification
in equation 7).

Across all the fourth-grade teachers in our within-students sample, the
adjusted standard deviation of the teacher effects from the model in equa-
tion 6 is estimated to be 0.22; this number is similar in magnitude to the
results above.28 To estimate the magnitude of the variance of actual teacher
quality, free from sorting bias, we split the teacher sample into two groups.
Group A consists of fourth-grade teachers who taught in all three years of
our within-students data panel, and group B consists of teachers who did not.
Approximately 45 percent of the fourth-grade teachers belong to group A and
55 percent belong to group B.29 Consistent with the transitory sorting bias
result in table 6, the adjusted variance of the teacher effects from group A
is approximately 24 percent smaller than the adjusted variance of the teacher
effects from group B. Correspondingly, the standard deviations of the adjusted
teacher effect distributions, measured in standard deviations of the test, are
0.20 for group A and 0.23 for group B. The standard deviation of the adjusted
difference in variance between the two groups is 0.11. Table 9 documents these
results.

Although the analysis in the previous section suggests that the observed
variance gap between the teachers in groups A and B will be driven, at least in

27. In an analysis omitted for brevity, we investigated the extent to which transitory student sorting is
exacerbated by principal turnover. Although our findings are consistent with a principal-turnover
effect in the expected direction, the effect is not statistically significant. One implication of this result
is that transitory student sorting does not unduly depend on principal turnover. Further details are
available from the authors upon request.

28. Recall that the within-student teacher effect estimates in tables 6 and 8 are from the nonstandard
first-differenced model in equation 7.

29. Note that in table 6, roughly 57 percent of fifth-grade teachers taught in all three years of the
data panel. The difference in stability between our fourth- and fifth-grade teacher samples may be
explained by the different selection criteria. Our initial sample of fifth-grade teachers in table 4 teach
at least twenty students for whom we observe teacher assignments in four consecutive years, while
our sample of fourth-grade teachers teach at least twenty students for whom we observe teacher
assignments in just three consecutive years. In addition, the fifth-grade teacher sample is identified
conditional on students being taught by one of the teachers in the fourth-grade teacher sample.
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Table 9. Teacher-Effect Variance Estimates from the Within-Students Model (Equation 6)

Unadjusted Adjusted Standard Deviation
Variancea Variancea (adjusted)b

All teachers 128 76 0.22

Group A 110 64 0.20

Group B 141 84 0.23

Variance gap 31 20 0.11

Notes: Teachers in group A taught in all three years of the data panel; teachers in
group B did not.
aThe unadjusted and adjusted variance estimates are in raw test score points.
bThe standard deviation estimates are ratios of the standard deviations of the
teacher effect (and bias) distributions to the standard deviation of the fourth-grade
test score distribution. These estimates are analogous to those presented in tables
2, 5, and 6.

Table 10. Differences in Observable Characteristics between Teachers Who Taught in
All Three Years of Our Data Panel (Group A) and Those Who Did Not (Group B)

Group A Group B

Share with experience of less than 5 years 0.27 0.48

Share with experience between 5 and 10 years 0.20 0.19

Share with experience of more than 10 years 0.53 0.33

Share with MA degree 0.65 0.48

Share with BA in education 0.40 0.38

Note: Characteristics are averaged within teachers over the course of the data
panel.

part, by differences in transitory sorting bias, two other explanations merit dis-
cussion. First, again, sample selection may be a concern if group A is a more
homogeneous group of teachers than group B. As shown in table 10, there
are some observable differences in experience and education that suggest this
might be a concern. Specifically, teachers in group A are likely to be more
experienced and to have a master’s degree. We investigate the extent to which
differences across groups along these dimensions might explain the observed
variance difference by estimating the within-group variance of teacher quality
for more and less experienced teachers, and then for teachers with and without
master’s degrees. The within-group variance of teacher effects among teach-
ers with master’s degrees is higher than the within-group variance of those
without, which works counter to the observed variance gap. For experience,
there is more variation among teachers with ten or more years of experi-
ence and among novice teachers (with five or fewer years of experience) than
among teachers with five to ten years of experience. Ultimately, the variance
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decompositions based on grouping teachers by observable qualifications do
not suggest a clear variance gap effect.30

We also note that the grouping criterion here is somewhat arbitrary in the
sense that there is nothing particularly special about the years covered by our
data panel. For example, some of the teachers in group A surely left the district
in the year after our data panel ended or did not teach in the year before it
started, and some of the teachers in group B surely taught in three or more
contiguous years outside the data panel (for example, if a teacher taught in the
year prior to the first year of our data panel, and then in the first two years of
our data panel but not the third, we would assign the teacher to group B).

The second explanation for the observed variance gap is that it occurs by
chance. To evaluate this possibility, we use a bootstrap to derive empirically
the distribution from which the variance gap estimate would be drawn if the
sample were split at random. We randomly assign the teachers from our sam-
ple into two groups that are equivalent in size to groups A and B above, and
calculate the adjusted variance gap between these randomly assigned groups.
We repeat this procedure five hundred times and use the five hundred variance
gap estimates to define the variance gap distribution. The variance gap is cal-
culated as the adjusted variance of teacher effects in the smaller group minus
the adjusted variance of teacher effects in the larger group, all divided by the
adjusted variance of teacher effects in the larger group. In other words, we cal-
culate [var (Gr oup A) − var (Gr oupB)]/var (Gr oupB)). The average variance
gap generated by the bootstrap analysis is +1 percent. The standard deviation
in this variance gap is quite large, though, at 24 percent. Thus the variance
gap estimated between the teachers in groups A and B (−24 percent as shown
in the second column of table 9) is just over a standard deviation away from
the average of the empirical variance gap distribution (at approximately the
13th percentile of the range of bootstrapped estimates). Although the empirical
variance gap distribution is wide (the 90 percent confidence interval ranges
from −35 to +45 percent), which limits our ability to detect statistical signifi-
cance even when the observed variance gap is large, the gap estimated between
groups A and B is suggestive of a transitory sorting bias effect.

30. The differences in variances across the teacher samples split by observable qualifications are small,
in the neighborhood of 0.01–0.02 standard deviations. Although we cannot disentangle the effects of
transitory sorting bias from the observable differences across teachers in the two samples of interest
(groups A and B), there is a large literature showing that teachers differ only mildly in effectiveness
based on observable qualifications (Hanushek 1996; exceptions in the literature include Clotfelter,
Ladd, and Vigdor 2007). Perhaps most relevant to the present study, Betts, Zau, and Rice (2003)
estimate VAMs in the SDUSD using student fixed effects, with separate models for elementary,
middle, and high school students. Although they find some evidence that teacher qualifications
matter at the high school level, they find very little evidence of this in elementary schools.
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8. CONCLUSION
On the one hand, our results corroborate Rothstein’s key finding that VAMs
of student achievement can produce biased estimates of teacher effects. In
fact, we show that even detailed VAMs that estimate teacher effects across
multiple cohorts of students can still produce biased estimates, as evidenced
by the future teacher effects documented in tables 4, 6, and 8. On the other
hand, our results are encouraging because they indicate that sorting bias in
value-added estimation need not be as large as is implied by Rothstein’s work.
A key finding here is that using multiple years of classroom observations for
teachers will reduce sorting bias in value-added estimates. This result raises
concerns about using single-year measures of teacher value added to evaluate
teacher effectiveness. For example, one may not want to use achievement gains
of the students of novice teachers who are in their first year of teaching to make
decisions about which novice teachers should be retained.

In our setting in San Diego, using a student fixed effects model and eval-
uating teachers who teach students in three consecutive years mitigates the
contribution of sorting bias to the teacher effect estimates. Although this
result may not universally generalize and depends on the degree of student-
teacher sorting in our data, it suggests that under some circumstances value-
added modeling can continue to be a powerful tool in the analysis of teacher
effectiveness.

Nonetheless, to the extent that our results corroborate Rothstein’s find-
ings, they highlight an important issue with incorporating value-added mea-
sures of teacher effectiveness into high-stakes teacher evaluations. Namely,
value added is manipulatable by administrators who determine students’ class-
room assignments. Our entire analysis is based on a low-stakes measure of
teacher effectiveness. If high stakes were assigned to value-added measures
of teacher effectiveness, sufficient safeguards would need to be put in place
to ensure that the system could not be gamed through purposeful sorting of
students to teachers for the benefit of altering value-added measures of teacher
effectiveness.
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